Skip to main content Accessibility help
×
Home

Influence of temperature on prevalence of health and welfare conditions in pigs: time-series analysis of pig abattoir inspection data in England and Wales

  • H. Lee (a1), C. Perkins (a1), H. Gray (a2), S. Hajat (a1) (a3), M. Friel (a2), R. P. Smith (a4), S. Williamson (a5), P. Edwards (a1) and L. M. Collins (a2)...

Abstract

The prevalence of many diseases in pigs displays seasonal distributions. Despite growing concerns about the impacts of climate change, we do not yet have a good understanding of the role that weather factors play in explaining such seasonal patterns. In this study, national and county-level aggregated abattoir inspection data were assessed for England and Wales during 2010–2015. Seasonally-adjusted relationships were characterised between weekly ambient maximum temperature and the prevalence of both respiratory conditions and tail biting detected at slaughter. The prevalence of respiratory conditions showed cyclical annual patterns with peaks in the summer months and troughs in the winter months each year. However, there were no obvious associations with either high or low temperatures. The prevalence of tail biting generally increased as temperatures decreased, but associations were not supported by statistical evidence: across all counties there was a relative risk of 1.028 (95% CI 0.776–1.363) for every 1 °C fall in temperature. Whilst the seasonal patterns observed in this study are similar to those reported in previous studies, the lack of statistical evidence for an explicit association with ambient temperature may possibly be explained by the lack of information on date of disease onset. There is also the possibility that other time-varying factors not investigated here may be driving some of the seasonal patterns.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Influence of temperature on prevalence of health and welfare conditions in pigs: time-series analysis of pig abattoir inspection data in England and Wales
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Influence of temperature on prevalence of health and welfare conditions in pigs: time-series analysis of pig abattoir inspection data in England and Wales
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Influence of temperature on prevalence of health and welfare conditions in pigs: time-series analysis of pig abattoir inspection data in England and Wales
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: L. M. Collins, E-mail: L.Collins@leeds.ac.uk

References

Hide All
1.Semenza, JC and Menne, B (2009) Climate change and infectious diseases in Europe. The Lancet Infectious Diseases 9, 365375. Available at http://dx.doi.org/10.1016/S1473-3099(09)70104-5.
2.Gale, P et al. (2009) The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: a review. Journal of Applied Microbiology 106, 14091423. Available at http://doi.wiley.com/10.1111/j.1365-2672.2008.04036.x.
3.Garnett, T et al. (2013) Sustainable intensification in agriculture: premises and policies. Science 341, 3334.
4.Schodl, K, Klein, F and Winckler, C (2017) Mapping sustainability in pig farming research using keyword network analysis. Livestock Science 196, 2835. Available at http://dx.doi.org/10.1016/j.livsci.2016.12.005.
5.McMichael, AJ et al. (2003) Climate Change and Human Health. Geneva: World Health Organization, 322 p.
6.Thornton, PK (2010) Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B Biological Sciences 365, 28532867.
7.Lacetera, N (2018) Impact of climate change on animal health and welfare. Animal Frontiers 9, 2631.
8.McMichael, AJ and Lindgren, E (2011) Climate change: present and future risks to health, and necessary responses. Journal of Internal Medicine 270, 401413.
9.Smith, P, Crabtree, H and Bird, N (2009) Perfecting the Pig Environment. Nottingham: Nottingham University Press.
10.Animal & Plant Health Agency (2018) GB Emerging Threats Quarterly Report: Pig Diseases. Vol. 22. Available at https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/714048/pub-survrep-p0118.pdf.
11.Correia-Gomes, C et al. (2016) Pig abattoir inspection data: can it be used for surveillance purposes? PLoS One 11, e0161990. Available at https://doi.org/10.1371/journal.pone.0161990.
12.Eze, JI et al. (2015) Comparison of respiratory disease prevalence among voluntary monitoring systems for pig health and welfare in the UK. PLoS One 10, e0128137.
13.Sanchez-vazquez, MJ (2013) Epidemiological Investigations Utilizing Industry Abattoir Data – a Study in Finishing Pigs (Thesis). Utrecht University, Utrecht.
14.Sanchez-Vazquez, MJ et al. (2012) Using seasonal-trend decomposition based on loess (STL) to explore temporal patterns of pneumonic lesions in finishing pigs slaughtered in England, 2005–2011. Preventive Veterinary Medicine 104, 6573. Available at http://dx.doi.org/10.1016/j.prevetmed.2011.11.003.
15.Correia-Gomes, C et al. (2017) Voluntary monitoring systems for pig health and welfare in the UK: comparative analysis of prevalence and temporal patterns of selected non-respiratory post mortem conditions. Preventive Veterinary Medicine 146, 19. Available at https://doi.org/10.1016/j.prevetmed.2017.07.007.
16.McCormick, BJJ, Sanchez-Vazquez, MJ and Lewis, FI (2013) Using Bayesian networks to explore the role of weather as a potential determinant of disease in pigs. Preventive Veterinary Medicine 110, 5463. Available at https://linkinghub.elsevier.com/retrieve/pii/S0167587713000329.
17.Thacker, EL (2001) Immunology of the porcine respiratory disease complex. Veterinary Clinics of North America: Food Animal Practice 17, 551565. Available at https://www.sciencedirect.com/science/article/pii/S0749072015300062.
18.Sonoda, LT et al. (2013) Cognitive enrichment in piglet rearing: an approach to enhance animal welfare and to reduce aggressive behaviour. International Scholarly Research Notices: Veterinary Science 2013, 389186. Available at https://www.ncbi.nlm.nih.gov/pubmed/24198969.
19.Cleveland-Nielsen, A, Nielsen, EO and Ersboll, AK (2002) Chronic pleuritis in Danish slaughter pig herds. Preventive Veterinary Medicine 55, 121135.
20.Maes, D et al. (2008) Control of Mycoplasma hyopneumoniae infections in pigs. Veterinary Microbiology 126, 297309. Available at http://www.sciencedirect.com/science/article/pii/S0378113507004506.
21.Madec, F (2003) Enzootic respiratory diseases in the growing-finishing pig and control: a compound problem and still a challenge. Proceedings of French Agency for Food Safety. Zoopole Les Croix, France, pp. 113.
22.Schrøder-Petersen, D and Simonsen, H (2001) Tail biting in pigs. The Veterinary Journal 162, 196210. Available at https://www.sciencedirect.com/science/article/pii/S1090023301906057?via%3Dihub.
23.Pandolfi, F et al. (2017) The ‘Real Welfare’ scheme: identification of risk and protective factors for welfare outcomes in commercial pig farms in the UK. Preventive Veterinary Medicine 146, 3443.
24.Temple, D et al. (2012) The welfare of growing pigs in five different production systems: assessment of feeding and housing. Animal: An International Journal of Animal Bioscience 6, 656667. Available at https://www.cambridge.org/core/product/identifier/S1751731111001868/type/journal_article.
25.Geers, R et al. (1989) An assessment of optimal air temperatures in pig houses by the quantification of behavioural and health-related problems. Animal Production 48, 571578.
26.D'Eath, RB et al. (2014) Injurious tail biting in pigs: how can it be controlled in existing systems without tail docking? Animal: An International Journal of Animal Bioscience 8, 14791497.
27.Lieutenancies Act 1997, c. 23 Available at https://www.legislation.gov.uk/ukpga/1997/23/contents.
28.Parker, DE, Legg, TP and Folland, CK (1992) A new daily Central England Temperature Series, 1772–1991. International Journal of Climatology 12, 317342. Available at https://www.metoffice.gov.uk/hadobs/hadcet/.
29.Sanchez-Vazquez, MJ et al. (2012) Identifying associations between pig pathologies using a multi-dimensional machine learning methodology. BMC Veterinary Research 8, 1. Available at https://bmcvetres.biomedcentral.com/articles/10.1186/1746-6148-8-151.
30.Animal & Plant Health Agency (2018) GB pig quarterly report: Disease surveillance and emerging threats. Vol 22. Available at https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/761794/pub-servrep-p0718.pdf.
31.Hajat, S and Kosatky, T (2010) Heat-related mortality: a review and exploration of heterogeneity. Journal of Epidemiology & Community Health 64, 753760.
32.Scovronick, N et al. (2018) The association between ambient temperature and mortality in South Africa: a time-series analysis. Environmental Research 161, 229235. Available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773242/.
33.Näyhä, S (2005) Environmental temperature and mortality. International Journal of Circumpolar Health 64, 451458. Available at https://doi.org/10.3402/ijch.v64i5.18026.
34.Cox, B et al. (2016) Mortality related to cold and heat. What do we learn from dairy cattle? Environmental Research 149, 231238.
35.Gasparrini, A et al. (2015) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. The Lancet 386, 369375. Available at https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(14)62114-0/fulltext.
36.Turner, LR et al. (2012) Ambient temperature and cardiorespiratory morbidity: a systematic review and meta-analysis. Epidemiology 23, 594606. Available at https://journals.lww.com/epidem/Fulltext/2012/07000/Ambient_Temperature_and_Cardiorespiratory.12.aspx.
37.Pica, N and Bouvier, NM (2012) Environmental factors affecting the transmission of respiratory viruses. Current Opinion in Virology 2, 9095. Available at https://www.ncbi.nlm.nih.gov/pubmed/22440971.
38.Paynter, S (2015) Humidity and respiratory virus transmission in tropical and temperate settings. Epidemiology & Infection 143, 11101118. Available at https://www.cambridge.org/core/article/humidity-and-respiratory-virus-transmission-in-tropical-and-temperate-settings/DDD7C065E1162CDB039C398F2F2C44DF.
39.Penny, RH and Hill, FW (1974) Observations of some conditions in pigs at the abattoir with particular reference to tail biting. Veterinary Record 94, 174180. Available at http://dx.doi.org/10.1136/vr.94.9.174.
40.Blackshaw, JK (1981) Some behavioural deviations in weaned domestic pigs: persistent inguinal nose thrusting, and tail and ear biting. Animal Science 33, 325332. Available at https://doi.org/10.1017/S000335610003172X.
41.Taylor, NR et al. (2010) Tail-biting: a new perspective. The Veterinary Journal 186, 137147. Available at https://doi.org/10.1016/j.tvjl.2009.08.028.
42.Harley, S et al. (2012) Evaluating the prevalence of tail biting and carcase condemnations in slaughter pigs in the Republic and Northern Ireland, and the potential of abattoir meat inspection as a welfare surveillance tool. Veterinary Record 171, 621.
43.Scheepens, CJM et al. (1991) Influences of intermittent daily draught on the behaviour of weaned pigs. Applied Animal Behaviour Science 31, 6982. Available at https://doi.org/10.1016/0168-1591(91)90154-P.
44.Smith, RP et al. (2019) Review of pig health and welfare surveillance data sources in England and Wales. Veterinary Record 184, 349. Available at http://dx.doi.org/10.1136/vr.104896.
45.Animal & Plant Health Agency, Livestock demographic data group (2017) Pig population report: Livestock population density maps for GB. Available at http://apha.defra.gov.uk/documents/surveillance/diseases/lddg-pop-report-pig1117.pdf.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Lee et al. supplementary material
Lee et al. supplementary material

 Unknown (1.4 MB)
1.4 MB

Influence of temperature on prevalence of health and welfare conditions in pigs: time-series analysis of pig abattoir inspection data in England and Wales

  • H. Lee (a1), C. Perkins (a1), H. Gray (a2), S. Hajat (a1) (a3), M. Friel (a2), R. P. Smith (a4), S. Williamson (a5), P. Edwards (a1) and L. M. Collins (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed