We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We broaden the applicability of sparse coding, a machine learning method, to low-dose electron holography by using simulated holograms for learning and validation processes. The holograms, with shot noise, are prepared to generate a model, or a dictionary, that includes basic features representing interference fringes. The dictionary is applied to sparse representations of other simulated holograms with various signal-to-noise ratios (SNRs). Results demonstrate that this approach successfully removes noise for holograms with an extremely small SNR of 0.10, and that the denoised holograms provide the accurate phase distribution. Furthermore, this study demonstrates that the dictionary learned from the simulated holograms can be applied to denoising of experimental holograms of a p–n junction specimen recorded with different exposure times. The results indicate that the simulation-trained sparse coding is suitable for use over a wide range of imaging conditions, in particular for observing electron beam-sensitive materials.
Low-voltage-driven organic thin-film transistors (organic TFTs) with spatially controlled threshold voltages (−1.2 and −0.36 V) were fabricated for the first time. Using the microcontact printing method, tetradecylphosphonic acid (HC14-PA) and pentadecylfluoro-octadecylphosphonic acid (FC18-PA) were transferred to form ultrathin layers in different regions on a substrate. Together with plasma-grown aluminum oxide (AlOx) layer, the stamped layers were shown to have equal insulating ability as the dipped method monolayer. The feasibility of the area-selective stamping method was displayed using locally controlled inverter circuits. The shift of turn-on voltage for those transistors was consistent with the threshold voltage shift of the transistors.
We have successfully achieved a transconductance of 0.76 S/m for organic thin-film transistors with 4 V operation, which is the largest value reported for organic transistors fabricated using printing methods. Using a subfemtoliter inkjet, silver electrodes with a line width of 1 µm and a channel length of 1 µm were printed directly onto an air-stable, high-mobility organic semiconductor that was deposited on a single-molecule self-assembled monolayer-based gate dielectric. On reducing the droplet volume (0.5 fl) ejected from the inkjet nozzle, which reduces sintering temperatures down to 90 °C, the inkjet printing of silver electrodes was accomplished without damage to the organic semiconductor.
We have investigated structural changes of amorphous borosilicon carbonitride materials with atomic ratios of B/Si/C of 2/3/6 and 4/3/6 calcined at several temperatures. The boron K-edge x-ray absorption spectra showed that the structures of both hexagonal boron nitride ([BN3] unit) with nitrogen-void defects ([BN2] and [BN1] units) and boron oxide existed in the samples, and the relative peak intensity due to the [BN3] unit became stronger by increasing the calcined temperature. It is thought that the well-developed B–N chain and the borosilicate glass coating lead to the high resistance to oxidation at high temperature. X-ray diffraction and infrared measurements followed the x-ray absorption near-edge spectroscopy findings.
Bi2Te3-based thin films were fabricated on glass substrates by the pulsed laser deposition (PLD) method. The vapor pressures of Bi and Te are significantly different, so controlling the stoichiometric composition is difficult when using conventional physical vapor deposition techniques, and the thermoelectric properties of Bi2Te3 films are sensitive to the film composition. PLD is a promising technique for the fabrication of telluride-based films such as Bi2Te3 due to its superior capability for controlling the film composition. Another advantage of PLD is the flexibility that it allows in terms of atmosphere in the reaction chamber; high concentrations of gases such as oxygen or argon can be introduced. We have measured various compositions of Bi2Te3 based films, and have identified the optimal compositions for both n-type and p-type material. The thermal conductivities of these Bi2Te3 films were evaluated by an exact measuring system, and the results were twice as low as those of conventional bulk materials. These results suggest that PLD has significant advantages for the deposition of in-plane Bi2Te3-based thin films.
In this paper we describe a new attempt of high-throughput screening of thermoelectric materials by combining the use of the “bulk composition-spread (CS)” or “bulk diffusion multiples (DM)” and the “scanning thermal probe microanalyzer (STPM).” The (Bi2Te3)1-x(Sb2Te3)x (0<x<1) and Ni1-xCux (0<x<1) bulk CS samples were prepared by conventional powder metallurgy method by using mechanical alloying and spark plasma sintering process. The Ni-Cu-X (X=Sn, In, Bi.) DM sample was prepared by post-heating of the CS samples in a molten metal. The two dimensional distributions of Seebeck coefficient and the thermal conductivity of the cross section of the CS and DM samples which composed of graded composition were visualized by using STPM at room temperature. The composition variation was checked by EDX. The relationship between composition and the thermoelectric properties was successfully determined by using the mapping results. The time required for mapping out the 100x100 pixel image was 8 to 11 hours. The total time required for this set of the screening experiment, from sample preparation to the final conclusion, was within 24 hours. For samples Ni-Cu-X DM the diffusion length of the elements at the interface can be large as 1mm and it was found that STPM is applicable to visualize the thermoelectric properties at the region of interest.
The thermoelectric properties of Ni1-xCux (0<x<1) alloy are measured from 323K to 950K. The sample with optimized composition, Ni70Cu30 is found to possess large power factor value of 0.012 Wm−1K−2 at around 950K. Estimated figure of merit value ZT is 0.21 for Ni50Cu50 and 0.18 for Ni70Cu30 at the same temperature. A novel attempt of high-throughput parallel synthesis using multiple-wells is carried out to test the feasibility of combinatorial approach in this material system. The Seebeck coefficient is visualized over the multiple-wells combinatorial library and the other Ni-Cu composition-spread, and it is proved that further enhancement of throughput could be possible by conducting systematic experiments based on the combinatorial approaches performed in this study.
By means of an optical tracer-particle tracking method, measurements for Lagrangian characteristics of turbulence, including the mean-square value of lateral diffusion from a point source $\overline{Y^2}$, the r.m.s. value of fluctuating velocity v′, the velocity autocorrelation coefficient RL(τ), and the integral scale ΛL, were made in approximately isotropic turbulent flow behind a grid. Comparison of these Lagrangian data with the Eulerian integral scale Λf and the double velocity correlation coefficient f(r) led to the following results: (i) for a moderate turbulent Reynolds-number range of Reλ = 20 − 70, the ratio β(= ΛL/Λf) is within the values of 0.6 – 0.3, becoming lower as Reλ increases, and (ii) the distribution of RL against time lag τ is analogous to that of f against βr/v′. Further, it was confirmed by both theoretical analysis and experiments that the growth of $\overline{Y^2}(t)$ was weakened by the decay of turbulent energy, particularly so for long diffusion times.