Skip to main content Accessibility help

Periventricular white matter hyperintensities and the risk of dementia: a CREDOS study

  • Sangha Kim (a1), Seong Hye Choi (a2), Young Min Lee (a3), Min Ji Kim (a4), Young Don Kim (a1), Jin Young Kim (a1), Jin Hong Park (a1), Woojae Myung (a1), Hae Ri Na (a5), Hyun Jeong Han (a6), Yong S. Shim (a7), Jong Hun Kim (a8), Soo Jin Yoon (a9), Sang Yun Kim (a10) and Doh Kwan Kim (a1)...



Cerebral white matter hyperintensities (WMH) are prevalent incident findings on brain MRI scans among elderly people and have been consistently implicated in cognitive dysfunction. However, differential roles of WMH by region in cognitive function are still unclear. The aim of this study was to ascertain the differential role of regional WMH in predicting progression from mild cognitive impairment (MCI) to different subtypes of dementia.


Participants were recruited from the Clinical Research Center for Dementia of South Korea (CREDOS) study. A total of 622 participants with MCI diagnoses at baseline and follow-up evaluations were included for the analysis. Initial MRI scans were rated for WMH on a visual rating scale developed for the CREDOS. Differential effects of regional WMH in predicting incident dementia were evaluated using the Cox proportional hazards model.


Of the 622 participants with MCI at baseline, 139 patients (22.3%) converted to all-cause dementia over a median of 14.3 (range 6.0–36.5) months. Severe periventricular WMH (PWMH) predicted incident all-cause dementia (Hazard ratio (HR) 2.22; 95% confidence interval (CI) 1.43–3.43) and Alzheimer's disease (AD) (HR 1.86; 95% CI 1.12–3.07). Subcortical vascular dementia (SVD) was predicted by both PWMH (HR 16.14; 95% CI 1.97–132.06) and DWMH (HR 8.77; 95% CI 1.77–43.49) in more severe form (≥ 10 mm).


WMH differentially predict dementia by region and severity. Our findings suggest that PWMH may play an independent role in the pathogenesis of dementia, especially in AD.


Corresponding author

Correspondence should be addressed to: Professor Doh Kwan Kim, MD, PhD., Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 135-710, South Korea. Phone: +822-3410-3582; Fax: +822-3410-0941. Email:


Hide All
Ahn, H. J. et al. (2010). Seoul neuropsychological screening battery-dementia version (SNSB-D): a useful tool for assessing and monitoring cognitive impairments in dementia patients. Journal of Korean Medical Science, 25, 10711076. doi:10.3346/jkms.2010.25.7.1071.
American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric Assocation.
Armstrong, R. J. and Barker, R. A. (2001). Neurodegeneration: a failure of neuroregeneration? Lancet, 358, 11741176. doi:10.1016/s0140-6736(01)06260-2.
Bae, J. N. and Cho, M. J. (2004). Development of the Korean version of the Geriatric Depression Scale and its short form among elderly psychiatric patients. Journal of Psychosomatic Research, 57, 297305. doi:10.1016/j.jpsychores.2004.01.004.
Brickman, A. M. et al. (2012). Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer disease in the community. Archives of Neurology, 69, 16211627. doi:10.1001/archneurol.2012.1527.
Busse, A., Hensel, A., Guhne, U., Angermeyer, M. C. and Riedel-Heller, S. G. (2006). Mild cognitive impairment: long-term course of four clinical subtypes. Neurology, 67, 21762185. doi:10.1212/01.wnl.0000249117.23318.e1.
Curtis, M. A., Faull, R. L. and Eriksson, P. S. (2007). The effect of neurodegenerative diseases on the subventricular zone. Nature Reviews: Neuroscience, 8, 712723. doi:10.1038/nrn2216.
Desai, M. K., Sudol, K. L., Janelsins, M. C., Mastrangelo, M. A., Frazer, M. E. and Bowers, W. J. (2009). Triple-transgenic Alzheimer's disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia, 57, 5465. doi:10.1002/glia.20734.
Erkinjuntti, T. (2002). Subcortical vascular dementia. Cerebrovascular Diseases, 13 (Suppl. 2), 5860. doi:49152.
Gage, F. H. (2000). Mammalian neural stem cells. Science, 287, 14331438.
Hachinski, V. C. et al. (1975). Cerebral blood flow in dementia. Archives of Neurology, 32, 632637.
Kang, Y., Na, D. L. and Hahn, S. (1997). A validity study on the Korean Mini-Mental State Examination (K-MMSE) in dementia patients. Journal of the Korean Neurological Association, 15, 300308.
Kim, K. W., MacFall, J. R. and Payne, M. E. (2008). Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biological Psychiatry, 64, 273280. doi:10.1016/j.biopsych.2008.03.024.
Lee, H. K., Lee, Y. M., Park, J. M., Lee, B. D., Moon, E. S. and Chung, Y. I. (2014). Amnestic multiple cognitive domains impairment and periventricular white matter hyperintensities are independently predictive factors progression to dementia in mild cognitive impairment. International Journal of Geriatric Psychiatry, 29, 526532. doi:10.1002/gps.4035.
Lin, D. Y., Wei, L. J. and Ying, Z. (1993). Checking the Cox model with cumulative sums of Martingale-based residuals. Biometrika, 80, 557572.
McKeith, I. G. et al. (1996). Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology, 47, 11131124.
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D. and Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease. Neurology, 34, 939944.
Moon, S. Y. et al. (2011). Impact of white matter changes on activities of daily living in mild to moderate dementia. European Neurology, 65, 223230. doi:10.1159/000318161.
Morris, J. C. (1993). The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology, 43, 24122414.
Noh, Y. et al. (2014). A new classification system for ischemia using a combination of deep and periventricular white matter hyperintensities. Journal of Stroke and Cerebrovascular Diseases, 23, 636642. doi:10.1016/j.jstrokecerebrovasdis.2013.06.002.
Park, H. K. et al. (2011). Clinical characteristics of a nationwide hospital-based registry of mild-to-moderate Alzheimer's disease patients in Korea: a CREDOS (clinical research center for dementia of South Korea) study. Journal of Korean Medical Science, 26, 12191226. doi:10.3346/jkms.2011.26.9.1219.
Poggesi, A. et al. (2011). 2001–2011: a decade of the LADIS (leukoaraiosis and disability) study: what have we learned about white matter changes and small-vessel disease? Cerebrovascular Diseases, 32, 577588. doi:10.1159/000334498.
Prins, N. D. et al. (2004). Cerebral white matter lesions and the risk of dementia. Archives of Neurology, 61, 15311534. doi:10.1001/archneur.61.10.1531.
Provenzano, F. A. et al. (2013). White matter hyperintensities and cerebral amyloidosis: necessary and sufficient for clinical expression of Alzheimer disease? JAMA Neurology, 70, 455461. doi:10.1001/jamaneurol.2013.1321.
Roman, G. C. et al. (1993). Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology, 43, 250260.
Schmidt, R. et al. (2011). Heterogeneity in age-related white matter changes. Acta Neuropathologica, 122, 171185. doi:10.1007/s00401-011-0851-x.
Simpson, J. E. et al. (2007). White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathology and Applied Neurobiology, 33, 410419. doi:10.1111/j.1365-2990.2007.00828.x.
The Lund and Manchester Groups (1994). Clinical and neuropathological criteria for frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 57, 416418.
van Straaten, E. C. et al. (2008). Periventricular white matter hyperintensities increase the likelihood of progression from amnestic mild cognitive impairment to dementia. Journal of Neurology, 255, 13021308. doi:10.1007/s00415-008-0874-y.
Verdelho, A. et al. (2010). White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study. Neurology, 75, 160167. doi:10.1212/WNL.0b013e3181e7ca05.
Vernooij, M. W. et al. (2007). Incidental findings on brain MRI in the general population. New England Journal of Medicine, 357, 18211828. doi:10.1056/NEJMoa070972.
Vuorinen, M. et al. (2011). Changes in vascular risk factors from midlife to late life and white matter lesions: a 20-year follow-up study. Dementia and Geriatric Cognitive Disorders, 31, 119125. doi:10.1159/000323810.
Ye, B. S. et al. (2013). Effects of education on the progression of early-versus late-stage mild cognitive impairment. International Psychogeriatrics, 25, 597606. doi:10.1017/s1041610212002001.
Yoshita, M. et al. (2006). Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology, 67, 21922198. doi:10.1212/01.wnl.0000249119.95747.1f.
Zhang, Y. et al. (2007). Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology, 68, 1319. doi:10.1212/01.wnl.0000250326.77323.01.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed