Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-01T00:45:14.837Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2014

Luis E. F. Foa Torres
Affiliation:
Universidad Nacional de Córdoba, Argentina
Stephan Roche
Affiliation:
Catalan Insitute of Nanotechnology - ICN
Jean-Christophe Charlier
Affiliation:
Université Catholique de Louvain, Belgium
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Introduction to Graphene-Based Nanomaterials
From Electronic Structure to Quantum Transport
, pp. 370 - 404
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abanin, D. A., Lee, P. A. & Levitov, L. S. (2006), ‘Spin-filtered edge states and quantum Hall effect in graphene’, Phys. Rev. Lett. 96, 176803.CrossRefGoogle ScholarPubMed
Abanin, D. A., Novoselov, K. S., Zeitler, U., et al. (2007), ‘Dissipative quantum Hall effect in graphene near the Dirac point’, Phys. Rev. Lett. 98, 196806.CrossRefGoogle ScholarPubMed
Abergel, D. S. L. & Chakraborty, T. (2009), ‘Generation of valley polarized current in bilayer graphene’, Appl. Phys. Lett. 95, 062107.CrossRefGoogle Scholar
Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. (1979), ‘Scaling theory of localization: Absence of quantum diffusion in two dimensions’, Phys. Rev. Lett. 42, 673–676.CrossRefGoogle Scholar
Abrikosov, A., Gorkov, L. & Dzyaloshinskii, E. (1975), Methods of Quantum Field Theory in Statistical Physics, Dover, New York.Google Scholar
Adam, S., Hwang, E. H., Galitski, V. M. & Sarma, S. D. (2007), ‘A self-consistent theory for graphene transport’, PNAS 104, 18392.CrossRefGoogle ScholarPubMed
Adessi, C., Roche, S. & Blase, X. (2006), ‘Reduced backscattering in potassium-doped nano-tubes: ab initio and semi-empirical simulations’, Phys. Rev. B 73, 125414.CrossRefGoogle Scholar
Aharonov, Y. & Bohm, D. (1959), ‘Significance of electromagnetic potentials in the quantum theory’, Phys. Rev. 115, 485–491.CrossRefGoogle Scholar
Ajiki, H. & Ando, T. (1993), ‘Electronic states of carbon nanotubes’, J. Phys. Soc. Jpn. 62, 1255–1266.CrossRefGoogle Scholar
Ajiki, H. & Ando, T. (1996), ‘Energy bands of carbon nanotubes in magnetic fields’, J. Phys. Soc. Jpn. 65, 505–514.CrossRefGoogle Scholar
Akhmerov, A. (2011), Dirac and Majorana edge states in graphene and topological superconductors, Ph.D. thesis, Leiden University.Google Scholar
Akhmerov, A. R. & Beenakker, C. W. J. (2008), ‘Boundary conditions for Dirac fermions on a terminated honeycomb lattice’, Phys. Rev. B 77, 085423.CrossRefGoogle Scholar
Akkermans, E. & Montambaux, G. (2007), Mesoscopic Physics of Electrons and Photons, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Alam, A. & Mookerjee, A. (2005), ‘Lattice thermal conductivity of disordered binary alloys’, Phys. Rev. B 72, 214207.CrossRefGoogle Scholar
Aleiner, I. L. & Efetov, K. B. (2006), ‘Effect of disorder on transport in graphene’, Phys. Rev. Lett. 97, 236801.CrossRefGoogle ScholarPubMed
Alhassid, Y. (2000), ‘The statistical theory of quantum dots’, Rev. Mod. Phys. 72, 895–968.CrossRefGoogle Scholar
Allain, P. & Fuchs, J. (2011), ‘Klein tunneling in graphene: Optics with massless electrons’, 83, 301–317.
Allen, M. T., Martin, J. & Yacoby, A. (2012), ‘Gate-defined quantum confinement in suspended bilayer graphene’, Nature Communications 3, 934–936.CrossRefGoogle ScholarPubMed
Allen, P. B. & Feldman, J. L. (1989), ‘Thermal conductivity of glasses: Theory and application to amorphous silicon’, Phys. Rev. Lett. 62, 645–648.CrossRefGoogle Scholar
Alos-Palop, M. & Blaauboer, M. (2011), ‘Adiabatic quantum pumping in normal-metal-insulator-superconductor junctions in a monolayer of graphene’, Phys. Rev. B 84, 073402.CrossRefGoogle Scholar
Altland, A. (2006), ‘Low-energy theory of disordered graphene’, Phys. Rev. Lett. 97, 236802.CrossRefGoogle ScholarPubMed
Altshuler, B. & Aronov, A. G. (1985), ‘Electron–electron interaction in disordered conductors’, in Electron–Electron Interactions in Disordered Systems, Efros, A.L. & Pollak, M. eds, Elsevier, Amsterdam, pp. 1–75.Google Scholar
Altshuler, B. L., Aronov, A. G. & Spivak, B. Z. (1981), ‘The Aharonov–Bohm effect in disordered conductors’, JETP Letters 33, 94.Google Scholar
Altshuler, B. L. & Glazman, L. I. (1999), ‘Pumping electrons’, Science 283, 1864–1865.CrossRefGoogle Scholar
Amara, H., Latil, S., Meunier, V., Lambin, P. & Charlier, J.-C. (2007), ‘Scanning tunneling microscopy fingerprints of point defects in graphene: A theoretical prediction’, Phys. Rev. B 76, 115423.CrossRefGoogle Scholar
Amorim, R. G., Fazzio, A., Antonelli, A., Novaes, F. D. & da Silva, A. J. R. (2007), ‘Divacancies in graphene and carbon nanotubes’, Nano Lett. 7, 2459–2462.CrossRefGoogle ScholarPubMed
An, J., Voelkl, E., Suk, J. W., et al. (2011), ‘Domain (grain) boundaries and evidence of “twinlike” structures in chemically vapor deposited grown graphene’, ACS Nano 5, 2433.CrossRefGoogle ScholarPubMed
Anantram, M. P. (2000), ‘Current-carrying capacity of carbon nanotubes’, Phys. Rev. B 62, R4837–R4840.CrossRefGoogle Scholar
Anantram, M. P. & Léonard, F. (2006), ‘Physics of carbon nanotube electronic devices’, Reports on Progress in Physics 69, 507.CrossRefGoogle Scholar
Anda, E. V., Makler, S., Pastawski, H. M., & Barrera, R. G. (1994), ‘Electron–phonon effects on transport in mesoscopic heterostructures’, Braz. J. Phys. 24, 330.Google Scholar
Anderson, P. W. (1958), ‘Absence of diffusion in certain random lattices’, Phys. Rev. 109, 1492–1505.CrossRefGoogle Scholar
Anderson, P. W., Thouless, D. J., Abrahams, E. & Fisher, D. S. (1980), ‘New method for a scaling theory of localization’, Phys. Rev. B 22, 3519–3526.CrossRefGoogle Scholar
Ando, T. (1991), ‘Quantum point contacts in magnetic fields’, Phys. Rev. B 44, 8017.CrossRefGoogle ScholarPubMed
Ando, T., Nakanishi, T. & Saito, R. (1998), ‘Berry's phase and absence of back scattering in carbon nanotubes’, J. Phys. Soc. Jpn. 67, 2857–2862.Google Scholar
Ando, T. & Seri, T. (1997), ‘Quantum transport in a carbon nanotube in magnetic fields’, J. Phys. Soc. Jpn. 66, 3558–3565.CrossRefGoogle Scholar
Appenzeller, J., Radosavljević, M., Knoch, J. & Avouris, P. (2004), ‘Tunneling versus thermionic emission in one-dimensional semiconductors’, Phys. Rev. Lett. 92, 048301.CrossRefGoogle ScholarPubMed
Apsel, S. E., Emmert, J. W., Deng, J. & Bloomfield, L. A. (1996), ‘Surface-enhanced magnetism in nickel clusters’, Phys. Rev. Lett. 76, 1441–1444.CrossRefGoogle ScholarPubMed
Areshkin, D. A., Gunlycke, D. & White, C. T. (2007), ‘Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects’, Nano Letters 7, 204–210. PMID: 17212465.CrossRefGoogle ScholarPubMed
Areshkin, D. A. & White, C. T. (2007), ‘Building blocks for integrated graphene circuits’, Nano Lett. 7, 3253–3259.CrossRefGoogle ScholarPubMed
Arrachea, L. & Moskalets, M. (2006), ‘Relation between scattering-matrix and Keldysh formalisms for quantum transport driven by time-periodic fields’, Phys. Rev. B 74, 245322.CrossRefGoogle Scholar
Ashcroft, N. W. & Mermin, N. D. (1976), Solid State Physics, Holt Saunders, Philadelphia.Google Scholar
Avouris, P. (2010), ‘Graphene: Electronic and photonic properties and devices’, Nano Lett. 10, 4285–4294.CrossRefGoogle ScholarPubMed
Avouris, P., Chen, Z. & Perebeinos, V. (2007), ‘Carbon-based electronics’, Nature Nanotechnology 2, 605–615.CrossRefGoogle ScholarPubMed
Avriller, R. (2008), Contribution à la modélisation théorique et à l'étude du transport quantique dans les dispositifs à base de nanotubes de carbone, Ph.D. thesis, Université Joseph-Fourier.Google Scholar
Avriller, R., Latil, S., Triozon, F., Blase, X. & Roche, S. (2006), ‘Chemical disorder strength in carbon nanotubes: Magnetic tuning of quantum transport regimes’, Phys. Rev. B 74, 121406.CrossRefGoogle Scholar
Avriller, R., Roche, S., Triozon, F., Blase, X. & Latil, S. (2007), ‘Low-dimensional quantum transport properties of chemically-disordered carbon nanotubes: From weak to strong localization regimes’, Modern Physics Letters B 21, 1955.CrossRefGoogle Scholar
Avsar, A., Yang, T.-Y., Bae, S., et al. (2011), ‘Toward wafer scale fabrication of graphene based spin valve devices’, Nano Lett. 11, 2363–2368.CrossRefGoogle ScholarPubMed
Babic, B. & Schönenberger, C. (2004), ‘Observation of Fano resonances in single-wall carbon nanotubes’, Phys. Rev. B 70, 195408.CrossRefGoogle Scholar
Bachelet, G. B., Hamann, D. R. & Schlüter, M. (1982), ‘Pseudopotentials that work: From H to Pu’, Phys. Rev. B 26, 4199–4228.CrossRefGoogle Scholar
Bachilo, S. M., Strano, M. S., Kittrell, C., et al. (2002), ‘Structure-assigned optical spectra of single-walled carbon nanotubes’, Science 298, 2361–2366.CrossRefGoogle ScholarPubMed
Bachtold, A., Strunk, C., Salvetat, J.-P., et al. (1999), ‘Aharonov–Bohm oscillations in carbon nanotubes’, Nature 397, 673–675.CrossRefGoogle Scholar
Bae, S., Kim, H., Lee, Y., et al. (2010), ‘Roll-to-roll production of 30-inch graphene films for transparent electrodes’, Nature Nanotechnology 5, 574–578.CrossRefGoogle ScholarPubMed
Bahreyni, B. (2008), Fabrication and Design of Resonant Microdevices, Elsevier, New York, Chapter 10: ‘Survey of applications’.Google Scholar
Balandin, A. A., Ghosh, S., Bao, W., et al. (2008), ‘Superior thermal conductivity of single-layer graphene’, Nano Lett. 8, 902–907.CrossRefGoogle ScholarPubMed
Balasubramanian, K., Lee, E. J. H., Weitz, R. T., Burghard, M. & Kern, K. (2008), ‘Carbon nan-otube transistors – chemical functionalization and device characterization’, Phys. Stat. Sol. (A) 205, 633–646.Google Scholar
Baldoni, M., Sgamellotti, A. & Mercuri, F. (2008), ‘Electronic properties and stability of graphene nanoribbons: An interpretation based on Clar sextet theory’, Chemical Physics Letters 464, 202–207.CrossRefGoogle Scholar
Baletto, F. & Ferrando, R. (2005), ‘Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects’, Rev. Mod. Phys. 77, 371–423.CrossRefGoogle Scholar
Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. (2011), ‘Structural defects in graphene’, ACS Nano 5, 26–41.CrossRefGoogle ScholarPubMed
Bardarson, J. H., Tworzydło, J., Brouwer, P. W. & Beenakker, C. W. J. (2007), ‘One-parameter scaling at the Dirac point in graphene’, Phys. Rev. Lett. 99, 106801.CrossRefGoogle ScholarPubMed
Barone, V., Hod, O. & Scuseria, G. E. (2006), ‘Electronic structure and stability of semiconducting graphene nanoribbons’, Nano Lett. 6, 2748–2754.CrossRefGoogle ScholarPubMed
Beenakker, C. W. J. (1991), ‘Theory of Coulomb-blockade oscillations in the conductance of a quantum dot’, Phys. Rev. B 44, 1646–1656.CrossRefGoogle ScholarPubMed
Beenakker, C. W. J. (1997), ‘Random-matrix theory of quantum transport’, Rev. Mod. Phys. 69, 731–808.CrossRefGoogle Scholar
Beenakker, C. W. J. (2008), ‘Colloquium: Andreev reflection and Klein tunneling in graphene’, Rev. Mod. Phys. 80, 1337–1354.CrossRefGoogle Scholar
Begliarbekov, M., Sasaki, K.-I., Sul, O., Yang, E.-H. & Strauf, S. (2011), ‘Optical control of edge chirality in graphene’, Nano Lett. ll, 4874–4878.Google Scholar
Berger, C., Song, Z., Li, X., et al. (2006), ‘Electronic confinement and coherence in patterned epitaxial graphene’, Science 312, 1191–1196.CrossRefGoogle ScholarPubMed
Bergman, G. (1984), ‘Weak localization in thin films: A time-of-flight experiment with conduction electrons’, Physics Reports 107, 1–58.CrossRefGoogle Scholar
Bernal, J. D. (1924), ‘The structure of graphite’, Proceedings of the Royal Society of London, Series A 106, 749–773.CrossRefGoogle Scholar
Berry, M. V. & Mondragon, R. J. (1987), ‘Neutrino billiards: Time-reversal symmetry-breaking without magnetic fields’, Proceedings of the Royal Society of London, A. Mathematical and Physical Sciences 412, 53–74.CrossRefGoogle Scholar
Bethune, D. S., Klang, C. H., de Vries, M. S., et al. (1993), ‘Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls’, Nature605–607.Google Scholar
Biel, B., Triozon, F., Blase, X. & Roche, S. (2009 a), ‘Chemically induced mobility gaps in graphene nanoribbons: A route for upscaling device performances’, Nano Lett. 9, 2725–2729.CrossRefGoogle ScholarPubMed
Biel, B., Triozon, F., Niquet, Y. & Roche, S. (2009 b), ‘Anomalous doping effects on charge transport in graphene nanoribbons’, Phys. Rev. Lett. 102, 096803.CrossRefGoogle ScholarPubMed
Biró, L. P., Márk, G. I., Koós, A. A., Nagy, B. J. & Lambin, P. (2002), ‘Coiled carbon nano-tube structures with supraunitary nonhexagonal to hexagonal ring ratio’, Phys. Rev. B 66, 165405.CrossRefGoogle Scholar
Blanter, Y. & Büttiker, M. (2000), ‘Shot noise in mesoscopic conductors’, Physics Reports1–166.Google Scholar
Blase, X., Benedict, L. X., Shirley, E. L. & Louie, S. G. (1994), ‘Hybridization effects and metallicity in small radius carbon nanotubes’, Phys. Rev. Lett. 72, 1878–1881.CrossRefGoogle ScholarPubMed
Blöchl, P. E. (1994), ‘Projector augmented-wave method’, Phys. Rev. B SO, 17953–17979.Google Scholar
Bockrath, M., Cobden, D. H., Lu, J., et al. (1999), ‘Luttinger-liquid behaviour in carbon nano-tubes’, Nature 397, 598–601.CrossRefGoogle Scholar
Boehm, H. P., Clauss, A., Fischer, G. O. & Hofmann, U. (1962), ‘Das adsorptionsverhalten sehr diinner kohlenstoff-folien’, Z. Anorg. Allg. Chem. 316, 119–127.CrossRefGoogle Scholar
Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L. & Kim, P. (2008), ‘Temperature-dependent transport in suspended graphene’, Phys. Rev. Lett. 101, 096802.CrossRefGoogle ScholarPubMed
Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. (2010), ‘Graphene photonics and optoelectronics’, Nature Photonics 4, 611–622.CrossRefGoogle Scholar
Bonča, J. & Trugman, S. A. (1995), ‘Effect of inelastic processes on tunneling’, Phys. Rev. Lett. TS, 2566–2569.Google Scholar
Born, M. & Oppenheimer, M. (1927), ‘Zur quantentheorie der molekeln’, Ann. Physik 84, 457.CrossRefGoogle Scholar
Bose, S. K., Winer, K. & Andersen, O. K. (1988), ‘Electronic properties of a realistic model of amorphous silicon’, Phys. Rev. B 37, 6262.CrossRefGoogle ScholarPubMed
Bostwick, A., McChesney, J. L., Emtsev, K. V., et al. (2009), ‘Quasiparticle transformation during a metal–insulator transition in graphene’, Phys. Rev. Lett. 103, 056404.CrossRefGoogle ScholarPubMed
Botello-Méndez, A. R., Cruz-Silva, E., Romo-Herrera, J., et al. (2011 a), ‘Quantum transport in graphene nanonetworks’, Nano Lett. 11, 3058–3064.CrossRefGoogle ScholarPubMed
Botello-Mendez, A. R., Declerck, X., Terrones, M., Terrones, H. & Charlier, J.-C. (2011 b), ‘One-dimensional extended lines of divacancy defects in graphene’, Nanoscale S, 2868–2872.Google Scholar
Bouilly, D., Cabana, J. & Martel, R. (2012), ‘Unaltered electrical conductance in single-walled carbon nanotubes functionalized with divalent adducts’, Appl. Phys. Lett. 101, 053116.CrossRefGoogle Scholar
Brandbyge, M., Mozos, J.-L., Ordejn, P., Taylor, J. & Stokbro, K. (2002), ‘Density-functional method for nonequilibrium electron transport’, Phys. Rev. B 65, 165401.CrossRefGoogle Scholar
Brenner, D. W. (1990), ‘Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films’, Phys. Rev. B 42, 9458–9471.CrossRefGoogle ScholarPubMed
Brey, L. & Fertig, H. A. (2006), ‘Electronic states of graphene nanoribbons studied with the Dirac equation’, Phys. Rev. B 73, 235411.CrossRefGoogle Scholar
Brouwer, P. W. (1998), ‘Scattering approach to parametric pumping’, Phys. Rev. B 58, R10135–R10138.CrossRefGoogle Scholar
Bunch, J. S., Yaish, Y., Brink, M., Bolotin, K. & McEuen, P. L. (2005), ‘Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots’, Nano Lett. 5, 287–290.CrossRefGoogle ScholarPubMed
Busl, M., Platero, G. & Jauho, A.-P. (2012), ‘Dynamical polarizability of graphene irradiated by circularly polarized AC electric fields’, Phys. Rev. B 85, 155449.CrossRefGoogle Scholar
Büttiker, M. (1988 a), ‘Absence of backscattering in the quantum Hall effect in multiprobe conductors’, Phys. Rev. B 38, 9375–9389.CrossRefGoogle ScholarPubMed
Büttiker, M. (1988 b), ‘Symmetry of electrical conduction’, IBM Journal of Research and Development 32, 317–334.CrossRefGoogle Scholar
Büttiker, M., Imry, Y., Landauer, R. & Pinhas, S. (1985), ‘Generalized many-channel conductance formula with application to small rings’, Phys. Rev. B 31, 6207–6215.CrossRefGoogle ScholarPubMed
Büttiker, M. & Moskalets, M. (2006), ‘Scattering theory of dynamic electrical transport’, in Asch, J. & Joye, A., eds., Mathematical Physics of Quantum Mechanics, Vol. 690 of Lecture Notes in Physics, Springer, Berlin/Heidelberg, pp. 33–44. 10.1007/3-540-34273-7.5.Google Scholar
Büttiker, M., Thomas, H. & Pretre, A. (1994), ‘Current partition in multiprobe conductors in the presence of slowly oscillating external potentials’, Zeitschrift für Physik B Condensed Matter 94, 133–137.CrossRefGoogle Scholar
Cabana, J. & Martel, R. (2007), ‘Probing the reversibility of sidewall functionalization using carbon nanotube transistors’, J. Am. Chem. Soc. 129, 2244–2245.CrossRefGoogle ScholarPubMed
Cai, J., Ruffieux, P., Jaafar, R., et al. (2010), ‘Atomically precise bottom-up fabrication of graphene nanoribbons’, Nature 466, 470–473.CrossRefGoogle ScholarPubMed
Calandra, M. & Mauri, F. (2007), ‘Electron–phonon coupling and electron self-energy in electron-doped graphene: Calculation of angular-resolved photoemission spectra’, Phys. Rev. B 76, 205411.CrossRefGoogle Scholar
Calleja, M., Rey, C., Alemany, M. M. G., et al. (1999), ‘Self-consistent density-functional calculations of the geometries, electronic structures, and magnetic moments of Ni-Al clusters’, Phys. Rev. B 60, 2020–2024.CrossRefGoogle Scholar
Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. (2011), ‘Tuning laser-induced band gaps in graphene’, Appl. Phys. Lett. 98, 2321033.CrossRefGoogle Scholar
Calvo, H. L., Perez-Piskunow, P. M., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. (2013), ‘Non-perturbative effects of laser illumination on the electrical properties of graphene nanoribbons’, Journal of Physics: Condensed Matter 25, 144202.Google ScholarPubMed
Calvo, H. L., Perez-Piskunow, P. M., Roche, S. & Foa Torres, L. E. F. (2012), ‘Laser-induced effects on the electronic features of graphene nanoribbons’, Appl. Phys. Lett. 101, 253506.CrossRefGoogle Scholar
Calzolari, A., Marzari, N., Souza, I. & Buongiorno Nardelli, M. (2004), Ab initio transport properties of nanostructures from maximally localized Wannier functions', Phys. Rev. B 69, 035108.CrossRefGoogle Scholar
Campidelli, S., Ballesteros, B., Filoramo, A., et al. (2008), ‘Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via click chemistry’, J. Am. Chem. Soc. 130, 11503–11509.CrossRefGoogle ScholarPubMed
Campos-Delgado, J., Romo-Herrera, J. M., Jia, X., et al. (2008), ‘Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons’, Nano Letters 8, 2773–2778. PMID: 18700805.CrossRefGoogle Scholar
Cançado, L. G., Pimenta, M. A., Neves, B. R. A., Dantas, M. S. S. & Jorio, A. (2004), ‘Influence of the atomic structure on the Raman spectra of graphite edges’, Phys. Rev. Lett. 93, 247401.CrossRefGoogle ScholarPubMed
Castro, E. V., Novoselov, K. S., Morozov, S. V., et al. (2007), ‘Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect’, Phys. Rev. Lett. 99, 216802.CrossRefGoogle ScholarPubMed
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. (2009), ‘The electronic properties of graphene’, Rev. Mod. Phys. 81, 109–162.CrossRefGoogle Scholar
Cataldo, F., ed. (2005), Polyynes: Synthesis, Properties, and Applications, Taylor & Francis, London.CrossRef
Cayssol, J., Dóra, B., Simon, F. & Moessner, R. (2013), ‘Floquet topological insulators’, Physica Status Solidi (RRL) – Rapid Research Letters 7, 101.CrossRefGoogle Scholar
Cazalilla, M. A., Iucci, A., Guinea, F. & Neto, A. H. C. (2012), ‘Local moment formation and Kondo effect in defective graphene’, (unpublished) arXiv:1207.3135 [cond-mat.str-el].
Ceperley, D. M. & Alder, B. J. (1980), ‘Ground state of the electron gas by a stochastic method’, Phys. Rev. Lett. 45, 566–569.CrossRefGoogle Scholar
Chakravarty, S. & Schmid, A. (1986), ‘Weak localization: The quasiclassical theory of electrons in a random potential’, Physics Reports 140, 193–236.CrossRefGoogle Scholar
Chang, A.M., Baranger, H.U., Pfeiffer, L.N., West, K.W. & Chang, T.Y. (1996), ‘Non-Gaussian distribution of Coulomb blockade peak heights in quantum dots’, Phys. Rev. Lett. 76, 1695.CrossRefGoogle ScholarPubMed
Charlier, J.-C., Arnaud, L., Avilov, I. V., et al. (2009), ‘Carbon nanotubes randomly decorated with gold clusters: From nano 2 hybrid atomic structures to gas sensing prototypes’, Nanotechnology 20, 375501.CrossRefGoogle ScholarPubMed
Charlier, J.-C., Blase, X. & Roche, S. (2007), ‘Electronic and transport properties of nanotubes’, Rev. Mod. Phys. 79, 677–732.CrossRefGoogle Scholar
Charlier, J.-C., Ebbesen, T. W. & Lambin, P. (1996), ‘Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes’, Phys. Rev. B 53, 11108–11113.CrossRefGoogle ScholarPubMed
Charlier, J.-C., Gonze, X. & Michenaud, J.-P. (1994 a), ‘First-principles study of the stacking effect on the electronic properties ofgraphite(s)’, Carbon 32, 289–299.CrossRefGoogle Scholar
Charlier, J.-C., Gonze, X. & Michenaud, J.-P. (1994 b), ‘Graphite interplanar bonding: Electronic delocalization and van der Waals interaction’, EPL (Europhysics Letters) 28, 403.CrossRefGoogle Scholar
Charlier, J.-C., Gonze, X. & Michenaud, J.-P. (1995), ‘First-principles study of carbon nanotube solid-state packings’, EPL (Europhysics Letters) 29, 43.CrossRefGoogle Scholar
Charlier, J.-C. & Lambin, P. (1998), ‘Electronic structure of carbon nanotubes with chiral symmetry’, Phys. Rev. B 57, R15037–R15039.CrossRefGoogle Scholar
Charlier, J.-C., Michenaud, J.-P. & Gonze, X. (1992), ‘First-principles study of the electronic properties of simple hexagonal graphite’, Phys. Rev. B 46, 4531–4539.CrossRefGoogle ScholarPubMed
Charlier, J.-C., Michenaud, J.-P., Gonze, X. & Vigneron, J.-P. (1991), ‘Tight-binding model for the electronic properties of simple hexagonal graphite’, Phys. Rev. B 44, 13237–13249.CrossRefGoogle ScholarPubMed
Chaste, J., Eichler, A., Moser, J., et al. (2012), ‘A nanomechanical mass sensor with yoctogram resolution’, Nature Nanotechnology 7, 301–304.CrossRefGoogle ScholarPubMed
Che, J., Çagin, T. & Goddard, W.A. III (2000), ‘Thermal conductivity of carbon nanotubes’, Nanotechnology 11, 65.CrossRefGoogle Scholar
Checkelsky, J. G., Li, L. & Ong, N. P. (2008), ‘Zero-energy state in graphene in a high magnetic field’, Phys. Rev. Lett. 100, 206801.CrossRefGoogle Scholar
Cheianov, V. V. & Fal'ko, V. I. (2006), ‘Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene’, Phys. Rev. B 74, 041403.CrossRefGoogle Scholar
Chen, C., Rosenblatt, S., Bolotin, K. I., et al. (2009), ‘Performance of monolayer graphene nanomechanical resonators with electrical readout’, Nature Nanotechnology 4, 861–867.CrossRefGoogle ScholarPubMed
Chen, J., Badioli, M., Alonso-Gonzalez, P., et al. (2012), ‘Optical nano-imaging of gate-tunable graphene plasmons’, Nature. 487, (July), 77–81.CrossRefGoogle ScholarPubMed
Chen, J.-H., Cullen, W. G., Jang, C., Fuhrer, M. S. & Williams, E. D. (2009), ‘Defect scattering in graphene’, Phys. Rev. Lett. 102, 236805.CrossRefGoogle ScholarPubMed
Chen, J.-H., Jang, C., Adam, S., et al. (2008), ‘Charged-impurity scattering in graphene’, Nature Physics 4, 377–381.CrossRefGoogle Scholar
Chen, J.-H., Li, L., Cullen, W. G., Williams, E. D. & Fuhrer, M. S. (2011), ‘Tunable Kondo effect in graphene with defects’, Nat Phys 7, 535–538.CrossRefGoogle Scholar
Chen, Z., Lin, Y.-M., Rooks, M. & Avouris, P. (2007), ‘Graphene nanoribbon electronics’, Physica E: Low-dimensional Systems and Nanostructures 40, 228–232.CrossRefGoogle Scholar
Chenaiov, V., Fal'ko, V., Altshuler, B. I. & Aleiner, I. (2007), ‘Random resistor network model of minimal conductivity in graphene’, Phys. Rev. Lett. 99, 176801.CrossRefGoogle Scholar
Chico, L., Crespi, V. H., Benedict, L. X., Louie, S. G. & Cohen, M. L. (1996), ‘Pure carbon nanoscale devices: Nanotube heterojunctions’, Phys. Rev. Lett. 76, 971–974.CrossRefGoogle ScholarPubMed
Chiu, H.-Y., Hung, P., Postma, H. W. C. & Bockrath, M. (2008), ‘Atomic-scale mass sensing using carbon nanotube resonators’, Nano Lett. 8, 4342–4346.CrossRefGoogle ScholarPubMed
Choi, H., Ihm, J., Louie, S. & Cohen, M. (2000), ‘Defects quasibound states, and quantum conductance in metallic carbon nanotubes’, Phys. Rev. Lett. 84, 9172920.CrossRefGoogle ScholarPubMed
Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N. A. & Khlobystov, A. N. (2010), ‘Direct transformation of graphene to fullerene’, Nature Chemistry 2, 450–453.CrossRefGoogle ScholarPubMed
Chuvilin, A., Meyer, J. C., Algara-Siller, G. & Kaiser, U. (2009), ‘From graphene constrictions to single carbon chains’, New Journal of Physics 11, 083019.CrossRefGoogle Scholar
Ci, L., Song, L., Jariwala, D., et al. (2009), ‘Graphene shape control by multistage cutting and transfer’, Adv. Mater. 21, 4487–4491.CrossRefGoogle Scholar
Ci, L., Xu, Z., Wang, L., et al. (2008), ‘Controlled nanocutting of graphene’, Nano Research 1, 116–122.CrossRefGoogle Scholar
Clar, E. (1964), Polycyclic Hydrocarbons, Academic Press, London.Google Scholar
Clar, E. (1972), The Aromatic Sextet, Wiley, New York.Google Scholar
Clark, S. J., Segall, M. D., Pickard, C. J., et al. (2005), ‘First principles methods using castep’, Zeitschrift fur Kristallographie – Crystalline Materials 220, 567–570.Google Scholar
Cockayne, E., Rutter, G. M., Guisinger, N. P., et al. (2011), ‘Grain boundary loops in graphene’, Phys. Rev. B 83, 195425.CrossRefGoogle Scholar
Coiffic, J. C., Fayolle, M., Maitrejean, S., Foa Torres, L. E. F. & Le Poche, H. (2007), ‘Conduction regime in innovative carbon nanotube via interconnect architectures’, Appl. Phys. Lett. 91, 252107–3.CrossRefGoogle Scholar
Collins, A., Kanda, H., Isoya, J. & van Wyk, C. A. J. (1998), ‘Correlation between optical absorption and EPR in high-pressure diamond grown from a nickel solvent catelyst’, Diam. Relat. Mater. 7, 333–338.CrossRefGoogle Scholar
Connétable, D., Rignanese, G.-M., Charlier, J.-C. & Blase, X. (2005), ‘Room temperature Peierls distortion in small diameter nanotubes’, Phys. Rev. Lett. 94, 015503.CrossRefGoogle ScholarPubMed
Connolly, M.R., Chiu, K.L., Giblin, S.P., et al. (2013), ‘Gigahertz quantised charge pumping in graphene quantum dots’, Nature Nanotechnology 8, 417–420.CrossRefGoogle Scholar
Cornaglia, P. S., Usaj, G. & Balseiro, C. A. (2009), ‘Localized spins on graphene’, Phys. Rev. Lett. 102, 046801.CrossRefGoogle Scholar
Crespi, A., Corrielli, G., Valle, G. D., Osellame, R. & Longhi, S. (2013), ‘Dynamic band collapse in photonic graphene’, New Journal of Physics 15, 013012.CrossRefGoogle Scholar
Crespi, V. H., Benedict, L. X., Cohen, M. L. & Louie, S. G. (1996), ‘Prediction of a pure-carbon planar covalent metal’, Phys. Rev. B 53, R13303–R13305.CrossRefGoogle ScholarPubMed
Cresti, A., Grosso, G. & Parravicini, G. (2007), ‘Numerical study of electronic transport in gated graphene ribbons,’ Phys. Rev. B 76, 205433.CrossRefGoogle Scholar
Cresti, A., Lopez-Bezanilla, A., Ordejon, P. & Roche, S. (2011), ‘Oxygen surface functionalization of graphene nanoribbons for transport gap engineering,’ ACS Nano 5, 9271–9277.CrossRefGoogle ScholarPubMed
Cresti, A., Ortmann, F., Louvet, Th., Van Tuan, D. & Roche, S. (2013), ‘Broken symmetries, zero-energy modes, and quantum transport in disordered graphene’, Phys. Rev. Lett. 110, 196601.CrossRefGoogle ScholarPubMed
Cresti, A., Nemec, N., Biel, B., et al. (2008), ‘Charge transport in disordered graphene-based low dimensional materials,’ Nano Research 1, 361–394.CrossRefGoogle Scholar
Cresti, A. & Roche, S. (2009), ‘Edge-disorder-dependent transport length scales in graphene nanoribbons: From Klein defects to the superlattice limit,’ Phys. Rev. B 79, 233404.CrossRefGoogle Scholar
Cruz-Silva, E., Cullen, D. A., Gu, L., et al. (2008), ‘Heterodoped nanotubes: Theory, synthesis, and characterization of phosphorus-nitrogen-doped multiwalled carbon nanotubes,’ ACS Nano 2, 441–448.CrossRefGoogle Scholar
Cruz-Silva, E., Lopez-Urias, F., Munoz-Sandoval, E., et al. (2011), ‘Phosphorus and phosphorusnitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection,’ Nanoscale 3, 1008–1013.CrossRefGoogle ScholarPubMed
Cruz-Silva, E., Lopez-Urias, F., Munoz-Sandoval, E., et al. (2009), ‘Electronic transport and mechanical properties of phosphorus- and phosphorus-nitrogen-doped carbon nanotubes’, ACS Nano 3, 1913–1921.CrossRefGoogle ScholarPubMed
