We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with
$\sim$
15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination
$+41^\circ$
made over a 288-MHz band centred at 887.5 MHz.
Lipid metabolism and inflammation contribute to CVD development. This study investigated whether the consumption of cranberries (CR; Vaccinium macrocarpon) can alter HDL metabolism and prevent inflammation in mice expressing human apo A-I transgene (hApoAITg), which have similar HDL profiles to those of humans. Male hApoAITg mice were fed a modified American Institute of Nutrition-93M high-fat/high-cholesterol diet (16 % fat, 0·25 % cholesterol, w/w; n 15) or the high-fat/high-cholesterol diet containing CR (5 % dried CR powder, w/w, n 16) for 8 weeks. There were no significant differences in body weight between the groups. Serum total cholesterol, non-HDL-cholesterol and TAG concentrations were significantly lower in the control than CR group with no significant differences in serum HDL-cholesterol and apoA-I. Mice fed CR showed significantly lower serum lecithin–cholesterol acyltransferase activity than the control. Liver weight and steatosis were not significantly different between the groups, but hepatic expression of genes involved in cholesterol metabolism was significantly lower in the CR group. In the epididymal white adipose tissue (eWAT), the CR group showed higher weights with decreased expression of genes for lipogenesis and fatty acid oxidation. The mRNA abundance of F4/80, a macrophage marker and the numbers of crown-like structures were less in the CR group. In the soleus muscle, the CR group also demonstrated higher expression of genes for fatty acid β-oxidation and mitochondrial biogenesis than those of the control. In conclusion, although CR consumption elicited minor effects on HDL metabolism, it prevented obesity-induced inflammation in eWAT with concomitant alterations in soleus muscle energy metabolism.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization has been a well-established risk for developing MRSA pneumonia. In previous studies, the MRSA nasal screening test has shown an excellent negative predictive value (NPV) for MRSA pneumonia in patients without exclusion criteria such as mechanical ventilation, hemodynamic instability, cavitary lesions, and underlying pulmonary disease. MRSA nasal screening can be used as a stewardship tool to de-escalate broad antibiotic coverage, such as vancomycin. Objective: The purpose of this study was to determine whether implementation of a MRSA nasal screening questionnaire improves de-escalation of vancomycin for patients with pneumonia. Methods: A retrospective review was performed on 250 patients from October 2018 to January 2019 who received MRSA nasal screening due to their prescriber choosing only “respiratory” on the vancomycin dosing consult form. Data obtained included demographics and clinical outcomes. Statistical analyses were performed, and P < .05 was considered significant. Results: Of the 250 patients screened, only 19 patients (8%) were positive for MRSA. Moreover, 40% of patients met exclusion criteria. In 149 patients without exclusion criteria, the MRSA nasal swab had a 98% NPV. Although not statistically significant, vancomycin days of therapy (DOT) based on MRSA nasal swab result was 1 day shorter in those with negative swabs (3.49 days negative vs 4.58 days positive; P = .22). Vancomycin DOT was significantly reduced in pneumonia patients without exclusion criteria (3.17 days “no” vs 4.17 days “yes”; P = .037). Conclusions: The implementation of an electronic MRSA nasal screening questionnaire resulted in reduced vancomycin DOT in pneumonia patients at UAB Hospital. The MRSA nasal swab is an effective screening tool for antibiotic de-escalation based on its 98% NPV for MRSA pneumonia if utilized in the correct patient population.
Funding: None
Disclosures: Rachael Anne Lee reports a speaker honoraria from Prime Education, LLC.
The dietary insulin index directly estimates the postprandial insulin secretion potential of foods, whereas the empirical dietary index for hyperinsulinaemia (EDIH) assesses the insulinaemic potential of usual diets based on fasting plasma C-peptide, and is primarily reflective of insulin resistance. It is unknown whether these insulin-related indices are predictive of an integrated measure of insulin secretion. We conducted a cross-sectional analysis that included 293 non-diabetic men with 24-h urinary C-peptide data from the Men’s Lifestyle Validation Study. EDIH, dietary insulin index and dietary insulin load were calculated using validated FFQ. We conducted multivariable-adjusted linear regression to estimate relative and absolute concentrations of 24-h urinary C-peptide. In multivariable-adjusted models, we found a significant positive association between all three insulin-related dietary indices and 24-h urinary C-peptide (P < 0·05). Relative concentrations of 24-h urinary C-peptide per 1-sd increase in insulin-related dietary indices were 1·12 (95 % CI 1·02, 1·23) for EDIH, 1·18 (95 % CI 1·07, 1·29) for dietary insulin index and 1·16 (95 % CI 1·06, 1·27) for dietary insulin load. When we further adjusted for BMI, the association was attenuated for EDIH, to 1·07 (95 % CI 0·98, 1·16), and remained unchanged for dietary insulin index and dietary insulin load. In conclusion, EDIH, dietary insulin index and dietary insulin load were predictive of integrated insulin secretion assessed by 24-h urinary C-peptide. Findings after adjustment for BMI appear to confirm the relation of EDIH to insulin resistance and dietary insulin index/load to insulin secretion; the respective constructs of the two dietary indices.
The prevalence of many diseases in pigs displays seasonal distributions. Despite growing concerns about the impacts of climate change, we do not yet have a good understanding of the role that weather factors play in explaining such seasonal patterns. In this study, national and county-level aggregated abattoir inspection data were assessed for England and Wales during 2010–2015. Seasonally-adjusted relationships were characterised between weekly ambient maximum temperature and the prevalence of both respiratory conditions and tail biting detected at slaughter. The prevalence of respiratory conditions showed cyclical annual patterns with peaks in the summer months and troughs in the winter months each year. However, there were no obvious associations with either high or low temperatures. The prevalence of tail biting generally increased as temperatures decreased, but associations were not supported by statistical evidence: across all counties there was a relative risk of 1.028 (95% CI 0.776–1.363) for every 1 °C fall in temperature. Whilst the seasonal patterns observed in this study are similar to those reported in previous studies, the lack of statistical evidence for an explicit association with ambient temperature may possibly be explained by the lack of information on date of disease onset. There is also the possibility that other time-varying factors not investigated here may be driving some of the seasonal patterns.
Dietary fibre is believed to provide important health benefits including protection from colorectal cancer. However, the evidence on the relationships with different dietary fibre sources is mixed and little is known about which fibre source provides the greatest benefits. We conducted a dose–response meta-analysis of prospective cohorts to summarise the relationships of different fibre sources with colorectal cancer and adenoma risks. Analyses were restricted to publications that reported all fibre sources (cereals, vegetables, fruits, legumes) to increase comparability between results. PubMed and Embase were searched through August 2018 to identify relevant studies. The summary relative risks (RR) and 95 % CI were estimated using a random-effects model. This analysis included a total of ten prospective studies. The summary RR of colorectal cancer associated with each 10 g/d increase in fibre intake were 0·91 (95 % CI 0·82, 1·00; I2 = 0 %) for cereal fibre, 0·95 (95 % CI 0·87, 1·03, I2 = 0 %) for vegetable fibre, 0·91 (95 % CI 0·78, 1·06, I2 = 43 %) for fruit fibre and 0·84 (95 % CI 0·63, 1·13, I2 = 45 %) for legume fibre. For cereal fibre, the association with colorectal cancer risk remained statistically significant after adjustment for folate intake (RR 0·89, 95 % CI 0·80, 0·99, I2 = 2 %). For vegetable and fruit fibres, the dose–response curve suggested evidence of non-linearity. All fibre sources were inversely associated with incident adenoma (per 10 g/d increase: RR 0·81 (95 % CI 0·54, 1·21) cereals, 0·84 (95 % CI 0·71, 0·98) for vegetables, 0·78 (95 % CI 0·65, 0·93) for fruits) but not associated with recurrent adenoma. Our data suggest that, although all fibre sources may provide some benefits, the evidence for colorectal cancer prevention is strongest for fibre from cereals/grains.
While extensive modelling - both physical and virtual - is imperative to develop right-first-time products, the parallel use of virtual and physical models gives rise to two interrelated issues: the lack of revision control for physical prototypes; and the need for designers to manually inspect, measure, and interpret modifications to either virtual or physical models, for subsequent update of the other. The Digital Twin paradigm addresses similar problems later in the product life-cycle, and while these digital twins, or the “twinning” process, have shown significant value, there is little work to date on their implementation in the earlier design stages. With large prospective benefits in increased product understanding, performance, and reduced design cycle time and cost, this paper explores the concept of using the Digital Twin in early design, including an introduction to digital twinning, examination of opportunities for and challenges of their implementation, a presentation of the structure of Early Stage Twins, and evaluation via two implementation cases.
The Pain Catastrophizing Scale (PCS) measures three aspects of catastrophic cognitions about pain—rumination, magnification, and helplessness. To facilitate assessment and clinical application, we aimed to (a) develop a short version on the basis of its factorial structure and the items’ correlations with key pain-related outcomes, and (b) identify the threshold on the short form indicative of risk for depression.
Design:
Cross-sectional survey.
Setting:
Social centers for older people.
Participants:
664 Chinese older adults with chronic pain.
Measurements:
Besides the PCS, pain intensity, pain disability, and depressive symptoms were assessed.
Results:
For the full scale, confirmatory factor analysis showed that the hypothesized 3-factor model fit the data moderately well. On the basis of the factor loadings, two items were selected from each of the three dimensions. An additional item significantly associated with pain disability and depressive symptoms, over and above these six items, was identified through regression analyses. A short-PCS composed of seven items was formed, which correlated at r=0.97 with the full scale. Subsequently, receiver operating characteristic (ROC) curves were plotted against clinically significant depressive symptoms, defined as a score of ≥12 on a 10-item version of the Center for Epidemiologic Studies-Depression Scale. This analysis showed a score of ≥7 to be the optimal cutoff for the short-PCS, with sensitivity = 81.6% and specificity = 78.3% when predicting clinically significant depressive symptoms.
Conclusions:
The short-PCS may be used in lieu of the full scale and as a brief screen to identify individuals with serious catastrophizing.
Objectives: The cognitive indicators of preclinical behavioral variant Frontotemporal Dementia (bvFTD) have not been identified. To investigate these indicators, we compared cross-sectional performance on a range of cognitive measures in 12 carriers of pathogenic MAPT mutations not meeting diagnostic criteria for bvFTD (i.e., preclinical) versus 32 demographically-matched familial non-carriers (n = 44). Studying preclinical carriers offers a rare glimpse into emergent disease, environmentally and genetically contextualized through comparison to familial controls. Methods: Evaluating personnel blinded to carrier status administered a standardized neuropsychological battery assessing attention, speed, executive function, language, memory, spatial ability, and social cognition. Results from mixed effect modeling were corrected for multiplicity of comparison by the false discovery rate method, and results were considered significant at p < .05. To control for potential interfamilial variation arising from enrollment of six families, family was treated as a random effect, while carrier status, age, gender, and education were treated as fixed effects. Results: Group differences were detected in 17 of 31 cognitive scores and spanned all domains except spatial ability. As hypothesized, carriers performed worse on specific measures of executive function, and social cognition, but also on measures of attention, speed, semantic processing, and memory storage and retrieval. Conclusions: Most notably, group differences arose on measures of memory storage, challenging long-standing ideas about the absence of amnestic features on neuropsychological testing in early bvFTD. Current findings provide important and clinically relevant information about specific measures that may be sensitive to early bvFTD, and advance understanding of neurocognitive changes that occur early in the disease. (JINS, 2019, 25, 184–194)
These organisms are important members of the plankton in both fresh and marine waters, although a much greater variety of forms is found in marine members. Generally the Dinophyceae are less important in the colder polar waters than in warmer waters. The highly elaborate Dinophysales (Fig. 7.47(d), (e)) are essentially a tropical group.
A typical motile dinoflagellate (Figs. 7.1, 7.2) consists of an epicone and hypocone divided by the transverse girdle or cingulum. The epicone and hypocone are normally divided into a number of thecal plates, the exact number and arrangement of which are characteristic of the particular genus (Figs. 7.1, 7.3, 7.20(b), 7.24(b)). There is a longitudinal sulcus running perpendicular to the girdle. The longitudinal and transverse flagella emerge through the thecal plates in the area where the girdle and sulcus meet. The longitudinal flagellum projects out from the cell, whereas the transverse flagellum is wave-like and is closely appressed to the girdle. The cells can be photosynthetic or colorless and heterotrophic. Photosynthetic organisms have chloroplasts surrounded by one membrane of chloroplast E.R., which is not continuous with the outer membrane of the nuclear envelope. Chlorophylls a and c 2 are present in the chloroplasts, with peridinin and neoperidinin being the main carotenoids. About half the Dinophyceae that have been examined by electron microscopy have pyrenoids in the chloroplasts (Dodge and Crawford, 1970). The storage product is starch, similar to the starch of higher plants (Vogel and Meeuse, 1968), which is found in the cytoplasm. An eyespot may be present. The nucleus has permanently condensed chromosomes and is called a dinokaryotic or mesokaryotic nucleus.
Cell Structure
Theca
The thecal structure of motile Dinophyceae consists of an outer plasmalemma beneath which lies a single layer of flattened vesicles (Figs. 7.2, 7.3(c), 7.5) (Dodge and Crawford, 1970 ; Sekida et al., 2004). These vesicles, which normally contain cellulosic plates, give the theca its characteristic structure. The actual form and arrangement of the thecal plates varies from none in the phagotrophic Oxyrrhis marina, to very thick plates with flanges at the edges in Ceratium (Figs. 7.11, 7.48, 7.49) and Peridinium spp. (Figs. 7.2, 7.10).
It was that eccentric British soldier of fortune Col. Meinertzhagen, in his Birds of Arabia, who expressed the sentiment that prefaces should be kept short because few people ever read them. Accordingly, I would like to take a brief opportunity to express my gratitude to the people who offered encouragement and assistance during the preparation of this book. I would like to thank Adele Strauss Wolbarst, Robert Cnoops, Charmaine Slack, Sophia Skiordis, Caroline Mondel, Jill Keetley- Smith, Heather Edwards, Gail Arbeter, and the Lending Library at Boston Spa, England, for help while most of this manuscript was being prepared at the University of the Witwatersrand. For general encouragement while at Pahlavi (Shiraz) University and for providing assistance during the last turbulent and chaotic year of imperial rule in Iran, while the manuscript was being finished, I would like to thank Mark Gettner, Brian Coad, and Mumtaz Bokhari. When photographs or drawings have been taken directly from the original material, this is indicated by stating in the legend that it is from the original work. Most of the drawings have been redrawn to suit my tastes, and these drawings are indicated by stating that the work is after the original.
In some cases I have made drawings from photographs or have incorporated a number of drawings in one, in which case I state that the finished drawing is adapted from the original work or works. I have used the metric system in this book, and the fine-structural illustrations are expressed in micrometers (μm) and nanometers (nm).
Eustimatophytes are yellow-green unicells that occur in freshwater, brackish water, and seawater as well as in the soil. The cells are similar to those in the Xanthophyceae, but differ in having an eyespot outside the chloroplast (Fig. 12.1) (the eyespot in the Xanthophyceae is in the chloroplast) (Hibberd and Leedale, 1970). Other characteristics of the class include a basal swelling of the tinsel flagellum adjacent to the eyespot, only chlorophyll a, chloroplasts without girdle lamellae and no peripheral ring of DNA, and chloroplast endoplasmic reticulum not connected to the nuclear envelope (Schnepf et al., 1996).
The eyespot (Figs. 12.1, 12.2) is a large orangered body at the anterior of the motile cell and is completely independent of the chloroplast. It consists of an irregular group of droplets with no membrane around the whole complex of droplets. The flagellar sheath is extended to form a T-shaped flagellar swelling at the base of the tinsel flagellum (Figs. 12.1, 12.2). This swelling is always closely appressed to the plasmalemma in the region of the eyespot. In turn, in the eyespot there is a large droplet closely applied to the plasmalemma in the area of the flagellar swelling.
The chloroplasts of the Eustigmatophyceae have chlorophyll a and β-carotene, with the two major xanthophylls being violaxanthin and vaucheriaxanthin (Whittle and Casselton, 1969 ; Antia and Cheng, 1982), the only difference in pigments compared to the Xanthophyceae being the presence of violaxanthin and the absence of antheraxanthin. Violaxanthin is the major lightharvesting pigment in the Eustigmatophyceae (Owens et al., 1987).
The Eustigmatophyceae is a monophyletic group (Andersen et al., 1998). Most of the species produce zoospores with only a single emergent flagellum (Pleurochloris magna, Fig. 12.1(d) ; Polyhedriella helvetica, Fig. 12.1(b))(Hibberd and Leedale, 1972), but there is a second basal body present, indicating that the cells had a biflagellate ancestor. The emergent flagellum is tinsel with microtubular hairs, and the flagellum is inserted subapically. Two of the algae in the class, Ellipsoidion acuminatum and Pseudocharaciopsis texensis (Fig. 12.2) (Lee and Bold, 1973), have zoospores with a long forward tinsel flagellum and a short posteriorly directed smooth flagellum.
It is possible to write whole books on the relationships between algae and the environment. In this chapter I have chosen a few subjects that have generated the most interest in the past couple of decades.
Toxic Algae
Algae can be harmful in two basic ways (Hallegraeff et al., 2003 ; Lassus et al., 2016).
(1) Producing large populations in the aquatic environment. Large growths of some algae (e.g., the diatom Chaetoceros (Figs. 17.36, 17.37(a)) or the prymnesiophyte Chrysochromulina (Fig. 23.1(c))) can clog the gills of fish and can be particularly a problem in aquaculture systems. Anoxic conditions, resulting in fish kills, can occur at the end of blooms of other algae (e.g., green algae) as the algae die and decompose.
(2) Production of toxins Some algae produce toxins that sicken and kill other organisms that prey on these algae. Indeed, this probably was the reason that these algae were selected for in the evolutionary process since it reduced predation by grazers (Gilbert, 1996). Filter-feeding shellfish can accumulate large quantities of these toxins as they filter the algae out of the water (Rossini and Hess, 2010). Consumption of the shellfish by man, birds, and animals results in sickness and death. The algae that produce phycotoxins are as follows.
Cyanophyceae (cyanobacteria)
• Neurotoxins anatoxin (Fig. 23.2(c)) and saxitoxin (Fig. 23.2(c)) that block the transmission of signal from neuron to neuron. These alkaloids (nitrogen-containing compounds) bind to voltage-activated Na + - channels and block influx of Na +, thereby preventing the generation of an action potential (Shimizu, 2000).
The Rhodophyta (red algae) and Chlorophyta (green algae) form a natural group of algae in that they have chloroplasts surrounded by only the two membranes of the chloroplast envelope. The endosymbiotic theory of chloroplast evolution, first proposed by Mereschkowsky in 1905, is the one most widely accepted for the evolution of the chloroplast (Fig. III.1). According to this theory, a cyanobacterium was taken up by a phagocytic organism into a food vesicle. Normally the cyanobacterium would be digested by the flagellate, but by chance a mutation occurred, with the flagellate being unable to digest the cyanobacterium. This was probably a beneficial mutation because the cyanobacterium, by virtue of its lack of feedback inhibition, secreted considerable amounts of metabolites to the host flagellate. The flagellate in turn gave the cyanobacterium a protected environment, and the composite organism was probably able to live in an ecological niche where there were no photosynthetic organisms (i.e., a slightly acid body of water where free-living cyanobacteria do not grow; see Chapter 2). Pascher (1914) coined terms for this association; he called the endosymbiotic cyanobacteria cyanelles; the host, a cyanome; and the association between the two, a syncyanosis. In the original syncyanosis, the cyanelle had a wall around it. Because the wall slowed the transfer of compounds from the cyanelle to the host and vice versa, any mutation that resulted in a loss of wall would have been beneficial and selected for in evolution. As evolution progressed, these two membranes became the chloroplast envelope, the cyanome cytoplasm took over the formation of the storage product and the polyhedral bodies containing ribulose-1,5-bisphosphate carboxylase/oxygenase differentiated into the pyrenoid.
Most of the genes from the endosymbiotic cyanobacterium were transferred to the host nucleus while a small number of these genes were maintained in the resulting plastid and gave rise to the plastid genome with its associated proteinsynthesizing system. The products of many of the cyanobacterial genes transferred to the nucleus were then retargeted to the plastid to keep it functional. Approximately 3000 nuclear genes in plants encode plastid proteins, whereas the chloroplast genome contains between 100 and 120 genes. The nucleus is also capable of sensing the state of the chloroplast and to react to maintain chloroplast homeostasis.
Algae with two membranes of chloroplast endoplasmic reticulum (chloroplast E.R.) have the inner membrane of chloroplast E.R. surrounding the chloroplast envelope. The outer membrane of chloroplast E.R. is continuous with the outer membrane of the nuclear envelope and has ribosomes on the outer surface (Fig. V.1).
The algae with two membranes of chloroplast E.R. evolved by a secondary endosymbiosis (Fig. V.1) (Lee, 1977 ; Keeling, 2013) when a phagocytic protozoan took up a eukaryotic photosynthetic alga into a food vesicle. Instead of being phagocytosed by the protozoan, the photosynthetic alga became established as an endosymbiont within the food vesicle of the protozoan. The endosymbiotic photosynthetic alga benefited from the acidic environment in the food vesicle that kept much of the inorganic carbon in the form of carbon dioxide, the form needed by ribulose bisphosphate/carboxylase for carbon fixation (see Part IV for further explanation). The host benefited by receiving some of the photosynthate from the endosymbiotic alga. The food vesicle membrane eventually fused with the endoplasmic reticulum of the host protozoan, resulting in ribosomes on the outer surface of this membrane, which became the outer membrane of the chloroplast E.R. Through evolution, ATP production and other functions of the endosymbiont's mitochondrion were taken over by the mitochondria of the protozoan host, and the mitochondria of the endosymbiont were lost. The resulting cytology is characteristic of the extant algae in the Chlorarachniophyta and Cryptophyta, which have a nucleomorph representing the degraded endosymbiotic nucleus, as well as storage product produced in what remains of the endosymbiont cytoplasm.
The type of chloroplast E.R. that exists in the Heterokontophyta and the Prymnesiophyta resulted from further reduction. The nucleomorph was completely lost and storage product formation was taken over by the host. The resulting cell had two membranes of chloroplast envelope surrounding the chloroplast. Outside of this was the inner membrane of chloroplast E.R. that was the remains of the plasma membrane of the endosymbiont. Outside of this was the outer membrane of chloroplast E.R. which was the remains of the food vesicle membrane of the host. Most of the protein synthesis of the endosymbiont was taken over by the nucleus of the host (Martin, 2010).
The Synurophyceae are closely related to the Chrysophyceae (Ariztia et al., 1991). The Synurophyceae differ, however, from the Chrysophyceae in the following: the Synurophyceae have chlorophylls a and c 1 (Andersen and Mulkey, 1983), the flagella are inserted into the cell approximately parallel to one another (Fig. 11.1), there is a photoreceptor near the base of each flagellum, there is no eyespot, and the contractile vacuole is in the posterior portion of the cell (Lavau et al., 1997 ; Andersen et al., 1999). Chloroplast endoplasmic reticulum is present in a few species, but absent in most. The cells usually are covered by bilaterally symmetrical scales.
In the Synurophyceae, scales composed of silica commonly occur outside the cell (Figs. 11.1, 11.2, 11.3). The scales are bilaterally symmetrical and are formed in a silica deposition vesicle. The membrane of the silica deposition vesicle (the silicalemma) controls the shape of the scale along with proteins and glycoproteins that adhere the developing scale to the silicalemma (Schultz et al., 2001). The presence of germanium in the medium results in inhibition of scale formation (Klaveness and Guillard, 1975). The scales are carried in the scale vesicle to the plasma membrane where the plasma membrane and the scale vesicle fuse, releasing the scales outside the cell (Beech et al., 1990). The scales are held next to the cell in an organic envelope (Ludwig et al., 1996), which is either hyaline or yellow-brown, the latter appearance being due to the impregnation of iron salts. The scales of the Synurophyceae are commonly composed of a number of parts, such as the dome, shield, and bristle of Mallomonas (Lavau and Wetherbee, 1994) (Figs. 11.2, 11.3(c), (d)). The scales of the Synurophyceae are overlapped precisely so that the anterior end of one scale overlaps the right margin of the scale to its left (Leadbeater, 1990). The scales are cemented together to form a scale case by the organic envelope. This precise arrangement of scales differs from the loosely arranged scales of the Chrysophyceae.
Analysis of lake sediments often reveals the presence of the silicified scales of the Synurophyceae as well as the silicified frustules of diatoms (Smol et al., 1984 ; Dixit et al., 1999).
Phycology is the study of algae, the primary photosynthetic organisms in freshwater and marine food chains. Since the publication of the first edition in 1981, this textbook has established itself as a classic resource on this subject. Aimed at upper-level undergraduate and graduate students in phycology, limnology and biological oceanography, this revised edition maintains the format of previous editions, whilst incorporating the recent developments in the field such as: the potential and challenges of producing algae biofuel; the proliferation of algal toxins; and the development of new molecular tools and technologies on ancestry, phylogeny, and taxonomy of algae.