We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Instrument delivery is critical part in vascular intervention surgery. Due to the soft-body structure of instruments, the relationship between manipulation commands and instrument motion is non-linear, making instrument delivery challenging and time-consuming. Reinforcement learning has the potential to learn manipulation skills and automate instrument delivery with enhanced success rates and reduced workload of physicians. However, due to the sample inefficiency when using high-dimensional images, existing reinforcement learning algorithms are limited on realistic vascular robotic systems. To alleviate this problem, this paper proposes discrete soft actor-critic with auto-encoder (DSAC-AE) that augments SAC-discrete with an auxiliary reconstruction task. The algorithm is applied with distributed sample collection and parameter update in a robot-assisted preclinical environment. Experimental results indicate that guidewire delivery can be automatically implemented after 50k sampling steps in less than 15 h, demonstrating the proposed algorithm has the great potential to learn manipulation skill for vascular robotic systems.
With the rapid development of the national economy, the demand for electricity is also growing. Thermal power generation accounts for the highest proportion of power generation, and coal is the most commonly used combustion material. The massive combustion of coal has led to serious environmental pollution. It is significant to improve energy conversion efficiency and reduce pollutant emissions effectively. In this paper, an extreme learning machine model based on improved Kalman particle swarm optimization (ELM-IKPSO) is proposed to establish the boiler combustion model. The proposed modeling method is applied to the combustion modeling process of a 300 MWe pulverized coal boiler. The simulation results show that compared with the same type of modeling method, ELM-IKPSO can better predict the boiler thermal efficiency and NOx emission concentration and also show better generalization performance. Finally, multi-objective optimization is carried out on the established model, and a set of mutually non-dominated boiler combustion solutions is obtained.
Modal global linear stability analysis of thermal convection is performed with the linearized lattice Boltzmann method (LLBM). The onset of Rayleigh–Bénard convection in rectangular cavities with conducting and adiabatic sidewalls and the instability of two-dimensional (2-D) and three-dimensional (3-D) natural convection in cavities are studied. The method of linearizing the local equilibrium probability distribution function that was first proposed by Pérez et al. (Theor. Comp. Fluid Dyn., vol. 31, 2017, pp. 643–664) is extended to solve the coupled linear Navier–Stokes equations together with the linear energy equation in this work. A multiscale analysis is also performed to recover the macroscopic linear Navier–Stokes equations from the discrete lattice Boltzmann equations for both the single and multiple relaxation time models. The present LLBM is implemented in the framework of the Palabos library. It is validated by calculating the linear critical value of 2-D natural convection that the LLBM with the multiple relaxation time model has an error less than 1 % compared with the spectral method. The instability mechanism of the flow is explained by kinetic energy transfer analysis. It is shown that the buoyancy mechanism and inertial mechanism tend to stabilize the Hopf bifurcation of the 2-D natural convection at Pr < 0.08 and Pr > 1, respectively. For 3-D natural convection, subcritical bifurcation of the Hopf type is found for low-Prandtl-number fluids (Pr < 0.1).
This 62-d research aimed to evaluate the effects of dietary lysine levels (DLL) and salinity on growth performance and nutrition metabolism of genetically improved farmed tilapia (GIFT) juveniles (Oreochromis niloticus). Six diets with lysine supplementation (1·34, 1·70, 2·03, 2·41, 2·72 and 3·04 % of DM) were formulated under different cultured salinities in a two-factorial design. The results indicated that supplemental lysine improved the specific growth rate (SGR) and weight gain (WG) and decreased the feed conversion ratio (FCR). Meanwhile, the fish had higher SGR and WG and lower FCR at 8 ‰ salinity. Except for moisture, the whole-body protein, lipid and ash content of GIFT were increased by 8 ‰ salinity, which showed that DLL (1·34 %) increased the whole-body fat content and DLL (2·41 %) increased whole-body protein content. Appropriate DLL up-regulated mRNA levels of protein metabolism-related genes such as target of rapamycin, 4EBP-1 and S6 kinase 1. However, 0 ‰ salinity reduced these protein metabolism-related genes mRNA levels, while proper DLL could improve glycolysis and gluconeogenesis mRNA levels but decrease lipogenesis-related genes mRNA levels in liver. 0 ‰ salinity improved GLUT2, glucokinase and G6 Pase mRNA levels; however, sterol regulatory element-binding protein 1 and fatty acid synthase mRNA levels were higher at 8 ‰ salinity. Moreover, 8 ‰ salinity also increased plasma total protein and cholesterol levels and decreased glucose levels. These results indicated that the recommended range of lysine requirement under different salinity was 2·03–2·20 % (0 ‰) and 2·20–2·41 % (8 ‰) and 8 ‰ salinity resulted in higher lysine requirements due to changes in the related nutrient metabolism, which might provide useful information for designing more effective feed formulations for GIFT cultured in different salinity environment.
Accumulating evidence suggests that supplementation of n-3 PUFA was associated with reduction in risk of major cardiovascular events. This meta-analysis was to systematically evaluate whether daily supplementation and accumulated intake of n-3 PUFA are associated with improved left ventricular (LV) remodelling in patients with chronic heart failure (CHF). Articles were obtained from Pubmed, Clinical key and Web of Science from inception to January 1 in 2021, and a total of twelve trials involving 2162 participants were eligible for inclusion. The sources of study heterogeneity were explained by I2 statistic and subgroup analysis. Compared with placebo groups, n-3 PUFA supplementation improved LV ejection fraction (LVEF) (eleven trials, 2112 participants, weighted mean difference (WMD) = 2·52, 95 % CI 1·25, 3·80, I2 = 87·8 %) and decreased LV end systolic volume (five studies, 905 participants, WMD = –3·22, 95 % CI 3·67, −2·77, I2 = 0·0 %) using the continuous variables analysis. Notably, the high accumulated n-3 PUFA dosage groups (≥ 600 g) presented a prominent improvement in LVEF, while the low and middle accumulated dosage (≤ 300 and 300–600 g) showed no effects on LVEF. In addition, n-3 PUFA supplementation decreased the levels of pro-inflammatory mediators including TNF-α, IL-6 (IL-6) and hypersensitive c-reactive protein. Therefore, the present meta-analysis demonstrated that n-3 PUFA consumption was associated with a substantial improvement of LV function and remodelling in patients subjected to CHF. The accumulated dosage of n-3 PUFA intake is vital for its cardiac protective role.
As acute infectious pneumonia, the coronavirus disease-2019 (COVID-19) has created unique challenges for each nation and region. Both India and the United States (US) have experienced a second outbreak, resulting in a severe disease burden. The study aimed to develop optimal models to predict the daily new cases, in order to help to develop public health strategies. The autoregressive integrated moving average (ARIMA) models, generalised regression neural network (GRNN) models, ARIMA–GRNN hybrid model and exponential smoothing (ES) model were used to fit the daily new cases. The performances were evaluated by minimum mean absolute per cent error (MAPE). The predictive value with ARIMA (3, 1, 3) (1, 1, 1)14 model was closest to the actual value in India, while the ARIMA–GRNN presented a better performance in the US. According to the models, the number of daily new COVID-19 cases in India continued to decrease after 27 May 2021. In conclusion, the ARIMA model presented to be the best-fit model in forecasting daily COVID-19 new cases in India, and the ARIMA–GRNN hybrid model had the best prediction performance in the US. The appropriate model should be selected for different regions in predicting daily new cases. The results can shed light on understanding the trends of the outbreak and giving ideas of the epidemiological stage of these regions.
Chronic inflammation exerts pleiotropic effects in the aetiology and progression of chronic obstructive pulmonary disease (COPD). Glucosamine is widely used in many countries and may have anti-inflammatory properties. We aimed to prospectively evaluate the association of regular glucosamine use with incident COPD risk and explore whether such association could be modified by smoking in the UK Biobank cohort, which recruited more than half a million participants aged 40–69 years from across the UK between 2006 and 2010. Cox proportional hazards models with adjustment for potential confounding factors were used to calculate hazard ratios (HR) as well as 95 % CI for the risk of incident COPD. During a median follow-up of 8·96 years (interquartile range 8·29–9·53 years), 9016 new-onset events of COPD were documented. We found that the regular use of glucosamine was associated with a significantly lower risk of incident COPD with multivariable adjusted HR of 0·80 (95 % CI, 0·75, 0·85; P < 0·001). When subgroup analyses were performed by smoking status, the adjusted HR for the association of regular glucosamine use with incident COPD were 0·84 (0·73, 0·96), 0·84 (0·77, 0·92) and 0·71 (0·62, 0·80) among never smokers, former smokers and current smokers, respectively. No significant interaction was observed between glucosamine use and smoking status (Pfor interaction = 0·078). Incident COPD could be reduced by 14 % to 84 % through a combination of regular glucosamine use and smoking cessation.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
Despite the fact that social deficits among individuals with autism spectrum disorder (ASD) are lifelong and impact many aspects of personal functioning, evidence-based programs for social skills training were not available until recently. The Program for the Education and Enrichment of Relational Skills (PEERS®) has been shown to effectively improve social skills for adolescents on the spectrum across different social cultures. However, the effectiveness for young adults beyond North America has yet to be examined. This study aimed to investigate the effectiveness of the PEERS intervention in Taiwanese young adults with ASD, and examine its durability and clinical correlates.
Methods
We recruited 82 cognitively-able young adults with ASD, randomized to the PEERS treatment or treatment-as-usual.
Results
Following treatment, significant improvement was found in aspects of social deficits, autism severity, social interaction anxiety, empathy, and social skills knowledge either by self-report or coach-report. Additionally, communicative behaviors rated by observers improved throughout the sessions, showing a trend toward more appropriate eye contact, gestures, facial expression during conversation, and appropriate maintenance of conversation and reciprocity. Most effects maintained at 3-month and 6-month follow-ups. The improvement of social deficits was positively correlated with baseline severity, while gains in social skills knowledge were positively correlated with IQ. The improvement of social deficits, autism severity, and empathy were positively correlated with each other.
Conclusion
Overall, the PEERS intervention appears to effectively improve social functioning in Taiwanese young adults with ASD. Improvement of social response and knowledge may be predicted by baseline severity and intelligence respectively.
Preoperative nutritional status plays an important role in predicting postoperative outcomes. Prognostic Nutritional Index (PNI) and Controlling Nutritional Status (CONUT) are good tools to assess patients’ nutritional status. They have been used in predicting outcomes in various malignancies, but few studies have focused on pancreatic adenocarcinoma (PDAC) patients. Totally, 306 PDAC patients were enrolled. The propensity score matching (PSM) method was introduced to eliminate the baseline inequivalence. Patients with different PNI (or CONUT) scores showed inequivalence baseline characteristics, and patients with compromised nutritional status were related with a more advanced tumour stage. After PSM, the baseline characteristics were well balanced. Both low PNI (≤45) and high CONUT (≥3) were independent risk factors for poor overall survival (P < 0·05), and the result remained the same after PSM. Survival analysis demonstrated both patients with low PNI and high CONUT score were associated with poorer survival, and the result remained the same after PSM. The results of AUC indicated that CONUT might have a higher sensitivity and specificity in predicting complications and survival. Preoperative low PNI (≤45) and high CONUT (≥3) scores might be reliable predictors of prognosis and surgical complications in PDAC patients. Compared with PNI, CONUT might be more effective.
Chinese sturgeon (Acipenser sinensis) is an endangered species, listed as a grade I protected animal in China. The females rarely successfully develop their gonads from stage II to III in captivity, which handicaps the propagation of cultured Chinese sturgeon. The present study aimed to understand the effects of dietary lipid level on the ovarian development and the related regulation mechanism in female Chinese sturgeon. A 24-month feeding trial was conducted with 10-year-old Chinese sturgeons with ovaries at the developmental stage II, with three experimental diets containing 10, 14 and 18 % lipids. Ovary, muscle and serum samples were collected at four time points (6, 12, 18 and 24 months) for further analyses. Serum metabolomics and ovary transcriptomics analyses were conducted at 18 months. Results showed that only the 18 % lipid diet promoted ovary development to stage IV. Oocytes at stage II in this group also exhibited higher diameter and more lipid droplets. Serum TAG content in the 18 % group was significantly higher than in 10 and 14 % groups (both at 12 and 18 months). Oestradiol content in the 14 % group was significantly higher than in 10 and 18 % groups, except at 24 months. Metabolomic and transcriptomic results indirectly indicated that 14 % of dietary lipids benefited steroid hormone synthesis, while 18 % lipid facilitated arachidonic acid metabolism, cholesterol biosynthesis and vitellogenesis, although serum cholesterol content did not vary with dietary lipid level. In conclusion, 18 % dietary lipid is the optimal level for improving gonad development of female Chinese sturgeon.
To assess the effectiveness of radiofrequency catheter ablation for lone atrial fibrillation in young adults.
Methods:
This single-centre, retrospective, observational study enrolled 75 consecutive patients (86.7% men) under 35 (median, 30) years old with lone atrial fibrillation (68% paroxysmal, 26.7% persistent, and 5.3% long-standing persistent) without other cardiopulmonary diseases who underwent catheter ablation between April 2009 and May 2017. Procedural endpoints were circumferential pulmonary vein ablation for atrial fibrillation with pulmonary vein trigger, and target ablation or bidirectional block of lines and disappearance of complex fractionated atrial electrograms for atrial fibrillation with clear and unclear non-pulmonary vein triggers, respectively.
Results:
Main study outcome was rate of survival free from atrial tachyarrhythmia recurrence, which at median 61 (range, 5–102) months follow-up was 62.7% (64.7 and 58.3% for paroxysmal and non-paroxysmal atrial fibrillation, respectively) after single ablation, and 69.3% (68.6 and 70.8% for paroxysmal and non-paroxysmal atrial fibrillation, respectively) after mean 1.2 ablations (two and three ablations in 11 and 2 patients, respectively). In multivariate analysis, non-pulmonary vein trigger was a significant independent predictor of recurrent atrial tachyarrhythmia (OR, 10.60 [95%CI, 2.25–49.96]; p = 0.003). There were no major periprocedural adverse events.
Conclusions:
In patients under 35 years old with lone atrial fibrillation, radiofrequency catheter ablation appeared effective particularly for atrial fibrillation with pulmonary vein trigger and regardless of left atrial size or atrial fibrillation duration or type. Atrial tachyarrhythmia recurrence after multiple ablations warrants further study.
In this work, a novel shape-stabilized phase change material, composed of n-octadecane, expanded graphite (EG), and sodium chloride (NaCl), was prepared by a convenient method. In the composite, EG was used as the matrix material and NaCl served as the nucleating agent. Effects of the additional amount of NaCl on the thermal properties of the composite were investigated by DSC and TG. The melting and crystallization enthalpies of the composite are −160.23 J/g and 162.80 J/g, respectively; the supercooling degree of the composite decreased to 3.77 °C when compared to 7.58 °C of the pure n-octadecane. Furthermore, the thermal cycling performances became better, and the thermal decomposition temperature improved to 150 °C. The composite exhibited high latent heat, low supercooling degree, good thermal cycling performance, and enhanced thermal stability, making it a potential material for the thermal energy storage application in the field of thermal regulation.
Novel microencapsulated n-octadecane with natural silk fibroin (SF) shell attached with silver nanoparticles (AgNPs) on its surface was synthesized in oil-in-water emulsion via a self-assembly method. No additional reductant was used in the in situ preparation of AgNPs due to the inherent reduction property of tyrosine (Tyr) residues in SF. The microstructures and particle sizes of the resultant microcapsules were investigated by using a scanning electron microscope (SEM) and a laser scattering particle size distribution analyzer. The resulting microcapsules exhibited a regular spherical morphology with a 4–5 μm narrow diameter distribution range. And the AgNPs attached to the surface exhibited an even distribution. According to the analytical results of DSC, TGA, and infrared system, the SF-AgNPs microcapsule presents enhanced thermal stability and obvious thermal regulation properties. In addition, it was found that the SF-AgNP microcapsule also exhibited a good antibacterial activity against both Gram-positive bacteria (Staphylococcus aureus), and Gram-negative bacteria (Escherichia coli). The SF-AgNPs microcapsule synthesized in this study could be a potential candidate for thermal regulation and healthcare applications.
To revise an abbreviated version of the Silhouettes subtest of the Visual Object and Space Perception (VOSP) battery in order to recognize mild cognitive impairment (MCI) and determine the optimal cutoffs to differentiate among cognitively normal controls (NC), MCI, and Alzheimer’s Disease (AD) in the Chinese elderly.
Design:
A cross-sectional validation study.
Setting:
Huashan Hospital, Shanghai, China.
Subjects:
A total of 591 participants: Individuals with MCI (n = 211), AD (n = 139) and NC (n = 241) were recruited from the Memory Clinic, Huashan Hospital, Shanghai, China.
Methods:
Baseline neuropsychological battery (including VOSP) scores were collected from firsthand data. An abbreviated version of silhouettes test (Silhouettes-A) was revised from the original English version more suitable for the elderly, including eight silhouettes of animals and seven silhouettes of inanimate objects, with a score ranging from 0 to 15.
Results:
Silhouettes-A was an effective test to screen MCI in the Chinese elderly with good sensitivity and specificity, similar to the Montreal cognitive assessment and superior to other single tests reflecting language, spatial, or executive function. However, it had no advantage in distinguishing MCI from AD. The corresponding optimal cutoff scores of Silhouettes-A were 10 for screening MCI and 8 for AD.
Conclusion:
Silhouettes-A is a quick, simple, sensitive, and dependable cognitive test to distinguish among NC, MCI, and AD patients.
Ti/Al/Mg/Al/Ti laminates were fabricated by hot rolling at 450 °C with various rolling reductions, and the relationship between the mechanical properties and microstructures was investigated in detail. Both Al–Mg and Ti–Al interfaces are well bonded without pore, crack, and intermetallics. Mg layer of 50% rolling reduction has the most dynamic recrystallized (DRXed) grains around the deformation bands, and tensile twins appear in Mg layer when the rolling reduction increases to 60%. Large numbers of twins are formed to absorb the further strain as reduction increases. Ti layer shows equiaxed grains, which are not sensitive to thickness strain. Mg layers of laminates with various rolling reductions all exhibit typical (0002) basal texture. Fifty-percent rolling reduction has the largest ultimate tensile strength of 337.8 MPa, which is mainly owing to grain refinement caused by the extensive DRX. The differences of elongation among the three samples with different rolling reductions are small.
Solid-state batteries are promising candidates for energy storage due to their potential advantages in safety, working temperature range, and energy density compared to traditional liquid-electrolyte-based batteries. Rational battery architecture design and a scalable fabrication approach are critical to realize solid-state batteries. In this article, we present the architecture, fabrication procedure, and related challenges of sulfide and oxide electrolyte-based solid-state batteries. Approaches toward intimate solid−solid contact, thin solid-electrolyte fabrication, and scale-up production are discussed. Finally, we discuss the future research directions of solid-state batteries.