We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article is a clinical guide which discusses the “state-of-the-art” usage of the classic monoamine oxidase inhibitor (MAOI) antidepressants (phenelzine, tranylcypromine, and isocarboxazid) in modern psychiatric practice. The guide is for all clinicians, including those who may not be experienced MAOI prescribers. It discusses indications, drug-drug interactions, side-effect management, and the safety of various augmentation strategies. There is a clear and broad consensus (more than 70 international expert endorsers), based on 6 decades of experience, for the recommendations herein exposited. They are based on empirical evidence and expert opinion—this guide is presented as a new specialist-consensus standard. The guide provides practical clinical advice, and is the basis for the rational use of these drugs, particularly because it improves and updates knowledge, and corrects the various misconceptions that have hitherto been prominent in the literature, partly due to insufficient knowledge of pharmacology. The guide suggests that MAOIs should always be considered in cases of treatment-resistant depression (including those melancholic in nature), and prior to electroconvulsive therapy—while taking into account of patient preference. In selected cases, they may be considered earlier in the treatment algorithm than has previously been customary, and should not be regarded as drugs of last resort; they may prove decisively effective when many other treatments have failed. The guide clarifies key points on the concomitant use of incorrectly proscribed drugs such as methylphenidate and some tricyclic antidepressants. It also illustrates the straightforward “bridging” methods that may be used to transition simply and safely from other antidepressants to MAOIs.
Many short gamma-ray bursts (GRBs) originate from binary neutron star mergers, and there are several theories that predict the production of coherent, prompt radio signals either prior, during, or shortly following the merger, as well as persistent pulsar-like emission from the spin-down of a magnetar remnant. Here we present a low frequency (170–200 MHz) search for coherent radio emission associated with nine short GRBs detected by the Swift and/or Fermi satellites using the Murchison Widefield Array (MWA) rapid-response observing mode. The MWA began observing these events within 30–60 s of their high-energy detection, enabling us to capture any dispersion delayed signals emitted by short GRBs for a typical range of redshifts. We conducted transient searches at the GRB positions on timescales of 5 s, 30 s, and 2 min, resulting in the most constraining flux density limits on any associated transient of 0.42, 0.29, and 0.084 Jy, respectively. We also searched for dispersed signals at a temporal and spectral resolution of 0.5 s and 1.28 MHz, but none were detected. However, the fluence limit of 80–100 Jy ms derived for GRB 190627A is the most stringent to date for a short GRB. Assuming the formation of a stable magnetar for this GRB, we compared the fluence and persistent emission limits to short GRB coherent emission models, placing constraints on key parameters including the radio emission efficiency of the nearly merged neutron stars (
$\epsilon_r\lesssim10^{-4}$
), the fraction of magnetic energy in the GRB jet (
$\epsilon_B\lesssim2\times10^{-4}$
), and the radio emission efficiency of the magnetar remnant (
$\epsilon_r\lesssim10^{-3}$
). Comparing the limits derived for our full GRB sample (along with those in the literature) to the same emission models, we demonstrate that our fluence limits only place weak constraints on the prompt emission predicted from the interaction between the relativistic GRB jet and the interstellar medium for a subset of magnetar parameters. However, the 30-min flux density limits were sensitive enough to theoretically detect the persistent radio emission from magnetar remnants up to a redshift of
$z\sim0.6$
. Our non-detection of this emission could imply that some GRBs in the sample were not genuinely short or did not result from a binary neutron star merger, the GRBs were at high redshifts, these mergers formed atypical magnetars, the radiation beams of the magnetar remnants were pointing away from Earth, or the majority did not form magnetars but rather collapse directly into black holes.
Here we present stringent low-frequency (185 MHz) limits on coherent radio emission associated with a short-duration gamma-ray burst (SGRB). Our observations of the short gamma-ray burst (GRB) 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from the Swift Burst Alert Telescope, corresponding to 83.7 s post-burst. The SGRB was observed for a total of 30 min, resulting in a
$3\sigma$
persistent flux density upper limit of 40.2 mJy beam–1. Transient searches were conducted at the Swift position of this GRB on 0.5 s, 5 s, 30 s and 2 min timescales, resulting in
$3\sigma$
limits of 570–1 830, 270–630, 200–420, and 100–200 mJy beam–1, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5 s and 1.28 MHz, respectively, resulting in a
$6\sigma$
fluence upper-limit range from 570 Jy ms at DM
$=3\,000$
pc cm–3 (
$z\sim 2.5$
) to 1 750 Jy ms at DM
$=200$
pc cm–3 (
$z\sim 0.1)$
, corresponding to the known redshift range of SGRBs. We compare the fluence prompt emission limit and the persistent upper limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar remnant. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium (ISM) or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low- frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
A new high time resolution observing mode for the Murchison Widefield Array (MWA) is described, enabling full polarimetric observations with up to
$30.72\,$
MHz of bandwidth and a time resolution of
${\sim}$
$0.8\,\upmu$
s. This mode makes use of a polyphase synthesis filter to ‘undo’ the polyphase analysis filter stage of the standard MWA’s Voltage Capture System observing mode. Sources of potential error in the reconstruction of the high time resolution data are identified and quantified, with the
$S/N$
loss induced by the back-to-back system not exceeding
$-0.65\,$
dB for typical noise-dominated samples. The system is further verified by observing three pulsars with known structure on microsecond timescales.
We describe system verification tests and early science results from the pulsar processor (PTUSE) developed for the newly commissioned 64-dish SARAO MeerKAT radio telescope in South Africa. MeerKAT is a high-gain (
${\sim}2.8\,\mbox{K Jy}^{-1}$
) low-system temperature (
${\sim}18\,\mbox{K at }20\,\mbox{cm}$
) radio array that currently operates at 580–1 670 MHz and can produce tied-array beams suitable for pulsar observations. This paper presents results from the MeerTime Large Survey Project and commissioning tests with PTUSE. Highlights include observations of the double pulsar
$\mbox{J}0737{-}3039\mbox{A}$
, pulse profiles from 34 millisecond pulsars (MSPs) from a single 2.5-h observation of the Globular cluster Terzan 5, the rotation measure of Ter5O, a 420-sigma giant pulse from the Large Magellanic Cloud pulsar PSR
$\mbox{J}0540{-}6919$
, and nulling identified in the slow pulsar PSR J0633–2015. One of the key design specifications for MeerKAT was absolute timing errors of less than 5 ns using their novel precise time system. Our timing of two bright MSPs confirm that MeerKAT delivers exceptional timing. PSR
$\mbox{J}2241{-}5236$
exhibits a jitter limit of
$<4\,\mbox{ns h}^{-1}$
whilst timing of PSR
$\mbox{J}1909{-}3744$
over almost 11 months yields an rms residual of 66 ns with only 4 min integrations. Our results confirm that the MeerKAT is an exceptional pulsar telescope. The array can be split into four separate sub-arrays to time over 1 000 pulsars per day and the future deployment of S-band (1 750–3 500 MHz) receivers will further enhance its capabilities.
Introduction: In 2018, Canadian postgraduate specialist Emergency Medicine (EM) programs began implementing a competency-based medical education (CBME) assessment system. To support improvement of this assessment program, we sought to evaluate its short-term educational outcomes nationally and within individual programs. Methods: Program-level data from the 2018 resident cohort were amalgamated and analyzed. The number of Entrustable Professional Activity (EPA) assessments (overall and for each EPA) and the timing of resident promotion through program stages was compared between programs and to the guidelines provided by the national EM specialty committee. Total EPA observations from each program were correlated with the number of EM and pediatric EM rotations. Results: Data from 15 of 17 (88.2%) EM programs containing 9,842 EPA observations from 68 of the 77 (88.3%) Canadian EM specialist residents in the 2018 cohort were analyzed. The average number of EPAs observed per resident in each program varied from 92.5 to 229.6 and correlated strongly with the number of blocks spent on EM and pediatric EM (r = 0.83, p < 0.001). Relative to the guidelines outlined by the specialty committee, residents were promoted later than expected and with fewer EPA observations than suggested. Conclusion: We present a new approach to the amalgamation of national and program-level assessment data. There was demonstrable variation in both EPA-based assessment numbers and promotion timelines between programs and with national guidelines. This evaluation data will inform the revision of local programs and national guidelines and serve as a starting point for further reaching outcome evaluation. This process could be replicated by other national assessment programs.
DTNBP1, which encodes dysbindin-1, is one of the best-supported susceptibility genes for schizophrenia, and hippocampal volume reduction is one of the major neuropathological findings in schizophrenia. Consistent with these findings, dysbindin-1 has been shown to be diminished in glutamatergic hippocampal neurons in schizophrenic patients. The aim of this study was to directly investigate the effects of two single nucleotide polymorphisms of the DTNBP1 gene on regional brain volumes in human subjects.
Methods
128 subjects participated in the study. All subjects were genotyped with respect to two single nucleotide polymorphisms of the DTNBP1 gene (rs2619522 and rs1018381) and underwent structural magnetic resonance imaging (MRI). MRI data were preprocessed and statistically analyzed using standard procedures as implemented in SPM5, in particular the voxel-based morphometry (VBM) toolbox.
Results
We found significant effects of the DTNBP1-SNP rs2619522 on regional brain volumes bilaterally in the hippocampus as well as in the anterior middle frontal gyrus and the intraparietal cortex. T/T homozygotes showed significantly lower grey matter volumes in these brain regions than carriers of the G allele.
Conclusions
Compatible with previous findings on a role of the dysbindin-1 gene in hippocampal functions as well as in major psychoses, the present study provides first direct in-vivo evidence that the DTNBP1-SNP rs2619522 is associated with variation of grey matter volumes bilaterally in the human hippocampus.
Only few international studies have focused on mental diseases among the hearing-impaired population. However, Fellinger et al. (2012) underline the high discrepancy between the current and future demand of mental treatment and the simultaneous impeded access to health care.
Aims
The aim of this multicenter project is to conduct the first analysis of mental diseases among the hearing-impaired population in Germany in order to quantify and qualify the specific demands of treatment.
Objectives
In order to achieve this aim, we compiled an extensive questionnaire battery.
Methods
This questionnaire battery measured sociodemographic data, non-verbal intelligence, quality of life, perception and suffering from stress, psychosomatic symptoms as well as personality traits.
Results
Our three samples consisted of 21 hearing-impaired patients with a history of mental diseases (EG-HI), 21 hearing-impaired subjects without mental diseases (CG-HI) and 21 hearing participants without any psychological disease (CG-H). Compared to the two control groups, the EG-HI shows significantly higher rates in different fields, i.e. participants perceive a lower quality of life, suffer from more psychosomatic symptoms and show more pronounced personality traits. The two control groups did not differ significantly from each other.
Conclusions
Certain psychological characteristics among hearing-impaired patients can be detected which need to be accounted for in treatment. Furthermore, a hearing impairment is not inevitably linked to a reduced quality of life or even mental disorders. Therefore, future research should focus on risk factors and protective factors which could prevent mental diseases among the hearing-impaired population.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together
$60+$
programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
The Murchison Widefield Array (MWA) is an electronically steered low-frequency (<300 MHz) radio interferometer, with a ‘slew’ time less than 8 s. Low-frequency (∼100 MHz) radio telescopes are ideally suited for rapid response follow-up of transients due to their large field of view, the inverted spectrum of coherent emission, and the fact that the dispersion delay between a 1 GHz and 100 MHz pulse is on the order of 1–10 min for dispersion measures of 100–2000 pc/cm3. The MWA has previously been used to provide fast follow-up for transient events including gamma-ray bursts (GRBs), fast radio bursts (FRBs), and gravitational waves, using systems that respond to gamma-ray coordinates network packet-based notifications. We describe a system for automatically triggering MWA observations of such events, based on Virtual Observatory Event standard triggers, which is more flexible, capable, and accurate than previous systems. The system can respond to external multi-messenger triggers, which makes it well-suited to searching for prompt coherent radio emission from GRBs, the study of FRBs and gravitational waves, single pulse studies of pulsars, and rapid follow-up of high-energy superflares from flare stars. The new triggering system has the capability to trigger observations in both the regular correlator mode (limited to ≥0.5 s integrations) and using the Voltage Capture System (VCS, 0.1 ms integration) of the MWA and represents a new mode of operation for the MWA. The upgraded standard correlator triggering capability has been in use since MWA observing semester 2018B (July–Dec 2018), and the VCS and buffered mode triggers will become available for observing in a future semester.
Rotating Radio Transients (RRATs) represent a relatively new class of pulsar, primarily characterised by their sporadic bursting emission of single pulses on time scales of minutes to hours. In addition to the difficulty involved in detecting these objects, low-frequency (
$ \lt 300\,\text{MHz}$
) observations of RRATs are sparse, which makes understanding their broadband emission properties in the context of the normal pulsar population problematic. Here, we present the simultaneous detection of RRAT J2325−0530 using the Murchison Widefield Array (154 MHz) and Parkes radio telescope (
$1.4\,\text{GHz}$
). On a single-pulse basis, we produce the first polarimetric profile of this pulsar, measure the spectral index (
$\alpha={-2.2\pm 0.1}$
), pulse energy distributions, and present the pulse rates in the context of detections in previous epochs. We find that the distribution of time between subsequent pulses is consistent with a Poisson process and find no evidence of clustering over the
$\sim\!1.5\,\text{h}$
observations. Finally, we are able to quantify the scintillation properties of RRAT J2325−0530 at 1.4 GHz, where the single pulses are modulated substantially across the observing bandwidth, and show that this characterisation is feasible even with irregular time sampling as a consequence of the sporadic emission behaviour.
Polarimetric studies of pulsars at low radio frequencies provide important observational insights into the pulsar emission mechanism and beam models, and probe the properties of the magneto-ionic interstellar medium (ISM). Aperture arrays are the main form of next-generation low-frequency telescopes, including the Murchison Widefield Array (MWA). These require a distinctly different approach to data processing (e.g. calibration and beamforming) compared to traditional dish antennas. As the second paper of this series, we present a verification of the MWA’s pulsar polarimetry capability, using two bright southern pulsars, PSRs J0742–2822 and J1752–2806. Our observations simultaneously cover multiple frequencies (76–313 MHz) and were taken at multiple zenith angles (ZA) during a single night for each pulsar. We show that the MWA can be reliably calibrated for ZA ≲45° and frequencies ≲270 MHz. We present the polarimetric profiles for PSRs J0742–2822 and J1752–2806 at frequencies lower than 300 MHz for the first time, along with an analysis of the linear polarisation degree and pulse profile evolution with frequency. For PSR J0742–2822, the measured degree of linear polarisation shows a rapid decrease at low frequencies, in contrast with the generally expected trend, which can be attributed to depolarisation effects from small-scale, turbulent, magneto-ionic ISM components. This effect has not been widely explored for pulsars in general and will be further investigated in future work.
Children with CHD and acquired heart disease have unique, high-risk physiology. They may have a higher risk of adverse tracheal-intubation-associated events, as compared with children with non-cardiac disease.
Materials and methods
We sought to evaluate the occurrence of adverse tracheal-intubation-associated events in children with cardiac disease compared to children with non-cardiac disease. A retrospective analysis of tracheal intubations from 38 international paediatric ICUs was performed using the National Emergency Airway Registry for Children (NEAR4KIDS) quality improvement registry. The primary outcome was the occurrence of any tracheal-intubation-associated event. Secondary outcomes included the occurrence of severe tracheal-intubation-associated events, multiple intubation attempts, and oxygen desaturation.
Results
A total of 8851 intubations were reported between July, 2012 and March, 2016. Cardiac patients were younger, more likely to have haemodynamic instability, and less likely to have respiratory failure as an indication. The overall frequency of tracheal-intubation-associated events was not different (cardiac: 17% versus non-cardiac: 16%, p=0.13), nor was the rate of severe tracheal-intubation-associated events (cardiac: 7% versus non-cardiac: 6%, p=0.11). Tracheal-intubation-associated cardiac arrest occurred more often in cardiac patients (2.80 versus 1.28%; p<0.001), even after adjusting for patient and provider differences (adjusted odds ratio 1.79; p=0.03). Multiple intubation attempts occurred less often in cardiac patients (p=0.04), and oxygen desaturations occurred more often, even after excluding patients with cyanotic heart disease.
Conclusions
The overall incidence of adverse tracheal-intubation-associated events in cardiac patients was not different from that in non-cardiac patients. However, the presence of a cardiac diagnosis was associated with a higher occurrence of both tracheal-intubation-associated cardiac arrest and oxygen desaturation.
The Murchison Widefield Array, and its recently developed Voltage Capture System, facilitates extending the low-frequency range of pulsar observations at high-time and -frequency resolution in the Southern Hemisphere, providing further information about pulsars and the ISM. We present the results of an initial time-resolved census of known pulsars using the Murchison Widefield Array. To significantly reduce the processing load, we incoherently sum the detected powers from the 128 Murchison Widefield Array tiles, which yields ~10% of the attainable sensitivity of the coherent sum. This preserves the large field-of-view (~450 deg2 at 185 MHz), allowing multiple pulsars to be observed simultaneously. We developed a WIde-field Pulsar Pipeline that processes the data from each observation and automatically folds every known pulsar located within the beam. We have detected 50 pulsars to date, 6 of which are millisecond pulsars. This is consistent with our expectation, given the telescope sensitivity and the sky coverage of the processed data (~17 000 deg2). For 10 pulsars, we present the lowest frequency detections published. For a subset of the pulsars, we present multi-frequency pulse profiles by combining our data with published profiles from other telescopes. Since the Murchison Widefield Array is a low-frequency precursor to the Square Kilometre Array, we use our census results to forecast that a survey using the low-frequency component of the Square Kilometre Array Phase 1 can potentially detect around 9 400 pulsars.
Live oak (Quercus virginiana Mill. # QUEVM) on the Texas Coastal Prairie was treated with herbicides using ground and aerial application methods. Tebuthiuron {N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea} and pellets of buthidazole {3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone} at 2.2 kg ai/ha were the most effective herbicides, killing 60 to 95% of the live oak. Tebuthiuron pellets 3.2 mm in diam were more effective than the wettable powder at 1.1 kg/ha. Bay Met 1486 {N-[5-(ethylsulfonyl)-1,3,4-thiadiazole-2-yl]-N,N′-dimethylurea}, Dowco 290 (3,6-dichloropicolinic acid), hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H, 3H)-dione], and picloram (4-amino-3,5,6-trichloropicolinic acid) reduced the live oak canopy at 2.2 kg/ha whereas 2,4,5-T [(2,4,5-trichlorophenoxy)acetic acid] and triclopyr {[(3,5,6-trichloro-2-pyridinyl)oxy] acetic acid} were ineffective. Foliage-active herbicides generally were most effective in reducing the live oak canopy during the year of application. The soil-active herbicides generally were most active 1 or 2 yr after herbicide application. All herbicides reduced the live oak cover sufficiently to allow an increase in grass cover 2 to 4 months after treatment. Tebuthiuron at 2.2 kg/ha maintained a high degree of grass cover at least 2 or 3 yr after treatment.
Pelleted tebuthiuron {N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea} was hand broadcast at 2.2 and 4.5 kg ai/ha every month for 2 yr on an area infested with live oak (Quercus virginiana Mill. ♯4 QUEVI), post oak (Q. stellata Wangenh. ♯ QUESL), parsley hawthorn (Crataegus marshallii Egglest. ♯ CSCMS), and yaupon (Ilex vomitoria Ait. ♯ ILEVO) on the Gulf Coast Prairie near Cordele, TX. Live oak, post oak, and parsley hawthorn trees were killed at most rates and dates of tebuthiuron application. Applications of 2.2 kg/ha of tebuthiuron killed 90% or more of the yaupon plants when it was applied in October and December 1975 and February, March, and June 1976 and less than 90% when applied at other dates. On another site, pelleted tebuthiuron was aerially applied at 2.2 and 4.5 kg/ha every 3 months during 1978 and 1979 in the Post Oak Savannah near Bryan, TX. At 2.2 kg/ha, tebuthiuron killed all post oak and 80% or more of the blackjack oak (Q. marilandica Muechh.), yaupon, winged elm (Ulmus alata Michx. ♯ ULMAL), and mockernut hickory (Carya tomentosa Nutt.) regardless of date treated. Tree huckleberry (Vaccinium arboreum Marsh.) killed by tebuthiuron when applied at 2.2 kg/ha ranged from 34% in July 1979 to 69% from application in February 1978. Application of 4.5 kg/ha of tebuthiuron killed 83% or more of the tree huckleberry when it was applied in January and April 1978 and January, April, July, and October 1979. Herbaceous plant cover usually increased by the second season.
The S-band Polarisation All-Sky Survey has observed the entire southern sky using the 64-m Parkes radio telescope at 2.3 GHz with an effective bandwidth of 184 MHz. The surveyed sky area covers all declinations δ ⩽ 0°. To analyse compact sources, the survey data have been re-processed to produce a set of 107 Stokes I maps with 10.75 arcmin resolution and the large scale emission contribution filtered out. In this paper, we use these Stokes I images to create a total intensity southern-sky extragalactic source catalogue at 2.3 GHz. The source catalogue contains 23 389 sources and covers a sky area of 16 600 deg2, excluding the Galactic plane for latitudes |b| < 10°. Approximately, 8% of catalogued sources are resolved. S-band Polarisation All-Sky Survey source positions are typically accurate to within 35 arcsec. At a flux density of 225 mJy, the S-band Polarisation All-Sky Survey source catalogue is more than 95% complete, and ~ 94% of S-band Polarisation All-Sky Survey sources brighter than 500 mJy beam−1 have a counterpart at lower frequencies.