Skip to main content Accessibility help

Low-voltage organic transistor with subfemtoliter inkjet source–drain contacts

  • Tomoyuki Yokota (a1), Tsuyoshi Sekitani (a1), Yu Kato (a1), Kazunori Kuribara (a1), Ute Zschieschang (a2), Hagen Klauk (a2), Tatsuya Yamamoto (a3), Kazuo Takimiya (a3), Hirokazu Kuwabara (a4), Masaaki Ikeda (a4) and Takao Someya (a5)...


We have successfully achieved a transconductance of 0.76 S/m for organic thin-film transistors with 4 V operation, which is the largest value reported for organic transistors fabricated using printing methods. Using a subfemtoliter inkjet, silver electrodes with a line width of 1 µm and a channel length of 1 µm were printed directly onto an air-stable, high-mobility organic semiconductor that was deposited on a single-molecule self-assembled monolayer-based gate dielectric. On reducing the droplet volume (0.5 fl) ejected from the inkjet nozzle, which reduces sintering temperatures down to 90 °C, the inkjet printing of silver electrodes was accomplished without damage to the organic semiconductor.


Corresponding author

Address all correspondence to Takao Someya


Hide All
1.Gans, B.J. and Schubert, U.S.: Inkjet printing of well-defined polymer dots and arrays. Langmuir 20, 7789 (2004).
2.Kawase, T., Moriya, S., Newsome, C.J., and Shimoda, T.: Inkjet printing of polymeric field-effect transistors and its applications. Jpn. J. Appl. Phys. 44, 3649 (2005).
3.Noguchi, Y., Sekitani, T., Yokota, T., and Someya, T.: Direct inkjet printing of silver electrodes on organic semiconductors for thin-film transistors with top contact geometry. Appl. Phys. Lett. 93, 043303 (2008).
4.Vornbrock, A.F., Sung, D., Kang, H., Kitsomboonloha, R., and Subramanian, V.: Fully gravure and ink-jet printed high speed pBTTT organic thin film transistors. Org. Electronics. 11, 2037 (2010).
5.Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E.P.: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123 (2000).
6.Noguchi, Y., Sekitani, T., and Someya, T.: Organic-transistor-based flexible pressure sensors using ink-jet-printed electrodes and gate dielectric layers. Appl. Phys. Lett. 89, 253507 (2006).
7.Kim, D., Jeong, S., Lee, S., Park, B.K., and Moon, J.: Organic thin film transistor using silver electrodes by the ink-jet printing technology. Thin Solid Films 515, 7692 (2007).
8.Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J.R., Dotz, F., Kastler, M., and Facchetti, A.: A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679 (2009).
9.Noh, Y.Y., Zhao, N., Caironi, M., and Sirringhaus, H.: Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat. Nanotechnol. 2, 784 (2007).
10.Park, J.U., Hardy, M., Kang, S.J., Barton, K., Adair, K., Mukhopadhyay, D.K., Lee, C.Y., Strano, M.S., Alleyne, A.G., Georgiadis, J.G., Ferreira, P.M., and Rogers, J.A.: High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782 (2007).
11.Sekitani, T., Noguchi, Y., Zschieschang, U., Klauk, H., and Someya, T.: Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc. Natl. Acad. Sci. U.S.A. 105, 4976 (2008).
12.Ante, F., Kälblein, D., Zschieschang, U., Canzler, T.W., Werner, A., Takimiya, K., Ikeda, M., Sekitani, T., Someya, T., and Klauk, H.: Contact doping and ultrathin gate dielectrics for nanoscale organic thin-film transistors. Small 7, 1186 (2011).
13.Cho, J.H., Lee, J., Xia, Y., Kim, B., He, Y., Renn, M.J., Lodge, T.P., and Frisbie, C.D.: Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900 (2008).
14.Klauk, H., Zschieschang, U., Pflaum, J., and Halik, M.: Ultralow-power organic complementary circuits. Nature 445, 745 (2007).
15.Fukuda, K., Hamamoto, T., Yokota, T., Sekitani, T., Zschieschang, U., Klauk, H., and Someya, T.: Effects of the alkyl chain length in phosphonic acid self-assembled monolayer gate dielectrics on the performance and stability of low-voltage organic thin-film transistors. Appl. Phys. Lett. 95, 203301 (2009).
16.Yamamoto, T. and Takimiya, K.: Facile synthesis of highly π-extended heteroarenes, dinaphtho[2,3-b:2′,3′-f]chalcogenopheno[3,2-b]chalcogenophenes, and their application to field-effect transistors. J. Am. Chem. Soc. 129, 2224 (2007).
17.Taur, Y., Hu, G.J., Dennard, R.H., Terman, L.M., Ting, C.Y., and Petrillo, K.E.: A self-aligned 1-µm-channel CMOS technology with retrograde n-well and thin epitaxy. IEEE Trans. Electr. Dev. 32, 203 (1985).
18.Gundlach, D.J., Zhou, L., Nichols, J.A., Jackson, T.N., Necliudov, P.V., and Shur, M.S.: An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. 100, 024509 (2006).
19.Narioka, S., Ishii, H., Yoshimura, D., Sei, M., Ouchi, Y., Seki, K., Hasegawa, S., Miyazaki, T., Harima, Y., and Yamashita, K.: The electronic structure and energy level alignment of porphyrin/metal interfaces studied by ultraviolet photoelectron spectroscopy. Appl. Phys. Lett. 67, 1899 (1995).
20.Kim, D., Jeong, S., Shin, H., Xia, Y., and Moon, J.: Heterogeneous interfacial properties of ink-jet-printed silver nanoparticulate electrode and organic semiconductor. Adv. Mater. 20, 3084 (2008).
Type Description Title
Supplementary Figure S1

Yokota Supplementary Figure S1
Figure S1. Optical microscopy image of the organic thin-film transistors with patterned Al gates, ultrathin AlOx/SAM gate dielectric, vacuum-deposited DNTT as the semiconductor, and subfemtoliter inkjet-printed Ag nanoparticle source/drain contacts. The channel length is 1 µm.

 Unknown (69 KB)
69 KB
Supplementary Figure S2

Yokota Supplementary Figure S2
Figure S2. Electrical characteristics of DNTT TFTs with channel lengths of 1 µm (VDS = -4 V) (a) Drain current as a function of gate-source voltage (b) Square root of drain current as a function of gate-source voltage.

 Unknown (60 KB)
60 KB
Supplementary Figures S1 & S2

Yokota Supplementary Figures Legend
Yokota Supplementary Figures Legend

 Word (19 KB)
19 KB

Low-voltage organic transistor with subfemtoliter inkjet source–drain contacts

  • Tomoyuki Yokota (a1), Tsuyoshi Sekitani (a1), Yu Kato (a1), Kazunori Kuribara (a1), Ute Zschieschang (a2), Hagen Klauk (a2), Tatsuya Yamamoto (a3), Kazuo Takimiya (a3), Hirokazu Kuwabara (a4), Masaaki Ikeda (a4) and Takao Someya (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed