We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Optimising short- and long-term outcomes for children and patients with CHD depends on continued scientific discovery and translation to clinical improvements in a coordinated effort by multiple stakeholders. Several challenges remain for clinicians, researchers, administrators, patients, and families seeking continuous scientific and clinical advancements in the field. We describe a new integrated research and improvement network – Cardiac Networks United – that seeks to build upon the experience and success achieved to-date to create a new infrastructure for research and quality improvement that will serve the needs of the paediatric and congenital heart community in the future. Existing gaps in data integration and barriers to improvement are described, along with the mission and vision, organisational structure, and early objectives of Cardiac Networks United. Finally, representatives of key stakeholder groups – heart centre executives, research leaders, learning health system experts, and parent advocates – offer their perspectives on the need for this new collaborative effort.
The IAU was founded in 1919 “to facilitate the relations between astronomers of different countries where international co-operation is necessary or useful” and “to promote the study of astronomy in all its departments”. These aims have led the IAU throughout the century of its existence, but the way it has tried to fulfil them has changed. We have tried to trace the changing role of the IAU in the international astronomical community through the twentieth century and into the twenty-first. The IAU has striven – occasionally struggled – to protect international scientific cooperation across the deep political divides that characterized the 20th century, while maintaining an important function in the context of the rapidly evolving science itself and the changing fabric of institutions involved in astronomy. We especially argue how the emphasis of the IAU’s activities has shifted from the first aim – facilitating collaboration by organizing meetings and defining common standards – to the second aim: promoting astronomy by outreach and development programs.
Africa is the second largest continent in terms of size and population.1,2 With approximately 1.256 billion people (about 15% of the world’s population) and a land area of 30.3 million square kilometers (including adjacent islands), it occupies about 20.4% of the earth’s total land area.1 A significant fraction of the people in the Caribbean* and South America are of African descent, and there are many historical and cultural links among the people of these regions.3 South America has 422.5 million people, and the Caribbean has about 39.12 million people;1 hence, the total population of all three areas represents about 20% of the world’s population.1,2 Similarities in climate also mean that common approaches can be explored for establishing sustainable building materials, and the range of development indices offer unique opportunities for collaborations in research and education that can facilitate human development.4
This work is part of the interlaboratory collaboration to study the stability of organic solar cells containing PCDTBT polymer as a donor material. The varieties of the OPV devices with different device architectures, electrode materials, encapsulation, and device dimensions were prepared by seven research laboratories. Sets of identical devices were aged according to four different protocols: shelf lifetime, laboratory weathering under simulated illumination at ambient temperature, laboratory weathering under simulated illumination, and elevated temperature (65 °C) and daylight outdoor weathering under sunlight. The results generated in this study allow us to outline several general conclusions related to PCDTBT-based bulk heterojunction (BHJ) solar cells. The results herein reported can be considered as practical guidance for the realization of stabilization approaches in BHJ solar cells containing PCDTBT.
On the eve of his retirement as the first president of Johns Hopkins University there came to Daniel Coit Gilman the opportunity to direct the fortunes of an institution that promised to become the most important research enterprise in the United States. Moreover, with the financial backing of the institution's founder, Andrew Carnegie, who had set aside as an endowment United States Steel bonds worth ten million dollars, Gilman faced the refreshing prospect of guiding an institution that was free of the usual budgetary deficit.
Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5–10.2 cal ka BP; 10–9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column — a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.
The routes and timing of human occupation of the Tibetan Plateau (TP) are crucial for understanding the evolution of Tibetan populations and associated paleoclimatic conditions. Many archeological sites have been found in/around the Tarim Basin, on the northern margin of the Tibetan Plateau. Unfortunately, most of these sites are surface sites and cannot be directly dated. Their ages can only be estimated based on imprecise artifact comparisons. We recently found and dated an archeological site on a terrace along the Keriya River. Our ages indicate that the site was occupied at ~7.0–7.6 ka, making it the earliest well-dated archeological site yet identified in the Tarim Basin. This suggests that early human foragers migrated into this region prior to ~7.0–7.6 ka during the early to mid-Holocene climatic optimum, which may have provided the impetus for populating the region. We hypothesize that the Keriya River, together with the other rivers originating from the TP, may have served as access routes onto the TP for early human foragers. These rivers may also have served as stepping stones for migration further west into the now hyper-arid regions of the Tarim Basin, leading ultimately to the development of the Silk Road.
The evolution of arid environments in northern China was a major environmental change during the Quaternary. Here we present the dating and environmental proxy results from a 35 m long core (A-WL10ZK-1) collected from the Ulan Buh Desert (UBD), along with supplemental data from four other cores. The UBD is one of the main desert dune fields in China and our results indicate the UBD has undergone complex evolution during the late Quaternary. Most of the present UBD was covered by a Jilantai-Hetao Mega-paleolake lasting until ~ 90 ka ago. A sandy desert environment prevailed throughout the UBD during the last glacial period and early Holocene. A wetland environment characterized by the formation of numerous interdunal ponds in the northern UBD occurred at ~ 8–7 ka, although a dune field persisted in the southern UBD. The modern UBD landscape formed after these wetlands dried up. During the last 2000 years, eolian sand from the Badain Jaran Desert has invaded the northern UBD, while farming and overgrazing resulted in the formation of the eastern UBD. We suggest that the formation of UBD landforms is related to the disintegration of the megalake Jilantai-Hetao and to summer monsoon changes during the last glaciation and Holocene.
The emission nebula around the subdwarf B (sdB) star PHL 932 is currently classified as a planetary nebula (PN) in the literature. Based on a large body of multi-wavelength data, both new and previously published, we show here that this low-excitation nebula is in fact a small Strömgren sphere (Hii region) in the interstellar medium around this star. We summarise the properties of the nebula and its ionizing star, and discuss its evolutionary status. We find no compelling evidence for close binarity, arguing that PHL 932 is an ordinary sdB star. We also find that the emission nebulae around the hot DO stars PG 0108 + 101 and PG 0109 + 111 are also Strömgren spheres in the ISM, and along with PHL 932, are probably associated with the same extensive region of high-latitude molecular gas in Pisces–Pegasus.
A new third-order solution for multi-directional irregular water waves in finite water depth is presented. The solution includes explicit expressions for the surface elevation, the amplitude dispersion and the vertical variation of the velocity potential. Expressions for the velocity potential at the free surface are also provided, and the formulation incorporates the effect of an ambient current with the option of specifying zero net volume flux. Harmonic resonance may occur at third order for certain combinations of frequencies and wavenumber vectors, and in this situation the perturbation theory breaks down due to singularities in the transfer functions. We analyse harmonic resonance for the case of a monochromatic short-crested wave interacting with a plane wave having a different frequency, and make long-term simulations with a high-order Boussinesq formulation in order to study the evolution of wave trains exposed to harmonic resonance.
Renewable energy can provide a host of benefits to society. In addition to the reduction of carbon dioxide (CO2) emissions, governments have enacted renewable energy (RE) policies to meet a number of objectives including the creation of local environmental and health benefits; facilitation of energy access, particularly for rural areas; advancement of energy security goals by diversifying the portfolio of energy technologies and resources; and improving social and economic development through potential employment opportunities. Energy access and social and economic development have been the primary drivers in developing countries whereas ensuring a secure energy supply and environmental concerns have been most important in developed countries.
An increasing number and variety of RE policies–motivated by a variety of factors–have driven substantial growth of RE technologies in recent years. Government policies have played a crucial role in accelerating the deployment of RE technologies. At the same time, not all RE policies have proven effective and efficient in rapidly or substantially increasing RE deployment. The focus of policies is broadening from a concentration almost entirely on RE electricity to include RE heating and cooling and transportation.
RE policies have promoted an increase in RE capacity installations by helping to overcome various barriers. Barriers specific to RE policymaking (e.g., a lack of information and awareness), to implementation (e.g., a lack of an educated and trained workforce to match developing RE technologies) and to financing (e.g., market failures) may further impede deployment of RE.
Cyclotron lapworthi (Groom, 1902), one of the few British Cambrian bradoriid ostracod species known from a large number of specimens, is redescribed. It has an interdorsum, thus indicating a hesslandonid affinity. The ontogeny of C. lapworthi does not demonstrate a clear distinction of its individual moult stages but does show marked changes in the development of nodes and lobes. C. lapworthi shows wide variation in carapace shape possibly indicating that its valves were thin and relatively flexible. In England and Canada C. lapworthi is restricted to the Upper Cambrian Olenus Zone. C. lapworthi may also occur coevally in the Upper Cambrian of Sweden.
Oscillating water tunnels are experimental facilities commonly used in coastal engineering research. They are intended to reproduce near-bed hydrodynamic and sediment transport phenomena at a realistic scale. In an oscillating water tunnel, a piston generates an oscillatory motion that propagates almost instantaneously to the whole tunnel; consequently, flow is uniform along the tunnel, unlike the propagating wave motion in the sea or in a wave flume. This results in subtle differences between the boundary-layer hydrodynamics of an oscillating water tunnel and of a propagating wave, which may have a significant effect in the resulting sediment transport. In this paper, we present a zeroth-order analytical model of the turbulent boundary-layer hydrodynamics in an oscillating water tunnel. By using a time-varying eddy viscosity and by accounting for the constraints arising from the tunnel's geometry, the model predicts the oscillating water tunnel hydrodynamics and yields analytical expressions to compute bed shear stresses for asymmetric and skewed waves, both in the absence or presence of an imposed current. These expressions are applied to successfully quantify bedload sediment transport in oscillating water tunnel experiments.
Dating and geomorphology of shoreline features in the Qinghai Lake basin of northwestern China suggest that, contrary to previous interpretations, the lake likely did not reach levels 66–140 m above modern within the past ∼ 90,000 yr. Maximum highstands of ∼ 20–66 m above modern probably date to Marine Isotope Stage (MIS) 5. MIS 3 highstands are undated and uncertain but may have been at or below post-glacial highs. The lake probably reached ∼ 3202–3206 m (+ 8–12 m) during the early Holocene but stayed below ∼ 3202 m after ∼ 8.4 ka. This shoreline history implies significantly different hydrologic balances in the Qinghai Lake basin before ∼ 90 ka and after ∼ 45 ka, possibly the result of a more expansive Asian monsoon in MIS 5.
A numerical study of doubly periodic deep-water short-crested wave instabilities, arising from various quartet resonant interactions, is conducted using a high-order Boussinesq-type model. The model is first verified through a series of simulations involving classical class I plane wave instabilities. These correctly lead to well-known (nearly symmetric) recurrence cycles below a previously established breaking threshold steepness, and to an asymmetric evolution (characterized by a permanent transfer of energy to the lower side-band) above this threshold, with dissipation from a smoothing filter promoting this behaviour in these cases. A series of class Ia short-crested wave instabilities, near the plane wave limit, are then considered, covering a wide range of incident wave steepness. A close match with theoretical growth rates is demonstrated near the inception. It is shown that the unstable evolution of these initially three-dimensional waves leads to an asymmetric evolution, even for weakly nonlinear cases presumably well below breaking. This is characterized by an energy transfer to the lower side-band, which is also accompanied by a similar transfer to more distant upper side-bands. At larger steepness, the evolution leads to a permanent downshift of both the mean and peak frequencies, driven in part by dissipation, effectively breaking the quasi-recurrence cycle. A single case involving a class Ib short-crested wave instability at relatively large steepness is also considered, which demonstrates a reasonably similar evolution. These simulations consider the simplest physical situations involving three-dimensional instabilities of genuinely three-dimensional progressive waves, revealing qualitative differences from classical two-dimensional descriptions. This study is therefore of fundamental importance in understanding the development of three-dimensional wave spectra.
A numerical study of quasi-steady doubly periodic monochromatic short-crested wave patterns in deep water is conducted using a high-order Boussinesq-type model. Simulations using linear wavemaker conditions in the nonlinear model are initially used to approximate conditions from recent laboratory experiments. The computed patterns share many features with those observed in wavetanks, including bending (both frontwards and backwards) of the wave crests, dipping at the crest centrelines, and a pronounced long modulation in the direction of propagation. A new and simple explanation for these features is provided, involving the release of spurious free first harmonics, due to the neglect of steady third-order components in the three-dimensional wave generation. A comparison with the experimentally observed beat length and amplitude matches the theoretical/numerical predictions well. Additionally, direct inclusion of steady third-order components in the wave generation is shown to reduce significantly the modulations (and other unsteady features), further confirming the explanation. This numerical work makes apparent some previously unknown difficulties associated with the physical generation of even the simplest three-dimensional waves, adding significant insight into the interpretation of recent experimental observations.