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Abstract

Background. Schizophrenia is a complex and heterogeneous syndrome with high clinical and
biological stratification. Identifying distinctive subtypes can improve diagnostic accuracy and help
precise therapy. A key challenge for schizophrenia subtyping is understanding the subtype-specific
biological underpinnings of clinical heterogeneity. This study aimed to investigate if the machine
learning (ML)-based neuroanatomical and symptomatic subtypes of schizophrenia are associated.
Methods. A total of 314 schizophrenia patients and 257 healthy controls from four sites were
recruited. Gray matter volume (GMV) and Positive and Negative Syndrome Scale (PANSS)
scores were employed to recognize schizophrenia neuroanatomical and symptomatic subtypes
using K-means and hierarchical methods, respectively.
Results. Patients with ML-based neuroanatomical subtype-1 had focally increased GMV, and
subtype-2 had widespread reduced GMV than the healthy controls based on either K-means or
Hierarchical methods. In contrast, patients with symptomatic subtype-1 had severe PANSS
scores than subtype-2. No differences in PANSS scores were shown between the two neuro-
anatomical subtypes; similarly, no GMV differences were found between the two symptomatic
subtypes. Cohen’s Kappa test further demonstrated an apparent dissociation between the
ML-based neuroanatomical and symptomatic subtypes (P > 0.05). The dissociation patterns
were validated in four independent sites with diverse disease progressions (chronic vs. first
episodes) and ancestors (Chinese vs. Western).
Conclusions. These findings revealed a replicable dissociation between ML-based neuroana-
tomical and symptomatic subtypes of schizophrenia, which provides a new viewpoint toward
understanding the heterogeneity of schizophrenia.

Introduction

Schizophrenia is a complex, chronic, heterogeneous, and devastating psychotic syndrome that
causes a considerable healthcare burden worldwide [1, 2]. Patients with schizophrenia have a
reduced life expectancy of about 15 years compared with the general population [3, 4]. However,
the diagnosis of schizophrenia is impacted by the heterogeneity in clinical presentation,
biomarker expression, illness course, functional outcome, treatment response, and so on
[5–11]. Identifying distinctive subtypes of schizophrenia can improve diagnostic accuracy and
help precise therapy [12, 13].

Before the emergence of objective quantification such as neuroimaging and genetic measures,
psychiatrists often categorized the subtypes of schizophrenia based on patients’ clinical symp-
toms. For example, schizophrenia was traditionally classified into paranoid, catatonic, disorgan-
ized subtypes, and so forth, based on the Diagnostic and Statistical Manual of Mental Disorders
(DSM) and International Classification of Diseases (ICD) classification systems [14]. Some
scholars also tried to subdivide schizophrenia based on the symptom dimensions, such as the
Positive and Negative Syndrome Scale (PANSS) [15–18], Assessment of Positive/Negative
Symptoms [19, 20], or cognitive performance [21–23]. With the advance of big data mining
and pattern recognition, unsupervised machine learning (ML) techniques are emerging to
recognize the biological subtypes of various neuropsychiatric diseases [24]. Compared to
traditional manual subtyping by clinicians according to diagnostic guidelines, unsupervised
ML is a type of powerful data-driven technique designed to recognize the intrinsic stratified
structure of unlabeled data, and thus is more objective and could reproducibly identify subtypes
in neuropsychiatric diseases from high dimensional features that are difficult or impossible for
humans to discriminate [25]. ML techniques have shown the potential to classify schizophrenia
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patients into several subtypes with diverse symptomatic patterns
[16, 17, 19, 20]. Besides, ML techniques have been recently applied
to subtype schizophrenia based on the biological measures derived
from magnetic resonance imaging (MRI), such as white matter
microstructural measures from diffusion tensor imaging (DTI),
and gray matter morphometric measures from structural MRI [5,
8, 12, 13, 22, 26–30]. These ML-based subtyping techniques might
provide an objective way for a precise diagnosis of schizophrenia.

A key challenge for ML-based schizophrenia subtyping is its
interpretability for psychiatrists. Bridging the gap between
ML-based neuroimaging subtypes and clinical phenotypes could
not only deepen the understanding of the biological underpinnings
contributing to clinical heterogeneity, but also promote the applica-
tion of the ML-based subtypes in disease diagnosis and treatments.
For example, it has been shown that neuroanatomical subtyping
could enhances discrimination of schizophrenia from the healthy
controls [12]. However, there remains debate on the clinical symp-
tomatic relevance of neuroanatomical subtypes derived from ML
techniques, and vice versa for symptomatic subtypes. Although
noticeable brain structural differences were reported among symp-
tomatic subtypes based on ML techniques, most studies only
reported subtle differences, no difference, or considerable overlap
in brain signatures among subtypes, which impeded the interpret-
ation of these ML-based clinical subtypes [16, 17, 19, 20]. Similar
situations were also shown for ML-based neuroimaging subtypes.
For example, no PANSS differences were reported between schizo-
phrenia neuroimaging subtypes using graymatter volume (GMV) by
several independent studies [5, 12, 13, 27, 31]. And only differences
in negative symptoms were identified between neuroimaging sub-
types derived from white matter DTI metrics [26].

In this study, we tried to elucidate the potential association
between the ML-based neuroanatomical subtypes and symptom-
atic subtypes in schizophrenia patients, namely, whether the
ML-based neuroanatomical subtypes had different clinical mani-
festations, or the ML-based symptomatic subtypes had different
neuroanatomic damage patterns. It should be noted that early
reported schizophrenia subtypes were significantly diverse across
different studies in either a number of categories or manifestations,
which may be induced by sample heterogeneities (such as medica-
tion history and disease progression) and subtypingmethods diver-
sity [5, 12, 17, 30]. Therefore, to account for these confounding
factors, this study planned to enroll a relatively large schizophrenia
sample from four independent sites, including the chronic and
drug-naïve first-episode patients. Besides, we applied two publicly
used ML methods that had been used for psychiatric diseases
subtyping [26, 32], K-means and hierarchical clustering, to validate
if the ML-based subtypes are stable by different algorithms. Spe-
cifically, we aimed to explore: (1) Brain GMV difference between
PANSS-derived subtypes clustered using the K-means and hier-
archical methods; (2) PANSS differences between two GMV-
derived subtypes using the K-means and hierarchical methods;
(3) the consistency and diversity between different subtyping

methods (K-means vs. hierarchical), and between different features
(PANSS vs. GMV); and (4) the effects of sites on the subtyping
classification.

Materials

Subjects

This study included two independent Chinese structural MRI
(sMRI) datasets from Tianjin Medical University General Hospital
(TIANJIN) (112 patients and 106 HCs) and Guangzhou Medical
University affiliated Brain Hospital (GUANGZHOU) (51 patients
and 29 HCs), and twoWestern public datasets from the SchizCon-
nect database [33], including BrainGluSchi (71 patients and
44 HCs) [34] and COBRE (80 patients and 78 HCs) [34]. Patients
from TIANJIN, BrainGluSchi, and COBRE were chronic and had
stable antipsychotic medication. And patients from GUANG-
ZHOU were drug-naïve and first-episode. All the patients with
schizophrenia were diagnosed based on the structured clinical
interview for DSM-IV axis I disorders (SCID-I). In addition,
patients’ psychopathology ratings were assessed using the PANSS
at MRI examination. The nonpatient version of SCID was applied
to ensure the lifetime absence of psychiatric illness in the HCs, and
there were also no known histories of major psychiatric illness in
HCs’ first-degree relatives. The subjects were excluded if they had
other neurological and psychiatric disorders, present or past regular
alcohol and illicit drug abuse, a history of traumatic brain injury
with consciousness loss, MRI contraindication, or electroconvul-
sive treatment. Finally, 314 schizophrenia patients (age range,
41–59; mean, 33.81 ± 11.03; male, 217; female, 97) and 257 healthy
controls (HCs) (age range, 41–59; mean, 34.40 ± 10.91; male, 159;
female, 98) were recruited. The local Ethics Committees approved
the enrollment of TIANJIN and GUANGZHOU datasets, and the
subjects from the corresponding institutes gave their informed
written consent before the MRI scanning.

MRI data acquisition

MRI data of BrainGluSchi and COBRE sites were collected using
the 3.0 T Siemens Trio Tim scanner (Siemens Healthineers, Erlan-
gen, Germany). MRI data of the TIANJIN and GUANGZHOU
sites were collected using the 3.0 T GE Discovery MR750 system
(General Electric, Milwaukee, WI) and the 3.0 T Philips Achieva
scanner (Philips, Andover, MA), respectively. The sMRI sequence
parameters of each scanner are listed in Table 1.

Data preprocessing

The sMRI data underwent standard voxel-based morphometry
(VBM) pipeline to derive the absolute GMV and smoothed with
8-mm full-width at half-maximum (FWHM) (Supplementary
Methods: MRI Data Preprocessing). Next, Combat harmonization

Table 1. The parameters of 3D T1 sMRI data from different MRI scanners in each site

Sites Device Strength (Tesla) TR (ms) TE (ms) TI (ms) FA (degree) Matrix Voxel size (mm)

BrainGluSchi Siemens Trio 3.0 T 2530 1.64 1200 7 256 × 256 × 176 1.0 × 1.0 × 1.0

COBRE Siemens Trio 3.0 T 2530 1.64 1200 7 256 × 256 × 176 1.0 × 1.0 × 1.0

TIANJIN GE MR750 3.0 T 8.2 3.2 450 12 256 × 256 × 188 1.0 × 1.0 × 1.0

GUANGZHOU Philip Achieva 3.0 T 8.2 3.7 1100 7 256 × 256 × 188 1.0 × 1.0 × 1.0
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was performed to eliminate the systematic bias inGMVand PANSS
across four sites [35]. Then a linear regressionwas applied to regress
out confounders for metrics (age, sex, and TIV for GMV; age
and sex for PANSS). Finally, a principal component analysis
(PCA) was carried out on unsmoothed GMV to extract the top
464 components that explain 95% variance for clustering analysis
(Supplementary Methods: Data Harmonization and Feature
Extraction).

Subtypes identification based on ML

K-means andHierarchical clustering algorithms were used to cluster
the recruited schizophrenia patients into different subtypes based on
the GMV (464 features) and PANSS data (30 features), respectively.
A 10 randomization 5-fold cross-validation strategy was used to
estimate and eliminate sample selection bias during clustering. The
multiplication ofCalinski-Harabasz Index (CHI) andAdjustedRand
Index (ARI) was used to determine the best clustering hyperpara-
meters forK-means andHierarchical clusteringmethods. Finally, the
Jaccard similarity coefficient was used to match the clustering labels
across shuffles, and the label with themaximumprobability across all
shuffles was considered as the subtype ID of this subject
(Supplementary Methods: Subtypes Identification).

Statistical analysis

Neuroimaging data analyses were performed using SPM12 soft-
ware. The statistical analyses of tabular data were performed using
SPSS software (version 17.0, SPSS Inc.).

One-way analysis of variance, theMann–WhitneyU test, Kappa
test, two-sample t-test, Spearman correlation, and Kolmogorov–
Smirnov test were performed in our study. The detailed descrip-
tions of statistical methods were provided in Supplementary
Methods: Statistical Analysis section.

Results

Clustering performance

As shown in Figure 1, both K-means and Hierarchical clustering
methods identified two neuroanatomical subtypes (K-means:
ARI*CHI = 6.018; Hierarchical: ARI*CHI = 2.724) and two symp-
tomatic subtypes (K-means: ARI*CHI = 46.573; Hierarchical:
ARI*CHI = 20.557) according to the chosen best model
(Figure 1A). Jaccard similarity coefficients demonstrated high
similarity between shuffles for the neuroanatomical subtypes
using K-means (median = 0.974, interquartile range [IQR] =
[0.964, 0.980]) and Hierarchical clustering (median = 0.855,
IQR = [0.834, 0.885]), and for the symptomatic subtypes using
K-means (median = 0.975, IQR = [0.970, 0.985]) and Hierarchical
clustering (median = 0.864, IQR = [0.833, 0.897]), indicating high
repeatability of the clustering across shuffles (Figure 1B). The
maximum probability of the subtypes across shuffles was also
high for neuroanatomical subtypes using K-means (median =
1.000, IQR = [1.000, 1.000]) and Hierarchical clustering (median
= 0.985, IQR = [0.800, 1.000]), and for symptomatic subtypes
using K-means (median = 1.000, IQR = [1.000, 1.000]) and
Hierarchical clustering (median = 0.950, IQR = [0.825, 1.000]),

sqeuclidean-uniform correlation-average sqeuclidean-cluster cityblock-ward

Kmeans GMV Kmeans PANSSHierarchical GMV Hierarchical PANSS
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Figure 1. Subtyping performance evaluation. (A) The best model is based on ARI*CHI criteria during K-means and Hierarchical clustering in two (PANSS vs. GMV) feature types.
(B) The Jaccard similarity coefficients between shuffles before (cyan) and after (red) labels match the best model. A larger coefficient represents a better match across shuffles.
(C) The max probability of each patient across 50 shuffles. Max probability of most individuals was higher than 80%, indicating the reproducibility of subtyping.
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further supporting that the subtype for each subject was reliable
across different randomizations (Figure 1C).

Demographics and clinical characteristics of subtypes

There were no significant differences in age, gender, and TIV
among the neuroanatomical subtypes and HCs in the total cohort
(Table 2) and in each site (Supplementary Tables 1–4) using either
K-means and Hierarchical clustering (all P > 0.05). Neuroanatom-
ical subtype-1 based on the K-means clustering method had sig-
nificantly lower CPZ equivalents than subtype-2 in the total cohort
(z = �2.859, P = 0.004) (Table 2) and in BrainGluSchi dataset (z =
�2.768, P = 0.006) (Supplementary Table 1). In addition, neuro-
anatomical subtype-1 using Hierarchical clustering had lower CPZ
equivalents (z =�3.007, P = 0.003), lower age when schizophrenia
was first diagnosed (z = �2.064, P = 0.039), lower age when
symptoms firstly appeared (z = �1.998, P = 0.046), and lower age
when therapy was firstly received (z = �2.994, P = 0.003) than
subtype-2 in the total cohort (Table 2). Neuroanatomical
subtype-1 based on Hierarchical clustering had lower CPZ
equivalents (z = �2.224, P = 0.026), lower age when therapy first
received (z =�2.077, P = 0.038) than subtype-2 in COBRE dataset
(Supplementary Table 2). There were no significant differences in
clinical indicators among the symptomatic subtypes and HCs in
either the total cohort or each site (P > 0.05) (Table 2 and
Supplementary Tables 3 and 4).

GMV features of the GMV-derived subtypes

One-way ANOVA found neuroanatomical subtype-1 based on the
K-means method had focally increased GMV in the left medial
orbital superior frontal gyrus (moSFG), left superior frontal gyrus
(SFG), bilateral middle frontal gyrus (MFG), and right supplemen-
tary motor area (SMA), and right precentral gyrus (PrecG) than the
HCs; in contrast, neuroanatomical subtype-2 also had broadly
reduced GMV than the HCs, especially in the bilateral orbital
frontal lobes, thalamus, insular and medial prefrontal cortex
(MPFC) (Figure 2A). The GMV changes patterns of the neuroana-
tomical subtypes using the Hierarchical method were similar to
those using the K-means method (Figure 3A) (P < 0.05, voxel-wise
FWE corrected).

The GMV of neuroanatomical subtype-2 was broadly lower
than in subtype-1 using either K-means (Figure 2A) or the Hier-
archical clustering method (Figure 3A) (P < 0.05, voxel-wise FWE
corrected), which was replicated at each of the four sites (Figures 2B
and 3B) (P < 0.05, cluster-wise FWE corrected). Further spatial
correlation analyses demonstrated a significant positive association
in T-distributions of inter-subtype GMV differences across voxels
between each pair of sites (P < 0.05, Bonferroni corrected). In
addition, the GUANGZHOU site (first-episode cohort) had rela-
tively low spatial similarity with the sites having chronic patients
than those within chronic sites using either K-means (r =
[0.396:0.446] forGUANGZHOUvs. [0.621:0.749] for chronic sites)
or Hierarchical clustering method (r = [0.471:0.568] for GUANG-
ZHOU vs. [0.589:0.822] for other sites) (Figures 2C and 3C).

Symptomatic features of the PANSS-derived subtypes

Mann–Whitney U test found PANSS-derived subtype-1 by K-
means clustering hadmore severe symptoms in 28 of the 30 PANSS
items (P1–4, 6–7; N1–7; G1–13, 15–16) than those of subtype-2
(Figure 4A). Similarly, PANSS-derived subtype-1 by Hierarchical

clustering had more severe symptoms in 26 of the 30 PANSS items
(P1–3, 6–7; N1–7; G2–8, 10–16) than subtype-2 (Figure 4B). The
inter-subtype PANSS difference pattern was replicated at each site
(Figure 4C,D) (P < 0.05, Bonferroni corrected). Spatial Spearman
correlation also demonstrated a significant positive association in
Z-distributions of inter-subtype differences across PANSS items
between each pair of sites (P < 0.05, Bonferroni corrected). In
addition, the PANSS differences between symptomatic subtypes
were more similar within Western (BrainGluSchi and COBRE,
K-means: r = 0.595; Hierarchical: r = 0.709) or within Chinese
cohorts (TIANJIN and GUANGZHOU, K-means: r = 0.727; Hier-
archical: r = 0.858) than between races (K-means: r = [0.371, 0.512];
Hierarchical: r = [0.482, 0.664]) (Figure 4E,F).

PANSS differences between two GMV-derived subtypes

Mann–Whitney U test demonstrated no statistical differences in
PANSS items scores between neuroanatomical subtypes based on
K-means (P > 0.05, Bonferroni corrected), except that subtype-1
had a lower negative symptom (N4, passive/apathetic social with-
drawal) than the subtype-2 (Figure 5A) (P < 0.05, Bonferroni
corrected). Similarly, there were no statistical differences in any
item of the PANSS scale between neuroanatomical subtypes based
on the Hierarchical method (Figure 5B) (P > 0.05, Bonferroni
corrected).

GMV difference between two PANSS-derived subtypes

Although both symptomatic subtypes had similar reduced GMV in
the bilateral temporal cortex, hippocampus, MPFC, insula, and so
on (Figure 5C-5D, left and middle pannels) (P <0.05, FWE cor-
rected), there were no differences in GMV between the two symp-
tomatic subtypes by either K-means (Figure 5C, right panel) or
Hierarchical clustering (Figure 5D, right panel) (P > 0.05, FWE
corrected).

Similarity between GMV- and PANSS-derived subtypes

Cohen’s Kappa test was employed to explore the similarity of
subtyping results between different subtyping features (GMV
vs. PANSS), or between different subtyping methods (K-means
vs. Hierarchical). A very low Kappa score was found between the
neuroanatomical subtypes and symptomatic subtypes either by
K-means (Kappa = 0.004, P = 0.946) (Figure 6A), or Hierarchical
clustering (Kappa =�0.051, P = 0.356) (Figure 6B). In contrast, a
high Kappa score was found between the neuroanatomical sub-
types by K-means and those by Hierarchical clustering (Kappa =
0.596, P < 0.001) (Figure 6C), and between the symptomatic
subtypes by K-means and those by Hierarchical clustering
(Kappa = 0.754, P < 0.001) (Figure 6D). The dissimilarity pattern
between GMV-derived subtypes and PANSS-derived subtypes
could be replicated in each site (Supplementary Figures 1–4).

Discussion

In this study, we applied unsupervised ML methods to subtype
schizophrenia patients into two neuroanatomical and two symp-
tomatic subtypes, respectively. We found no differences in GMV
between the PANSS-derived symptomatic subtypes and almost no
differences in PANSS scores between the GMV-derived neuroana-
tomical subtypes. Moreover, the GMV-derived and PANSS-
derived subtypes are mismatched in patients belonging. The
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Table 2. Demographic and clinical characteristics of the schizophrenia subtypes and healthy controls

Method and metrics Demos Subtype-1 Subtype-2 Healthy controls Statistics P-value

K-means based on GMV data Number of subjects 182 132 257 – –

Age 33.58 ± 10.81 34.12 ± 11.34 34.40 ± 10.91 0.299a 0.742

Male/Female 130/52 87/45 159/98 4.331b 0.117

TIV 1497.01 ± 163.08 1487.83 ± 179.94 1494.35 ± 146.55 0.130a 0.878

Total CPZ 300 (150, 500) 400 (262.5, 600) – �2.859c 0.004*

Age when schizophrenia was first
diagnosed

19.5 (17, 25) 21 (17.75, 26) – �1.194c 0.232

Age when symptoms first appeared 19 (16.25, 24) 20 (17, 25) – �1.865c 0.062

Age when therapy was first received 20 (17, 26) 22 (18, 28) – �1.836c 0.066

Ill duration 11 (5.75, 19) 9 (5, 16.25) – �1.350c 0.177

Education level 4 (3, 5) 4 (3, 5) – �0.352c 0.725

K-means based on PANSS scores Number of subjects 122 192 257 – –

Age 34.03 ± 11.06 33.66 ± 11.04 34.40 ± 10.91 0.247a 0.781

Male/Female 80/42 137/55 159/98 4.403b 0.110

TIV 1486.04 ± 164.50 1497.67 ± 173.92 1494.35 ± 146.55 0.201a 0.818

Total CPZ 400 (240, 600) 300 (167, 565) – �1.293c 0.196

Age when schizophrenia was first
diagnosed

20 (17, 25.75) 21 (18, 25) – �0.254c 0.800

Age when symptoms first appeared 19 (17, 24.75) 19.5 (17, 24.25) – �0.477c 0.633

Age when therapy was first received 21 (18, 27) 21 (18, 27) – �0.279c 0.780

Ill duration 9 (4, 20) 10 (6, 18) – �0.152c 0.879

Education level 4 (3, 5) 4 (3, 5) – �0.530c 0.596

Hierarchical based on GMV data Number 116 198 257 – –

Age 32.75 ± 10.61 34.42 ± 11.24 34.40 ± 10.91 1.057a 0.348

Male/Female 84/32 133/65 159/98 4.189b 0.125

TIV 1505.76 ± 175.10 1485.76 ± 167.19 1494.35 ± 146.55 0.575a 0.563

Total CPZ 240 (100. 500) 400 (225, 600) – �3.007c 0.003*

Age when schizophrenia was first
diagnosed

19 (17, 23) 21 (18, 27) – �2.064c 0.039*

Age when symptoms first appeared 18 (17, 22) 20 (17, 25.5) – �1.998c 0.046*

Age when therapy was first received 19 (17, 24.5) 22 (18, 28.25) – �2.994c 0.003*

Ill duration 11 (6.25, 19) 9 (5, 17.5) – �1.131c 0.259

Education level 3 (3, 5) 4 (3, 5) – �0.939c 0.348

Hierarchical based on PANSS
scores

Number 146 168 257 – –

Age 33.94 ± 11.17 33.69 ± 10.94 34.40 ± 10.91 0.225a 0.799

Male/Female 97/49 120/48 159/98 4.160b 0.127

TIV 1492.06 ± 166.76 1494.10 ± 173.54 1494.35 ± 146.55 0.010a 0.990

Total CPZ 375 (240, 600) 300 (150, 600) – �0.966c 0.334

Age when schizophrenia was first
diagnosed

20 (17, 25) 21 (18, 26) – �0.971c 0.332

Age when symptoms first appeared 19 (17, 24) 20 (17, 25) – �0.618c 0.537

Age when therapy was first received 20 (18, 25) 22 (18, 28) – �0.708c 0.479

Ill duration 11 (5, 20) 10 (5, 17) – �0.729c 0.466

Education level 4 (3, 5) 4 (3, 5) – �0.891c 0.373

aANOVA.
bChi-square test.
cMann–Whitney U test.
*represent statistically significant items.
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dissociation patterns were replicated in four independent sites with
different disease progressions (chronic vs. first episodes) and dif-
ferent ancestors (Chinese vs. Western) and were validated by
different clustering methods (K-means vs. Hierarchical). To our
knowledge, this is the first study directly reporting the dissociations
between ML-based neuroanatomical subtypes and ML-based
symptomatic subtypes of schizophrenia. These findings may pro-
vide a new viewpoint toward understanding the heterogeneity of
schizophrenia.

One of the most important findings is that we found two
replicable ML-based neuroanatomical subtypes, with one showing
broadly reduced GMV and the other having focally increased
GMV, but almost no differences in PANSS item scores between
the two GMV-based neuroanatomical subtypes. These findings
were consistent with early studies showing no PANSS differences
between neuroimaging subtypes using GMV by several independ-
ent studies [5, 12, 13, 27, 31]. Our findings seem inconsistent with

one study by Gupta et al. [30], who categorized schizophrenia into
three subtypes (S1, S2, and Sinter) by manually setting a loading
cutoff (mean ± std) for two independent components derived from
source-based morphometry. Although they found a statistical dif-
ference in positive symptoms between the S1 and S2, this subtyping
method is not strictly ascribed to “unsupervised” ML, and the
comparison ignored a large subset with an intermediate state.
Another study reported only differences in negative symptoms
between neuroimaging subtypes derived from white matter DTI
metrics [26]. In this study, we excluded the possible influences of
clustering methods and sites on ML-based subtyping, suggesting
that the absence of PANSS differences between ML-based GMV
subtypes is reliable.

We also identified two ML-based symptomatic subtypes, with
one having generallymore severe PANSS symptoms than the other,
but the two ML-based symptomatic subtypes showed no statistical
differences in GMV. In supporting our findings, although brain
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Figure 2. Schizophrenia neuroanatomical subtypes based on K-means clustering. (A) Intergroup differences in GMV between schizophrenia neuroanatomical subtypes by K-means
clustering and HCs. (B) Inter-subtype differences in GMV at each site. The color bar represents the T values. (C) The Spearman spatial correlation in T values of inter-subtype GMV
differences between each pair of sites.
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structural differences were reported among PANSS-based symp-
tomatic subtypes based on somemultivariate pattern analyses, most
studies only reported subtle differences, no difference, or consid-
erable overlap in brain signatures among symptomatic subtypes
[16, 17, 19, 20, 36]. It should be noted that early studies have
reported cerebral structural alterations associated with symptoms
of psychosis, such as auditory verbal hallucinations (AVH) [37, 38],
which seems to contradict the present findings. However, a meta-
analysis did not find any GMV difference between patients with
AVH and those without AVH, but a significant association between
the severity of AVH and GMV reduction in the superior temporal
gyri [39]. Similar to the meta-analysis, our study did not find a
statistical difference in hallucination symptoms (P3 item of
PANSS) between the two schizophrenia anatomical subtypes.
The possible explanation for inconsistent AVH-related GMV
changes included: First, AVH is a state characteristic that changes
dynamically with disease course [38]. Second, psychometric

heterogeneities and/or different AVH subtypes (episodic, persistent
symptoms, and treatment-resistant) may exist across studies
[39]. Finally, long-term antipsychotics can suppress AVH symp-
toms and affect brain atrophy, complicating the associations
between brain damage and AVH [40, 41].

Multiple factors may explain the dissociation between neuro-
anatomical subtyping and symptomatic subtyping. First, the clas-
sification of symptomatic subtypes may be affected by:
(1) Dimension overlap. The symptom diversity might also be
accompanied by overlapping and coexisting symptom dimensions,
whichmay cause difficulty in determining subtypes. (2) Comorbid-
ity and shared symptoms across psychiatric diseases [42]. It has
been reported that some psychotic diseases, such as bipolar disorder
and major depressive disorder, may be misdiagnosed as schizo-
phrenia because of their shared symptoms or clinical features
[43, 44]. (3) Symptom dynamics during disease progression. The
patients with positive symptoms became progressively less
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Hierarchical clustering and HCs. (B) Inter-subtype differences in GMV at each site. The color bar represents the T values. (C) Spearman spatial correlation in T values of inter-subtype
GMV differences between each pair of sites.
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conspicuous and were gradually replaced with negative and disor-
ganized phenotypes [45, 46]. Second, regarding neuroanatomical
subtyping classification, early studies had reported that Olanzapine
could lead to GMV loss after 1 year’s treatment [47], while risper-
idone and ziprasidone could partially reverse brain atrophy

[48]. All these neuroanatomical and symptomatic subtyping uncer-
tainties could cause mismatches between neuroanatomical and
symptomatic subtypes. Finally, the mismatch in the time course
between GMV changes and symptoms may also cause subtyping
dissociation. For example, early studies have revealed that GMV
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changes have occurred in prodromal or even symptom-free indi-
viduals, which are not matched with their symptoms [19, 49, 50].

In our study, the GMV changes between neuroanatomical sub-
types were relatively broader in chronic schizophrenia patients
(BrainGluSchi, COBRE, TIANJIN) than the first-episode drug-

naïve ones (GUANGZHOU). We also found that the CPZ equiva-
lent of neuroanatomical subtype 2 (widespread GMV loss) was
higher than that of neuroanatomical subtype 1 (focal GMV
increase). Previous in vivo and ex vivo MRI and postmortem
histological studies suggested that exposure to antipsychotic
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treatment causes significantly reduced whole brain volume, espe-
cially graymatter [51–53]. Thus, antipsychotic drugs could partially
explain the wider brain atrophy in neuroanatomical subtype-2
chronic patients [54]. It should be noted that the slight difference
in subtypes between chronic and first-episode datasets was not
evident for PANSS-based symptomatic subtypes. Instead, we found
PANSS differences between symptomatic subtypes were more
similar within Western (BrainGluSchi and COBRE) or within
Chinese cohorts (TIANJIN and GUANGZHOU) than between
them, which may be caused by heterogeneities in psychiatrists’
evaluations of PANSS and patients recruitments between theWest-
ern and Chinese cohorts.

Although we did not find any symptomatic differences between
the ML-based neuroanatomical subtypes, the potential clinical
meanings of our findings included: (1) Neuroanatomical subtypes
could deepen our understanding of the biological heterogeneity of
internal traits of schizophrenia. Compared to the symptomatic
subtypes, the neuroanatomic subtypes were relatively stable and
varied to a lesser over time than clinical symptoms [30], and thus
may more closely represent the biological heterogeneity. For
example, neuroanatomic subtypes were reported to be closely
associated with brain tissue expression heterogeneities of schizo-
phrenia risk genes [55]. One recent study also reported distinctive
cortical damage patterns between subtypes with and without prom-
inent alterations in methylation and immune features

[52]. (2) Neuroanatomical subtypes may increase the diagnosis
accuracy by resolving the inter-patient heterogeneities. It has been
shown that the subtyping improved the computer-aided diagnostic
accuracy of schizophrenia patients from control subjects using
neuroanatomical measures [12]. (3) Neuroanatomical subtypes
may predict therapeutic outcomes. This study found two neuro-
anatomical subtypes: one with focally increased GMVand the other
with broadly reduced GMV, similar to Chand’s findings [5]. Early
neuroanatomic studies suggest that patients with more GMV
reduction are marked with relatively poor outcomes [56]. The
regions with increased GMV in subtype 1 were supposed to be
related to the dopaminergic system [57], while the broad GMV
decreases in subtype 2may be associatedwith the glutamatergic and
GABAergic systems [58]. Thus, the neuroanatomical subtypes may
be sensitive to drugs acting on different pathways, which should be
validated in the future.

Our studies have some limitations. First, although the dissoci-
ation patterns between the schizophrenia neuroanatomical and
symptomatic subtypes were validated in four independent sites
with different disease progressions and ancestors by different clus-
tering methods, this study is a cross-sectional design, and the
number of enrolled sites is relatively small. Thus, future longitu-
dinal studies with more involved sites are preferred to validate our
hypothesis. Second, we only introduced GMV for subtyping. Other
neuroimaging techniques, such as diffusion MRI and functional
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MRI, would provide additional knowledge about the heterogeneity
of schizophrenia. As a result, it is hoped to combine multimodal
neuroimaging features to recognize schizophrenia subtypes tomore
fully characterize the biological heterogeneities of schizophrenia.
Finally, we have not directly associated the identified subtypes with
underlying neurobiological basis, including their association with
genetic, epigenetic, transcriptomic, metabolic, and treatment het-
erogeneities. This issue is critical for understanding the neurobio-
logical underpinnings of heterogeneity and contributing to
precision medicine.
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