We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The association between dietary iron intake and diabetes risk remains inconsistent. We aimed to explore the association of dietary iron intake and type 2 diabetes mellitus (T2DM) risk in middle-aged and older adults in urban China. This study used data from the Guangzhou Nutrition and Health Study (GNHS), an on-going community-based prospective cohort study. Participants were recruited from 2008 to 2013 in Guangzhou community. 2,696 participants aged 40-75 years without T2DM at baseline were included in data analyses, with a median of 5.6 (IQR: 4.1-5.9) years of follow-up. T2DM was identified by self-reported diagnosis, fasting glucose ≥7.0 mmol/L, or glycosylated hemoglobin ≥6.5%. Cox proportional hazard models were used to estimate HRs and 95%CIs. We ascertained 205 incident T2DM cases during 13,476 person-years. The adjusted HR for T2DM risk in the fourth quartile of heme iron intake was 1.92 (95%CI: 1.07, 3.46; P-trend=0.010), compared with the first quartile intake. These significant associations were found in heme iron intake from total meat (HR:2.74; 95%CI: 1.22, 6.15; P-trend=0.011) and heme iron intake from red meat (HR:1.86; 95%CI: 1.01, 3.44; P-trend=0.034), but not heme iron intake from processed meat, poultry or fish/shellfish. The association between dietary intake of total iron or nonheme iron with T2DM risk had no significance. Our findings suggested that higher dietary intake of heme iron (especially from red meat), but not total iron or nonheme iron, was associated with greater T2DM risk in middle-aged and older adults.
The impact of diet on the metabolic syndrome (MetS) and CVD has been investigated widely, but few studies have investigated the association between dietary patterns (DP) and the predicted CVD, derived from reduced rank regression (RRR). The objectives of this study were to derive DP using RRR and principal component analysis (PCA) and investigate their associations with the MetS and estimated 10-year atherosclerotic CVD (ASCVD). We used the baseline dataset from the Xinjiang multi-ethnic cohort study in China, collected from June 2018 to May 2019. A total of 14 982 subjects aged 35–74 years from Urumqi, Huo Cheng and Mo Yu were included in the analysis. The 10-year ASCVD risk was estimated using the Chinese ASCVD risk equations. The associations of DP with the MetS and 10-year ASCVD were determined using multivariable logistic regression models. In Urumqi and Mo Yu, the increased RRR DP score was associated with a higher OR of having the MetS and with a higher OR of elevated 10-year ASCVD risk. However, only the first DP determined by PCA in Urumqi was inversely associated with the MetS and elevated 10-year ASCVD risk. The prevalence of the MetS and elevated ASCVD risk in urban population is higher than that in rural areas. Our results may help nutritionists develop more targeted dietary strategies to prevent the MetS and ASCVD in different regions in China.
Sugarcane brown rust, caused by Puccinia melanocephala, is one of the main diseases of sugarcane in China. The identification and discovery of new resistance genes have important theoretical and practical significance for preventing outbreaks of brown rust and ensuring the sustainable production of sugarcane. To screen for polymorphic simple-sequence repeat (SSR) molecular markers for localization of brown rust resistance genes, we used two populations that are suitable for genetic linkage map construction and mapping of new resistance genes to construct resistant and susceptible genetic pools. We then screened 449 pairs of primers to identify polymorphic SSR markers in the parental lines and the resistant/susceptible genetic pools. The results showed that 25 pairs of primers directed amplification of polymorphic DNA fragments between the parents of the cross combination ‘Yuetang 03-393’ × ‘ROC 24’, and 16 pairs of primers amplified polymorphic fragments between the parents of the cross combination ‘Liucheng 03-1137’ × ‘Dezhe 93-88’. Four pairs of primers (SMC236CG, SCESSR0928, SCESSR0636 and SCESSR2551) amplified polymorphic DNA fragments between the parental lines and the resistant/susceptible genetic pools in ‘Yuetang 03-393’ × ‘ROC 24’. The results of this study will establish a solid foundation for the mapping of new brown rust resistance genes, genetic linkage map construction and the development of closely-associated molecular markers in sugarcane.
The clinical characteristics of patients with COVID-19 were analysed to determine the factors influencing the prognosis and virus shedding time to facilitate early detection of disease progression. Logistic regression analysis was used to explore the relationships among prognosis, clinical characteristics and laboratory indexes. The predictive value of this model was assessed with receiver operating characteristic curve analysis, calibration and internal validation. The viral shedding duration was calculated using the Kaplan–Meier method, and the prognostic factors were analysed by univariate log-rank analysis and the Cox proportional hazards model. A retrospective study was carried out with patients with COVID-19 in Tianjin, China. A total of 185 patients were included, 27 (14.59%) of whom were severely ill at the time of discharge and three (1.6%) of whom died. Our findings demonstrate that patients with an advanced age, diabetes, a low PaO2/FiO2 value and delayed treatment should be carefully monitored for disease progression to reduce the incidence of severe disease. Hypoproteinaemia and the fever duration warrant special attention. Timely interventions in symptomatic patients and a time from symptom onset to treatment <4 days can shorten the duration of viral shedding.
Situated between the North China Craton to the east and the Tarim Craton to the west, the northern Alxa area in westernmost Inner Mongolia in China occupies a key location for interpreting the late-stage tectonic evolution of the southern Central Asian Orogenic Belt. New LA-ICP-MS zircon U–Pb dating results reveal 282.2 ± 3.9 Ma gabbros and 216.3 ± 3.2 Ma granites from the Yagan metamorphic core complex in northern Alxa, NW China. The gabbros are characterized by low contents of Si, Na, K, Ti and P and high contents of Mg, Ca, Al and Fe. These gabbros have arc geochemical signatures with relative enrichments in large ion lithophile elements and depletions in high field strength elements, as well as negative εNd(t) (−0.91 to −0.54) and positive εHf(t) (2.59 to 6.37) values. These features indicate that a depleted mantle magma source metasomatized by subduction fluids/melts and contaminated by crustal materials was involved in the processes of magma migration and emplacement. The granites show high-K calc-alkaline and metaluminous to weakly peraluminous affinities, similar to A-type granites. They have positive εNd(t) (1.55 to 1.99) and εHf(t) (5.03 to 7.64) values. These features suggest that the granites were derived from the mixing of mantle and crustal sources and formed in a postcollisional tectonic setting. Considering previous studies, we infer that the final closure of the Palaeo-Asian Ocean in the central part of the southern Central Asian Orogenic Belt occurred in late Permian to Early–Middle Triassic times.
The microbiota–gut–brain axis, especially the microbial tryptophan (Trp) biosynthesis and metabolism pathway (MiTBamp), may play a critical role in the pathogenesis of major depressive disorder (MDD). However, studies on the MiTBamp in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and the MiTBamp in MDD patients.
Methods
We performed shotgun metagenomic sequencing of stool samples from 26 MDD patients and 29 healthy controls (HCs). In addition to the microbiota community and the MiTBamp analyses, we also built a classification based on the Random Forests (RF) and Boruta algorithm to identify the gut microbiota as biomarkers for MDD.
Results
The Bacteroidetes abundance was strongly reduced whereas that of Actinobacteria was significantly increased in the MDD patients compared with the abundance in the HCs. Most noteworthy, the MDD patients had increased levels of Bifidobacterium, which is commonly used as a probiotic. Four Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) (K01817, K11358, K01626, K01667) abundances in the MiTBamp were significantly lower in the MDD group. Furthermore, we found a negative correlation between the K01626 abundance and the HAMD scores in the MDD group. Finally, RF classification at the genus level can achieve an area under the receiver operating characteristic curve of 0.890.
Conclusions
The present findings enabled a better understanding of the changes in gut microbiota and the related Trp pathway in MDD. Alterations of the gut microbiota may have the potential as biomarkers for distinguishing MDD patients form HCs.
We assessed inheritance of resistance to sugarcane brown rust (Puccinia melanocephala) in selfing F1 populations of wild sugarcane germplasm Erianthus rockii ‘Yundian 95-19’ and E. rockii ‘Yundian 95-20’. We tested parent and selfing F1 individuals for the brown rust resistance gene, Bru1, that has been shown to confer resistance to brown rust in sugarcane. The Bru1 gene was not detected in E. rockii ‘Yundian 95-19’, E. rockii ‘Yundian 95-20’ or their selfing F1 individuals, and we found there was segregation of resistance in the two selfing F1 populations (segregation ratio: 3:1). The results confirmed resistance in E. rockii ‘Yundian 95-19’ and E. rockii ‘Yundian 95-20’ to sugarcane brown rust is controlled by a novel, single dominant gene.
Novel NiMoO4-integrated electrode materials were successfully prepared by solvothermal method using Na2MoO4·2H2O and NiSO4·6H2O as main raw materials, water, and ethanol as solvents. The morphology, phase, and structure of the as-prepared materials were characterized by SEM, XRD, Raman, and FT-IR. The electrochemical properties of the materials in supercapacitors were investigated by cyclic voltammetry, constant current charge–discharge, and electrochemical impedance spectroscopy techniques. The effects of volume ratio of water to ethanol (W/E) in solvent on the properties of the product were studied. The results show that the pure phase monoclinic crystal NiMoO4 product can be obtained when the W/E is 2:1. The diameter and length are 0.1–0.3 µm and approximately 3 µm, respectively. As an active material for supercapacitor, the NiMoO4 nanorods material delivered a discharge specific capacitance of 672, 498, and 396 F/g at a current density of 4, 7, and 10 A/g, respectively. The discharge specific capacitance slightly decreased from 815 to 588 F/g with a retention of 72% after 1000 cycles at a current density of 1 A/g. With these superior capacitance properties, the novel NiMoO4 integrated electrode materials could be considered as promising material for supercapacitors.
Energy chirp compensation of the electron bunch (e-bunch) in a laser wakefield accelerator, which is caused by the phase space rotation in the gradient wakefield, has been applied in many schemes for low energy spread e-bunch generation. We report the experimental observation of energy chirp compensation of the e-bunch in a nonlinear laser wakefield accelerator with a negligible beam loading effect. By adjusting the acceleration length using a wedge-roof block, the chirp compensation of the accelerated e-bunch was observed via an electron spectrometer. Apart from this, some significant parameters for the compensation process, such as the longitudinal dispersion and wakefield slope at the bunch position, were also estimated. A detailed comparison between experiment and simulation shows good agreement of the wakefield and bunch parameters. These results give a clear demonstration of the longitudinal characteristics of the wakefield in a plasma and the bunch dynamics, which are important for better control of a compact laser wakefield accelerator.
Black nano-TiO2 samples with core–shell nanostructure were successfully prepared by sol–gel method combined with Mg reduction using butyl titanate as titanium source and calcining at 500°C in air atmosphere and at 400–600°C in nitrogen atmosphere. The prepared black TiO2 samples were characterized by X-ray diffraction, high resolution transmission electron microscopy, Raman spectra, photoluminescence emission spectra, N2 adsorption–desorption, and ultraviolet–visible spectroscopy. The results show that the black TiO2 exhibits a crystalline core–disordered shell structure composed of disordered surface and oxygen vacancies, and the thickness of the disordered layer is about 2–3 nm. The optical absorption properties of black nano-TiO2 samples have been remarkably enhanced in visible light region. Compared with the white TiO2, the reduced black TiO2 samples exhibit enhanced photocatalytic hydrogen production under the full solar wavelength range of light, and the sample prepared with the Mg and TiO2 ratio of 9:1 calcined at 500 °C has the maximum hydrogen production rate.
Breast milk (BM) hormones have been hypothesised as a nutritional link between maternal and infant metabolic health. This study aimed to evaluate hormone concentrations in BM of women with and without gestational diabetes mellitus (GDM), and the relationship between maternal factors, BM hormones and infant growth. We studied ninety-six nulliparous women with (n 48) and without GDM and their exclusively breastfed term singletons. Women with GDM received dietary therapy or insulin injection for euglycaemia during pregnancy. Hormone concentrations in BM, maternal BMI and infant growth were longitudinally evaluated on postnatal days 3, 42 and 90. Mothers with GDM had decreased concentrations of adiponectin (Pcolostrum<0·001; Pmature-milk=0·009) and ghrelin (Pcolostrum=0·011; Pmature-milk<0·001) and increased concentration of insulin in BM (Pcolostrum=0·047; Pmature-milk=0·021). Maternal BMI was positively associated with adiponectin (β=0·06; 95 % CI 0·02, 0·1; P=0·001), leptin (β=0·16; 95 % CI 0·12, 0·2; P<0·001) and insulin concentrations (β=0·06; 95 % CI 0·02, 0·1; P<0·001), and inversely associated with ghrelin concentration in BM (β=–0·08; 95 % CI –0·1, –0·06; P<0·001). Among the four hormones, adiponectin was inversely associated with infant growth in both the GDM (βweight-for-height=–2·49; 95 % CI –3·83, –1·15; P<0·001; βhead-circumference=–0·39; 95 % CI –0·65, –0·13; P=0·003) and healthy groups (βweight-for-height=–1·42; 95 % CI –2·38, –0·46; P=0·003; βhead-circumference=–0·15; 95 % CI –0·27, –0·03; P=0·007). Maternal BMI and GDM are important determinants of BM hormone concentrations. Milk-borne adiponectin is determined by maternal metabolic status and plays an independent down-regulating role in early infant growth.
In this paper, zircon U–Pb geochronology, major and trace elements, and Sr–Nd isotope geochemistry of the Baiyanghe dolerites in northern West Junggar of NW China are presented. The U–Pb dating of zircons from the dolerites yielded ages of 272.2±4 Ma and 276.7±6.2 Ma, which indicate the emplacement times. The dolerites are characterized by minor variations in SiO2 (46.89 to 49.07 wt%), high contents of Al2O3 (13.60 to 13.92 wt%) and total Fe2O3 (11.14 to 11.70 wt%), and low contents of MgO (2.67 to 3.64 wt%) and total alkalis (Na2O+K2O, 5.1 to 5.97 wt%, K2O/Na2O = 0.37–0.94), which indicate affinities to metaluminous tholeiite basalt. The REE pattern ((La/Sm)N = 2.25–2.34, (La/Yb)N = 7.42–8.36), V–Ti/1000 and 50*Zr–Ti/50–Sm discrimination diagrams show that these rocks are OIB-type. The high contents of Zr and Ti indicate a within-plate tectonic setting, and samples plot in the ‘plume source’ field shown on the Dy/Yb(N) versus Ce/Yb(N) diagram. The positive εNd(t) values (+7.09 to +7.48), high initial 87Sr/86Sr ratios (0.70442 to 0.70682) and depletions of Nb and Ta elements in the samples can be explained by the involvement of subducted sediments. In summary, it is possible that the Baiyanghe dolerites were derived from an OIB-like mantle source and associated with a mantle plume tectonic setting. Therefore, our samples provide the youngest evidence for the existence of a mantle plume, which may provide new insights into the Late Palaeozoic tectonic setting of West Junggar.
In high power laser facility for inertial confinement fusion research, final optics assembly (FOA) plays a critical role in the frequency conversion, beam focusing, color separation, beam sampling and debris shielding. The design and performance of FOA in SG-II Upgrade laser facility are mainly introduced here. Due to the limited space and short focal length, a coaxial aspheric wedged focus lens is designed and applied in the FOA configuration. Then the ghost image analysis, the focus characteristic analysis, the B integral control design and the optomechanical design are carried out in the FOA design phase. In order to ensure the FOA performance, two key technologies are developed including measurement and adjustment technique of the wedged focus lens and the stray light management technique based on ground glass. Experimental results show that the design specifications including laser fluence, frequency conversion efficiency and perforation efficiency of the focus spot have been achieved, which meet the requirements of physical experiments well.
In this study, we investigate a new simple scheme using a planar undulator (PU) together with a properly dispersed electron beam (
$e$
beam) with a large energy spread (
${\sim}1\%$
) to enhance the free-electron laser (FEL) gain. For a dispersed
$e$
beam in a PU, the resonant condition is satisfied for the center electrons, while the frequency detuning increases for the off-center electrons, inhibiting the growth of the radiation. The PU can act as a filter for selecting the electrons near the beam center to achieve the radiation. Although only the center electrons contribute, the radiation can be enhanced significantly owing to the high-peak current of the beam. Theoretical analysis and simulation results indicate that this method can be used for the improvement of the radiation performance, which has great significance for short-wavelength FEL applications.
We examined the in vitro developmental competence of parthenogenetic activation (PA) oocytes activated by an electric pulse (EP) and treated with various concentrations of AZD5438 for 4 h. Treatment with 10 µM AZD5438 for 4 h significantly improved the blastocyst formation rate of PA oocytes in comparison with 0, 20, or 50 µM AZD5438 treatment (46.4% vs. 34.5%, 32.3%, and 24.0%, respectively; P < 0.05). The blastocyst formation rate was higher in the group treated with AZD5438 for 4 h than in the groups treated with AZD5438 for 2 or 6 h (42.8% vs. 38.6% and 37.2%, respectively; P > 0.05). Furthermore, 66.67% of blastocysts derived from these AZD5438-treated PA oocytes had a diploid karyotype. The blastocyst formation rate of PA and somatic cell nuclear transfer (SCNT) embryos was similar between oocytes activated by an EP and treated with 2 mM 6-dimethylaminopurine for 4 h and those activated by an EP and treated with 10 µM AZD5438 for 4 h (11.11% vs. 13.40%, P > 0.05). In addition, the level of maturation-promoting factor (MPF) was significantly decreased in oocytes activated by an EP and treated with 10 µM AZD5438 for 4 h. Finally, the mRNA expression levels of apoptosis-related genes (Bax and Bcl-2) and pluripotency-related genes (Oct4, Nanog, and Sox2) were checked by RT-PCR; however, there were no differences between the AZD5438-treated and non-treated control groups. Our results demonstrate that porcine oocyte activation via an EP in combination with AZD5438 treatment can lead to a high blastocyst formation rate in PA and SCNT experiments.
A reintroduction project for the endangered Crested Ibis Nipponia nippon was conducted in Ningshan County (Shaanxi Province) on May 31, 2007. Post-release monitoring of the survival of the reintroduced population was carried out extensively from 2008 to 2015. Data collected over eight years after release were used to estimate the annual survival rate for different cohorts using a Cormack-Jolly-Seber model with capture-recapture data. The mean annual survival rates for all individuals were estimated to be 0.738 (95% CI: 0.547–0.801) and 0.752 (95% CI: 0.478–0.887) for released birds. For different age classes in the recipient population, the survival rates were estimated to be 0.384 (95% CI: 0.277–0.504), 0.853 (95% CI: 0.406–0.978), and 0.812 (95% CI: 0.389–0.950) for yearlings, juveniles and adults, respectively. The higher mortality for yearlings has greatly decreased the survival rate and our focal population was indeed sensitive to changes in yearling survival. Therefore, effective protection of yearlings was crucial to population persistence, as well as to juveniles and adults. The large proportion of mature individuals in our focal population indicated a gradually growing population. There was a slight bias towards males in the adult sex ratio with the increase of wild-born offspring, but it was not statistically significant. Therefore, we conclude that the primary goal of establishing a self-sustaining population of the Crested Ibis in part of their historical range has been achieved. Finally, we discuss factors affecting the survival of the reintroduced population and we propose some changes for future management of endangered species.
Four 9Cr2WVTa deposited metals with different titanium contents were studied to reveal the role of minor elements titanium, which guide for the design of welding consumables for reduced activation ferritic/martensitic steel and meet for the requirements of accelerator driven systems-lead fusion reactors. The microstructural evolution of 9Cr2WVTa deposited metals was analyzed and discussed. Results show that the surface layer of 9Cr2WVTa deposited metal exhibits the columnar structure and the δ-ferrite is seen as a film distributed along the martensite lath. The microstructures are uniform in the middle of the deposited metal and exhibit the equiaxed structure. The fine stripe δ-ferrite decorates along the prior austenite grain boundaries and therefore, refines the grain size. The primary blocky Ti-enriched particles are the main factor affecting the mechanical properties for the 9Cr2WVTa deposited metal. The 9Cr2WVTa deposited metals obtain good mechanical properties when the titanium content does not exceed 0.08 wt%.
In life-critical applications, the real-time detection of faults is very important in Global Positioning System/Inertial Navigation System (GPS/INS) integrated navigation systems. A new fault detection method for soft fault detection is developed in this paper with the purpose of improving real-time performance. In general, the innovation information obtained from a Kalman filter is used for test statistic calculations in Autonomous Integrity Monitored Extrapolation (AIME). However, the innovation of the Kalman filter is degraded by error tracking and closed-loop correction effects, leading to time delays in soft fault detection. Therefore, the key issue of improving real-time performance is providing accurate innovation to AIME. In this paper, the proposed algorithm incorporates Least Squares-Support Vector Machine (LS-SVM) regression theory into AIME. Because the LS-SVM has a good regression and prediction performance, the proposed method provides replaced innovation obtained from the LS-SVM driven by real-time observation data. Based on the replaced innovation, the test statistics can follow fault amplitudes more accurately; finally, the real-time performance of soft fault detection can be improved. Theoretical analysis and physical simulations demonstrate that the proposed method can effectively improve the detection instantaneity.