Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T12:44:52.010Z Has data issue: false hasContentIssue false

A critical assessment of claims that human footprints in the Lake Otero basin, New Mexico date to the Last Glacial Maximum

Published online by Cambridge University Press:  02 September 2022

Charles G. Oviatt*
Affiliation:
Department of Geology, Kansas State University, Manhattan, KS 66506
David B. Madsen
Affiliation:
Department of Anthropology, University of Nevada-Reno, Reno, NV, 89557
David Rhode
Affiliation:
Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512
Loren G. Davis
Affiliation:
Department of Anthropology, Oregon State University, Corvallis, OR 97331
*
*Corresponding author email address: joviatt@ksu.edu

Abstract

The ancient human footprints in valley-bottom sediments in Tularosa Valley, New Mexico, are fascinating and potentially important because they suggest interactions between Pleistocene megafauna as well as great antiquity. The dating of those footprints is crucial in interpretations of when humans first came to North America from Asia, but the ages have larger uncertainties than has been reported. Some of that uncertainty is related to the possibility of a radiocarbon reservoir in the water in which the dated propagules of Ruppia cirrhosa grew. As a test of that possibility, Ruppia specimens collected in 1947 from nearby Malpais Spring returned a radiocarbon age of ca. 7400 cal yr BP. We think it would be appropriate to devise and implement independent means for dating the footprints, thus lowering the uncertainty in the proposed age of the footprints and leading to a better understanding of when humans first arrived in the Americas.

Type
Contribution to the QR Forum
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, B.D., 2005. Ice age lakes in New Mexico. In: Lucas, S.G., Morgan, G.S., Zeigler, K.E. (Eds.), New Mexico's Ice Ages. New Mexico Museum of Natural History and Science Bulletin 28, 107113.Google Scholar
Allen, B.D., Anderson, R.Y., 2000. A continuous, high-resolution record of Late Pleistocene climate variability from the Estancia basin, New Mexico. Geological Society of America Bulletin 112, 14441458.2.0.CO;2>CrossRefGoogle Scholar
Allen, B.D., Love, D.W., Myers, R.G., 2009. Evidence for Late Pleistocene hydrologic and climatic change from Lake Otero, Tularosa basin, south-central New Mexico. New Mexico Geology 31, 925.Google Scholar
Bennett, M.R., Bustos, D., Pigati, J.S., Springer, K.B., Urban, T.M., Holliday, V.T., Reynolds, S.C., et al. , 2021a. Evidence of humans in North America during the last glacial maximum. Science 373, 15281531.CrossRefGoogle ScholarPubMed
Bennett, M.R., Bustos, D., Pigati, J.S., Springer, K.B., Urban, T.M., Holliday, V.T., Reynolds, S.C., et al. , 2021b. Supplementary materials for evidence of humans in North America during the last Glacial Maximum. Science 373. https://www.science.org/action/downloadSupplement?doi=10.1126%2Fscience.abg7586&file=science.abg7586_SM.pdf.CrossRefGoogle Scholar
Bohacs, K.M., Carroll, A.R., Neal, J.E., Mankiewicz, P.J., 2000. Lake-basin type, source potential, and hydrocarbon character: an integrated-sequence-stratigraphic–geochemical framework. In: Gierlowski-Kordesch, E.H., Kelts, K.R. (Eds.), Lake Basins through Space and Time: AAPG Studies in Geology 46, p. 334.Google Scholar
Brock, M.A., 1981. Accumulation of proline in a submerged aquatic halophyte, Ruppia L. Oecologia 51, 217219.CrossRefGoogle Scholar
Bustos, D., Jakeway, J., Urban, T.M., Holliday, V.T., Fenerty, B., Raichlen, D.A., Budka, M., et al. , 2018. Footprints preserve terminal Pleistocene hunt? Human-sloth interactions in North America. Science Advances 4, eaar7621. https://doi.org/10.1126/sciadv.aar7621.CrossRefGoogle ScholarPubMed
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W. McCabe, A.M., 2009. The last glacial maximum. Science 325, 710714.CrossRefGoogle ScholarPubMed
Colman, S.M., Yu, S.-Y., An, Z., Shen, J., Henderson, A.C.G., 2007. Late Cenozoic climate changes in China's western interior: a review of research on Lake Qinghai and comparison with other records. Quaternary Science Reviews 26, 22812300.CrossRefGoogle Scholar
Colombo, G., Traverso, L., Mazzocchi, L., Grugni, V., Migliore, N.R., Capodiferro, M.R., Lombardo, G., et al. , 2022. Overview of the Americas’ first peopling from a patrilineal perspective: new evidence from the southern continent. Genes 13, 220. https://doi.org/10.3390/genes13020220.CrossRefGoogle ScholarPubMed
Cox, P.A., Knox, R.B., 1989. Two-dimensional pollination in hydrophilous plants: convergent evolution in the genera Halodule (Cymodoceaceae), Halophila (Hydrocharitaceae), Ruppia (Ruppiaceae), and Lepilaena (Zannichelliaceae). American Journal of Botany 76, 164175.CrossRefGoogle Scholar
Cruz, R.R., 1983. Annual water-resources review, White Sands Missile Range, New Mexico, 1982. U. S. Geological Survey Open-File Report 83-695, 32 pp.Google Scholar
Dalton, A.S., Stokes, C.R., Batchelor, C.L., 2022. Evolution of the Laurentide and Innuitian ice sheets prior to the last glacial maximum (115 ka to 25 ka). Earth-Science Reviews 224, 103875. https://doi.org/10.1016/j.earscirev.2021.103875.CrossRefGoogle Scholar
Davis, L.G., Madsen, D.B., Becerra-Valdivia, L., Higham, T., Sisson, D.A., Skinner, S.M., Stueber, D., et al. , 2019. Late Upper Paleolithic occupation at Cooper's Ferry, Idaho, USA, ~16,000 years ago. Science 365, 891897.CrossRefGoogle ScholarPubMed
Deevey, E.S., Gross, M.S., Hutchinson, G.E., Kraybill, H.L., 1954. The natural C14 contents of materials from hard-water lakes. Proceedings of the National Academy of Sciences of the United States of America 40, 285288.CrossRefGoogle Scholar
Drever, J.I., 1988. The Geochemistry of Natural Waters. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
Faith, J.T., Surovell, T.A., 2009. Synchronous extinction of North America's Pleistocene mammals. Proceedings of the National Academy of Sciences of the United States of America 106, 641645.Google ScholarPubMed
Falkowski, P.G., Raven, J.A., 1997. Aquatic Photosynthesis. Blackwell Science, Malden, MA.Google Scholar
Fontana, S.L., 2007. Radiocarbon chronologies of Holocene lacustrine sediments from the southern coast of Buenos Aires Province, Argentina. Radiocarbon 49, 103116.CrossRefGoogle Scholar
Galbraith, R.F., Green, P.F., 1990. Estimating the component ages in a finite mixture. Nuclear Tracks and Radiation Measurements 17, 197206.CrossRefGoogle Scholar
Geyh, M.A., Grosjean, M., Núñez, L., Schotterer, U., 1999. Radiocarbon reservoir effect and the timing of the late-glacial/Early Holocene humid phase in the Atacama Desert (northern Chile). Quaternary Research 52, 143153.CrossRefGoogle Scholar
Grosjean, M., van Leeuwen, J.F.N., van der Knaap, W.O., Geyh, M.A., Ammann, B., Tanner, W., Messerli, B., Núñez, L.A., Valero-Garcés, B.L., Veit, H., 2001. A 22,000 14C year BP sediment and pollen record of climate change from Laguna Miscanti (23°S), northern Chile. Global and Planetary Change 28, 3551.CrossRefGoogle Scholar
Halligan, J.J., Waters, M.R., Perrotti, A., Owens, I.J., Feinberg, J.M., Bourne, M.D., Fenerty, B., et al. , 2016. Pre-Clovis occupation 14,550 years ago at the Page-Ladson site, Florida, and the peopling of the Americas. Science Advances 2(5), e1600375. https://doi.org/10.1126/sciadv.1600375.CrossRefGoogle ScholarPubMed
Hatté, C., Bréhéret, J.-G., Jacob, J., Argant, J., 2013. Refining the Sarliève paleolake (France) Neolithic chronology by combining several radiocarbon approaches. Radiocarbon 55, 979992.CrossRefGoogle Scholar
Haynes, C.V. Jr., 2022. Evidence for humans at White Sands National Park during the last glacial maximum could actually be for Clovis People ~13,000 years ago. PaleoAmerica 8, 9598.CrossRefGoogle Scholar
Haynes, C.V. Jr., 1992. C-14 dating of the peopling of the New World. In: Taylor, R.E., Lon, A., Kra, R. (Eds.), Radiocarbon After Four Decades: An Interdisciplinary Perspective. Springer Verlag, New York, pp. 503518.Google Scholar
Haynes, C.V. Jr., Donahue, D.J., Jull, A.T., Zabel, T.H., 1984. Application of accelerator dating to fluted point Paleoindian sites. Archaeology of Eastern North America 12, 184191.Google Scholar
Haynes, R.R., 2000. Ruppia. In: Flora of North America Editorial Committee (Ed.), Flora of North America North of Mexico, vol. 22. Oxford University Press, New York, pp. 7576.Google Scholar
Heintzman, P.D., Froese, D., Ives, J.W., Soares, A.E.R., Zazula, G.D., Letts, B., Andrews, T.D., et al. , 2016. Bison phylogeography constrains dispersal and viability of the ice free corridor in western Canada. Proceedings of the National Academy of Sciences of the United States of America 113, 80578063.CrossRefGoogle ScholarPubMed
Hellblom, F., Axelsson, L., 2003. External HCO3 dehydration maintained by acid zones in the plasma membrane is an important component of the photosynthetic carbon uptake in Ruppia cirrhosa. Photosynthesis Research 77, 173181.CrossRefGoogle ScholarPubMed
Herrick, C.L., 1900. The Geology of the White Sands of New Mexico. The Journal of Geology 8, 112128.CrossRefGoogle Scholar
Herrick, C.L., 1904. Lake Otero, an ancient salt lake in southeastern New Mexico. The American Geologist 34, 174189.Google Scholar
Huff, G.F., 2002. Apparent age of ground water near the southeastern margin of the Tularosa basin, Otero County, New Mexico. In: Leuth, V.W., Giles, K.A., Lucas, S.G., Kues, B.S., Myers, R.G., Ulmer-Scholle, D.S., (Eds.), Geology of White Sands. New Mexico Geological Society, 53rd Field Conference Guidebook, pp. 303307.CrossRefGoogle Scholar
Jenkins, D.L., Davis, L.G., Stafford, T.W. Jr., Campos, P.F., Hockett, B., Jones, G.T., Cummings, L.S., et al. , 2012. Clovis age western stemmed projectile points and human coprolites at the Paisley Caves. Science 337, 223228.CrossRefGoogle ScholarPubMed
Jull, A.J.T., Burr, G.S., Zhou, W., Cheng, P., Song, S.H., Leonard, A.G., Cheng, L., An, Z.S., 2014. 14C measurements of dissolved inorganic and organic carbon in Qinghai Lake and inflowing rivers (NE Tibet, Qinghai Plateau), China. Radiocarbon 56, 11151127.CrossRefGoogle Scholar
Kalanke, J., Mingram, J., Lauterbach, S., Usubaliev, R., Tjallingii, R., Brauer, A., 2020. Seasonal deposition processes and chronology of a varved Holocene lake sediment record from Chatyr Kol Lake (Kyrgyz Republic). Geochronology 2, 133154.CrossRefGoogle Scholar
Kantrud, H.A., 1991. Wigeongrass (Ruppia maritima L.): A Literature Review. US Fish and Wildlife Service, Fish and Wildlife Research 10. US Department of the Interior, Fish and Wildlife Service, Washington, D.C., 58 pp.Google Scholar
Kaul, R.B., 1993. Meristic and organogenetic variation in Ruppia occidentalis and R. maritima. International Journal of Plant Sciences 154, 416424.CrossRefGoogle Scholar
Kelts, K.R., Chen, K.Z., Lister, G.S., Yu, J.Q., Gao, Z.H., Niessen, N., Bonani, G., 1989. Geological fingerprints of climate history: a cooperative study of Qinghai Lake, China. Eclogae Geologicae Helvetiae 82, 167182.Google Scholar
Kocurek, G., Carr, M., Ewing, R., Havholm, K.G., Nagar, Y.C., Singhvi, A.K., 2007. White Sands dune field, New Mexico: age, dune dynamics and recent accumulations. Sedimentary Geology 197, 313331.CrossRefGoogle Scholar
Lacroix, C.R., Kemp, J.R., 1997. Developmental morphology of the androecium and gynoecium in Ruppia maritima L.: considerations for pollination. Aquatic Botany 59, 253262.CrossRefGoogle Scholar
Langbein, W.B., 1961. Salinity and hydrology of closed lakes: a study of the long-term balance between input and loss of salts in closed lakes. U.S. Geological Survey Professional Paper 412. https://doi.org/10.3133/pp412.Google Scholar
Larkum, A.W.D., Davey Peter, A., Kuo, J., Ralph, P.J., Raven, J.A., 2017. Carbon-concentrating mechanisms in seagrasses. Journal of Experimental Botany 68, 37733784.CrossRefGoogle ScholarPubMed
Les, D.H., 1988. Breeding systems, population structure, and evolution in hydrophilous angiosperms. Annals of the Missouri Botanical Garden 57, 819835.CrossRefGoogle Scholar
Leuth, V.W., Giles, K.A., Lucas, S.G., Kues, B.S., Myers, R.G., Ulmer-Scholle, D.S. (Eds.), 2002. Geology of White Sands. New Mexico Geological Society, 53rd Field Conference Guidebook.CrossRefGoogle Scholar
Llamas, B., Fehren-Schmitz, L., Valverde, G., Soubrier, J., Mallick, S., Rohland, N., Nordenfelt, S., et al. , 2016. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. Science Advances 2(4), e1501385. https://doi.org/10.1126/sciadv.1501385.CrossRefGoogle ScholarPubMed
Love, D.W., Allen, B.D., Morgan, G.S., Myers, R.G., 2014. Radiocarbon and fossil vertebrate ages of Late Pleistocene and Holocene sediments imply rapid rates of evaporite deposition in the northern Tularosa basin, south central New Mexico. In: Rawling, G., McLemore, V.T., Timmons, S., Dunbar, N. (Eds.), Geology of the Sacramento Mountains Region. New Mexico Geological Society, Guidebook 65, pp. 135142.CrossRefGoogle Scholar
Lucas, S.G., Hawley, J.W., 2002. The Otero Formation, Pleistocene lacustrine strata in the Tularosa basin, southern New Mexico. In: Leuth, V.W., Giles, K.A., Lucas, S.G., Kues, B.S., Myers, R.G., Ulmer-Scholle, D.S. (Eds.), Geology of White Sands. New Mexico Geological Society, 53rd Field Conference Guidebook, pp. 277283.CrossRefGoogle Scholar
Lucas, W.J., 1983. Photosynthetic assimilation of exogenous HCO3 by aquatic plants. Annual Review of Plant Physiology 34, 71104.CrossRefGoogle Scholar
Madsen, D.B., Davis, L.G., Rhode, D., Oviatt, C.G., 2022. Comment on “Evidence of humans in North America during the last glacial maximum.” Science 375. https://doi.org/10.1126/science.abm4678.CrossRefGoogle ScholarPubMed
Madsen, T.V., Sand-Jensen, K., 1991. Photosynthetic carbon assimilation in aquatic macrophytes. Aquatic Botany 41, 540.CrossRefGoogle Scholar
Mamer, E.A., Newton, B.T., Koning, D.J., Timmons, S.S., Kelley, S.A., 2014. Northeastern Tularosa basin regional hydrogeology study, New Mexico. New Mexico Bureau of Geology and Mineral Resources Open-File Report 562, 71 pp.Google Scholar
Mannino, A.M., Menéndez, M., Obrador, B., Sfriso, A., Triest, L., 2015. The genus Ruppia L. (Ruppiaceae) in the Mediterranean region: an overview. Aquatic Botany 124, 19.CrossRefGoogle Scholar
Marcenko, E., Srdoc, D., Golubic, S., Pedzic, J., Head, M.J., 1989. Carbon uptake in aquatic plants deduced from their natural 13C and 14C content. Radiocarbon 31, 785794.CrossRefGoogle Scholar
Markgraf, V., Bradbury, J.P., Schwalb, A., Burns, S.J., Stern, C., Ariztegui, D., Gilli, A., Anselmetti, F.S., Stine, S., Maidana, N., 2003. Holocene palaeoclimates of southern Patagonia: limnological and environmental history of Lago Cardiel, Argentina. The Holocene 13, 581591.CrossRefGoogle Scholar
Martin, A.C., Zim, H.S., Nelson, A.L., 1961. American Wildlife and Plants: a Guide to Wildlife Food Habits. Dover Publications, New York, 500 pp.Google Scholar
Marty, J., Myrbo, A., 2014. Radiocarbon dating suitability of aquatic plants macrofossils. Journal of Paleolimnology 52, 435443.CrossRefGoogle Scholar
Mason, H.L., 1957. A Flora of the Marshes of California. University of California Press, Berkeley and Los Angeles, 878 pp.CrossRefGoogle Scholar
Meinzer, O.E., Hare, R.F., 1915. Geology and water resources of Tularosa basin, New Mexico. United States Geological Survey Water-Supply Paper 343. https://doi.org/10.3133/wsp343.Google Scholar
Menking, K.M., Polyak, V.J., Anderson, R.Y., Asmerom, Y., 2018. Climate history of the southwestern United States based on Estancia basin hydrologic variability from 69 to 10 ka. Quaternary Science Reviews 200, 237252.CrossRefGoogle Scholar
Moreno-Mayar, J.V., Vinner, L., Damgaard, P., de, B., de la Fuente, C., Chan, J., Spence, J.P., Allentoft, M.E., et al. , 2018. Early human dispersals within the Americas. Science Advances 362(6419), eaav2621. https://doi.org/10.1126/science.aav2621.Google ScholarPubMed
Murphy, L.R., Kinsey, S.T., Durako, M.J., 2003. Physiological effects of short-term salinity changes on Ruppia maritima. Aquatic Botany 75, 293309.CrossRefGoogle Scholar
Myers, R.G., Naus, C.A., 2004. A summarized review of selected hydrologic characteristics of the White Sands pupfish (Cyprinodon tularosa) habitats, Tularosa basin, New Mexico. US Army White Sands Missile Range and US Geological Survey. Poster, 2004 New Mexico Water Research Symposium, New Mexico Water Resources Research Institute, Socorro, New Mexico. https://nmwrri.nmsu.edu/wp-content/uploads/2015/publish/other_meetings/posters2004/naus.pdf.Google Scholar
Newton, B.T., Allen, B., 2014. Hydrologic investigation at White Sands National Monument. New Mexico Bureau of Geology and Mineral Resources Open-File Report 559. https://geoinfo.nmt.edu/publications/openfile/downloads/500-599/559/OFR559_White_Sands.pdf.Google Scholar
Norris, S., Tarasov, L., Monteath, A.J., Gosse, J,C., Hidy, A.J., Margold, M., Froese, D.G., 2021. Rapid retreat of the southwestern Laurentide ice sheet during the Bølling-Allerød interval. Geology 50, 417421.CrossRefGoogle Scholar
Olsson, I.U., 1980. Radiocarbon dating of material from different reservoirs. In: Seuss, H.E., Berger, R. (Eds.), Radiocarbon Dating. UCLA Press, San Diego, pp. 613618.Google Scholar
Oviatt, C.G., Pigati, J.S., Madsen, D.B., Rhode, D.E., Bright, J., 2018. Juke Box trench: a valuable archive of Late Pleistocene and Holocene stratigraphy in the Bonneville basin, Utah. Miscellaneous Publication 18-1. Utah Geological Survey, Salt Lake City. https://ugspub.nr.utah.gov/publications/misc_pubs/mp-18-1.pdf.Google Scholar
Pigati, J.S., Springer, K.B., Bennett, M.R., Bustos, D., Urban, T.M., Holliday, V.T., Reynolds, S.C., Odess, D., 2022a. Response to “Comment on ‘Evidence of humans in North America during the last glacial maximum’.” Science 375. https://doi.org/10.1126/science.abm6987.CrossRefGoogle ScholarPubMed
Pigati, J.S., Springer, K.B., Holliday, V.T., Bennett, M.R., Bustos, D., Urban, T.M., Reynolds, S.C., Odess, D., 2022b. Reply to "Evidence for humans at White Sands National Park during the last glacial maximum could actually be for Clovis people ~13,000 years ago" by C. Vance Haynes, Jr. Paleoamerica 8. https://doi.org/10.1080/20555563.2022.2039863.CrossRefGoogle Scholar
Pinotti, T., Bergstrom, A., Geppert, M., Bawn, M., Ohasi, D., Shi, W., Lacerda, D.R., et al. , 2019. Y chromosome sequences reveal a short Beringian standstill, rapid expansion, and early population structure of native American founders. Current Biology 29, 149157.CrossRefGoogle Scholar
Raghavan, M., Steinrücken, M., Harris, K., Schiffels, S., Rasmussen, S., DeGiorgio, M., Albrechtsen, A., et al. , 2015. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349, p.aab3884. https://doi.org/10.1126/science.aab3884.CrossRefGoogle ScholarPubMed
Rhodes, E.J., 2011. Optically stimulated luminescence dating of sediments over the past 200,000 years. Annual Review of Earth and Planetary Sciences 39, 461488.CrossRefGoogle Scholar
Richardson, F.D., 1983. Variation, Adaptation, and Reproductive Biology in Ruppia maritima L. Populations from New Hampshire Coastal and Estuarine Tidal Marshes. Ph.D. dissertation, University of New Hampshire, Durham, New Hampshire, USA.Google Scholar
Roca-Rada, X., Politis, G., Messineo, P.G., Scheifler, N., Scabuzzo, C., González, M., Harkins, K.M., et al. , 2021. Ancient mitochondrial genomes from the Argentinian Pampas inform the early peopling of the southern cone of South America. iScience 24(6), 102553. https://doi.org/10.1016/j.isci.2021.102553.CrossRefGoogle ScholarPubMed
Rosen, M.R., 1994. The importance of groundwater in playas: a review of playa classifications and the sedimentology and hydrology of playas. In: Rosen, M.R. (Ed.), Paleoclimate and Basin Evolution of Playa Systems. Geological Society of America Special Paper 289, 118.Google Scholar
Sand-Jensen, K., 1983. Photosynthetic carbon sources of stream macrophytes. Journal of Experimental Botany 35, 198210.CrossRefGoogle Scholar
Sand-Jensen, K., Gordon, D.M., 1984. Differential ability of marine and freshwater macrophytes to utilize HCO3 and CO2. Marine Biology 80, 247253.CrossRefGoogle Scholar
Setchell, W.A., 1946. The genus Ruppia. Proceedings of the California Academy of Science 25, 469478.Google Scholar
Smith, F.A., Walker, N.A., 1980. Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3 and to carbon isotopic discrimination. New Phytologist 86, 245259.CrossRefGoogle Scholar
Springer, K.B., Mankera, C.R., Pigati, J.S., 2015. Dynamic response of desert wetlands to abrupt climate change. Proceedings of the National Academy of Sciences of the United States of America 112, 1452214526.CrossRefGoogle ScholarPubMed
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., et al. , 2008. A 60,000 year Greenland stratigraphic ice core chronology. Climate of the Past 4, 4757.CrossRefGoogle Scholar
Taylor, M.L., Giffei, B.L., Dang, C.L., Wilden, A.E., Altrichter, K.M., Baker, E,C., Nguyen, R., Oki, D.S., 2020. Reproductive ecology and postpollination development in the hydrophilous monocot Ruppia maritima. American Journal of Botany 107, 689699.CrossRefGoogle ScholarPubMed
Thompson, R.S., Oviatt, C.G., Honke, J.S., McGeehin, J.P., 2016. Late Quaternary changes in lakes, vegetation, and climate in the Bonneville basin reconstructed from sediment cores from Great Salt Lake. In: Oviatt, C.G., Shroder, J.F. Jr., (Eds.), Lake Bonneville: A Scientific Update. Developments in Earth Surface Processes 20, 221291.CrossRefGoogle Scholar
Thorne, R.F., 1993. Potamogetonaceae. In: Hickman, J.C., (Ed.), The Jepson Manual: Higher Plants of California, University of California Press, Berkeley, Los Angeles, and London, pp. 13041310.Google Scholar
Triest, L., Beirinckx, L., Sierens, T., 2018. Lagoons and saltwater wetlands getting more diversity: a molecular approach reveals cryptic lineages of a euryhaline submerged macrophyte (Ruppia). Aquatic Conservation: Marine and Freshwater Ecosystems 28, 370382.CrossRefGoogle Scholar
Triest, L., Sierens, T., 2015. Strong bottlenecks, inbreeding and multiple hybridization of threatened European Ruppia maritima populations. Aquatic Botany 125, 3143.CrossRefGoogle Scholar
Turner, P.R., 1987. Ecology and Management Needs of the White Sands Pupfish in the Tularosa Basin of New Mexico. Final report on contract no. DAAD07-84-M-2242 submitted to Environmental Division, Wildlife Branch, U.S. Department of the Army, White Sands Missile Range by Department of Fishery and Wildlife Sciences, New Mexico State University, Las Cruces, New Mexico. 127 pp.Google Scholar
Verhoeven, J.T.A., 1979. The ecology of Ruppia-dominated communities in western Europe. I. Distribution of Ruppia representatives in relation to their autecology. Aquatic Botany 6, 197268.CrossRefGoogle Scholar
Verhoeven, J.T.A., 1980. The ecology of Ruppia-dominated communities in western Europe. II. Synecological classification, structure and dynamics of the macroflora and macrofauna communities. Aquatic Botany 8, 185.CrossRefGoogle Scholar
Waters, M. R., Keene, J. L., Forman, S. L., Prewitt, E. R., Carlson, D. L., Wiederhold, J. E., 2018. Pre-Clovis projectile points at the Debra L. Friedkin site, Texas--Implications for the late Pleistocene peopling of the Americas. Science Advances 4, eaat4505.CrossRefGoogle ScholarPubMed
Waters, M.R., Stafford, T.W., 2007. Redefining the age of Clovis: implications for the peopling of the Americas. Science 315, 11221126.CrossRefGoogle ScholarPubMed
Waters, M.R., Stafford, T.W., Carlson, D.L., 2020. The age of Clovis—13,050 to 12,750 cal yr BP. Science Advances 6(43), eaaz0455. https://doi.org/10.1126/sciadv.aaz0455.CrossRefGoogle Scholar
Wendt, K.A., Dublyansky, Y.V., Moseley, G.E., Edwards, R.L., Cheng, H., Spötl, C., 2018. Moisture availability in the southwest United States over the last three glacial-interglacial cycles. Science Advances 4, eaau1375. https://doi.org/10.1126/sciadv.aau1375.CrossRefGoogle ScholarPubMed
Wilkins, D.E., Currey, D.R., 1997. Timing and extent of late Quaternary paleolakes in the Trans-Pecos closed basin, West Texas and south-central New Mexico. Quaternary Research 47, 306315.CrossRefGoogle Scholar
Willerslev, E., Meltzer, D.J., 2021. Peopling of the Americas as inferred from ancient genomics. Nature 594, 356364.CrossRefGoogle ScholarPubMed
Williams, T.J., Collins, M.B., Rodrigues, K., Rink, W.J., Velchoff, N., Keen-Zebert, A., Gilmer, A., Frederick, C.D., Ayala, S.J., Prewitt, E.R., 2018. Evidence of an early projectile point technology in North America at the Gault Site, Texas, USA. Science Advances 4 eaar5954. https://doi.org/10.1126/sciadv.aar5954.CrossRefGoogle ScholarPubMed
Zhao, C., Yu, Z., Zhao, Y., Ito, E., Kodama, K.P., Chen, F., 2010. Holocene millennial-scale climate variations documented by multiple lake-level proxies in sediment cores from Hurleg Lake, Northwest China. Journal of Paleolimnology 44, 9951008.CrossRefGoogle Scholar
Zhou, A.-F., Chen, F.-H., Wang, Z.-L., Yang, M.-L., Qiang, M.-R., Zhang, J.-W., 2009. Temporal change of radiocarbon reservoir effect in Sugan Lake, northwest China during the Late Holocene. Radiocarbon 51, 529535.CrossRefGoogle Scholar