Curtiss, L. A., Raghavachari, K., Redfern, P. C., Rassolov, V. & Pople, J. A. (1998), ‘Gaussian-3 (g3) theory for molecules containing first and second-row atoms’, The Journal of Chemical Physics 109, 7764–7776.CrossRefGoogle Scholar
D'Amato, J. L. & Pastawski, H. M. (1990), ‘Conductance of a disordered linear chain including inelastic scattering events’, Phys. Rev. B 41, 7411–7420.Google ScholarPubMed
D'Amato, J. L., Pastawski, H. M. & Weisz, J. F. (1989), ‘Half-integer and integer quantum-flux periods in the magnetoresistance of one-dimensional rings’, Phys. Rev. B 39, 3554–3562.Google ScholarPubMed
Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. (2011), ‘Electronic transport in twodimensional graphene’, Rev. Mod. Phys. 83, 407–470.CrossRefGoogle Scholar
Das Sarma, S., Hwang, E. H. & Li, Q. (2012), ‘Disorder by order in graphene’, Phys. Rev. B 85, 195451.CrossRefGoogle Scholar
Datta, S. (1995), Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Datta, S. S., Strachan, D. R., Khamis, S. M. & Johnson, A. T. C. (2008), ‘Crystallographic etching of few-layer graphene’, Nano Letters 8, 1912–1915. PMID: 18570483.CrossRefGoogle ScholarPubMed
Dean, C. R., Young, A. F., Meric, I., et al. (2010), ‘Boron nitride substrates for high-quality graphene electronics’, Nature Nanotechnology 5, 722–726.CrossRefGoogle ScholarPubMed
Dean, C. R., Wang, L., Maher, C., et al. (2013), ‘Hofstadter's butterfly and the fractal quantum Hall effect in Moiré superlattices’, Nature 497, 598–602.CrossRefGoogle ScholarPubMed
Delaney, P., Choi, H. J., Ihm, J., Louie, S. G. & Cohen, M. L. (1998), ‘Broken symmetry and pseudogaps in ropes of carbon nanotubes’, Nature 391, 466–468.CrossRefGoogle Scholar
Dery, H., Wu, H., Ciftcioglu, B., et al. (2012), ‘Nanospintronics based on magnetologic gates’, IEEE Transactions on Electron Devices 59, 259–262.CrossRefGoogle Scholar
Derycke, V., Martel, R., Appenzeller, J. & Avouris, P. (2001), ‘Carbon nanotube inter- and intramolecular logic gates’, Nano Lett. 1, 453–456.CrossRefGoogle Scholar
Di Ventra, M. (2008), Electrical Transport in Nanoscale Systems, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Dinh, V. T., Kotakoski, J. & Louvet, T., et al. (2013), ‘Scaling properties of charge transport in polycrystalline graphene’, Nano Letters 13, 1730–1735.Google Scholar
Dion, M., Rydberg, H., Schroder, E., Langreth, D. C. & Lundqvist, B. I. (2004), ‘Van der Waals density functional for general geometries’, Phys. Rev. Lett. 92, 246401.CrossRefGoogle Scholar
Dirac, P. A. M. (1930), ‘Note on exchange phenomena in the Thomas atom’, Mathematical Proceedings of the Cambridge Philosophical Society 26, 376–385.CrossRefGoogle Scholar
DiVicenzo, D. P. & Mele, E. J. (1984), ‘Self-consistent effective mass theory for intralayer screening in graphite intercelation compounds’, Phys. Rev. B 29, 1685.CrossRefGoogle Scholar
Dlubak, B., Martin, M.-B., Deranlot, C., et al. (2012), ‘Highly efficient spin transport in epitaxial graphene on SiC’, Nature Physics 8, 557–561.CrossRefGoogle Scholar
Dresselhaus, G., Pimenta, M., Saito, R., et al. (2000), Science and Application of Nanotubes, Kluwer Academic/Plenum Publishers, New York, chapter ‘On the π–π overlap energy in carbon nanotubes’, pp. 275–295.Google Scholar
Dresselhaus, M., Dresselhaus, G. & Eklund, P. (1996), Science of Fullerenes and Carbon Nano-tubes: Their Properties and Applications, Academic Press, New York.Google Scholar
Dresselhaus, M. S. (2011), ‘On the past and present of carbon nanostructures’, Phys. Status Solidi B 248, 1566–1574.CrossRefGoogle Scholar
Dresselhaus, M. S. & Dresselhaus, G. (2002), ‘Intercalation compounds of graphite’, Advances in Physics 51, 1–186.CrossRefGoogle Scholar
Dresselhaus, M. S., Dresselhaus, G. & Avouris, P., eds (2001), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Topics in Applied Physics Vol. 80, Springer, Berlin.CrossRef
Drexler, C., Tarasenko, S. A., Olbrich, P., et al. (2013), ‘Magnetic quantum ratchet effect in graphene’, Nature Nanotechnology 8, 104–107.CrossRefGoogle ScholarPubMed
Du, X., Skachko, I., Barker, A. & Andrei, E. Y. (2008), ‘Approaching ballistic transport in suspended graphene’, Nature Nanotechnology 3, 491–495.CrossRefGoogle ScholarPubMed
Dubois, S. M.-M. (2009), Quantum transport in graphene-based nanostructures, Ph.D. thesis, Université Catholique de Louvain.Google Scholar
Dubois, S. M.-M., Lopez-Bezanilla, A., Cresti, A., et al. (2010), ‘Quantum transport in graphene nanoribbons: Effects of edge reconstruction and chemical reactivity’, ACS Nano 4, 1971–1976.CrossRefGoogle ScholarPubMed
Dubois, S. M.-M., Zanolli, Z., Declerck, X. & Charlier, J.-C. (2009), ‘Electronic properties and quantum transport in graphene-based nanostructures’, The European Physical Journal B 72, 1–24.CrossRefGoogle Scholar
Dunlap, B. I. (1994), ‘Relating carbon tubules’, Phys. Rev. B 49, 5643–5651.CrossRefGoogle ScholarPubMed
Economou, E. N. (2006), Green's Functions in Quantum Physics, Springer Berlin/Heidelberg.CrossRefGoogle Scholar
Egger, R. (1999), ‘Luttinger liquid behavior in multiwall carbon nanotubes’, Phys. Rev. Lett. 83, 5547–5550.CrossRefGoogle Scholar
Egger, R. & Gogolin, A. O. (1997), ‘Effective low-energy theory for correlated carbon nanotubes’, Phys. Rev. Lett. 79, 5082–5085.CrossRefGoogle Scholar
Elias, D. C., Gorbachev, R. V., Mayorov, A. S., et al. (2011), ‘Dirac cones reshaped by interaction effects in suspended graphene’, Nature Physics 7, 701–704.CrossRefGoogle Scholar
Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., et al. (2009), ‘Control of graphene's properties by reversible hydrogenation: Evidence for graphane’, Science 323, 610–613.CrossRefGoogle ScholarPubMed
Enoki, T., Kobayashi, Y. & Fukui, K.-I. (2007), ‘Electronic structures of graphene edges and nanographene’, International Reviews in Physical Chemistry 26, 609–645.CrossRefGoogle Scholar
Entin-Wohlman, O., Aharony, A. & Levinson, Y. (2002), ‘Adiabatic transport in nanostructures’, Phys. Rev. B 65, 195411.CrossRefGoogle Scholar
Ernzerhof, M., Perdew, J. P. & Burke, K. (1997), ‘Coupling-constant dependence of atomization energies’, International Journal of Quantum Chemistry 64, 285–295.3.0.CO;2-S>CrossRefGoogle Scholar
Ernzerhof, M. & Scuseria, G. E. (1999), ‘Assessment of the Perdew–Burke–Ernzerhof exchange–correlation functional’, The Journal of Chemical Physics 110, 5029–5036.CrossRefGoogle Scholar
Esconjauregui, S., Fouquet, M., Bayer, B. C., et al. (2010), ‘Growth of ultrahigh density vertically aligned carbon nanotube forests for interconnects’, ACS Nano 4, 7431–7436.CrossRefGoogle ScholarPubMed
Evaldsson, M., Zozoulenko, I. V., Xu, H. & Heinzel, T. (2008), ‘Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons’, Phys. Rev. B 78, 161407.CrossRefGoogle Scholar
Evers, F. & Mirlin, A. D. (2008), ‘Anderson transitions’, Rev. Mod. Phys. 80, 1355–1417.CrossRefGoogle Scholar
Ezawa, M. (2006), ‘Peculiar width dependence of the electronic properties of carbon nanoribbons’, Phys. Rev. B 73, 045432.CrossRefGoogle Scholar
Fabian, J., Matos-Abiague, A., Ertler, C., Stano, P. & Zutic, I. (2007), ‘Semiconductor spintronics’, Acta Physica Slovaca 57, 565.Google Scholar
Fal'ko, V. I., Kechedzhi, K., McCann, E., et al. (2007), ‘Weak localization in graphene’, Solid State Communications 143, 3338.Google Scholar
Fano, U. (1935), ‘Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d'arco’, Il Nuovo Cimento 12, 154–161.CrossRefGoogle Scholar
Farhat, H., Son, H., Samsonidze, G. G., et al. (2007), ‘Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly’, Phys. Rev. Lett. 99, 145506.CrossRefGoogle ScholarPubMed
Farmer, D. B., Golizadeh-Mojarad, R., Perebeinos, V., et al. (2008), ‘Chemical doping and electronhole conduction asymmetry in graphene devices’, Nano Lett. 9, 388–392.Google Scholar
Fedorov, G., Tselev, A., Jimnez, D., et al. (2007), ‘Magnetically induced field effect in carbon nanotube devices’, Nano Lett. 7, 960–964.CrossRefGoogle ScholarPubMed
Fermi, E. (1927), ‘Un metodo statistico per la determinazione di alcune priorieta dell'atomo’, Rend. Accad. Naz. Lincei 6, 602–607.Google Scholar
Ferreira, A., Xu, X., Tan, C.-L., et al. (2011), ‘Transport properties of graphene with one-dimensional charge defects’, EPL (Europhysics Letters) 94, 28003.CrossRefGoogle Scholar
Fetter, A. & Walecka, J. (1971), Quantum Theory of Many-Particle Systems, McGraw-Hill, New York.Google Scholar
Fisher, D. S. & Lee, P. A. (1981), ‘Relation between conductivity and transmission matrix’, Phys. Rev.B 23, 6851–6854.CrossRefGoogle Scholar
Floquet, G. (1883), ‘Sur les équations différentielles linéaires à coefficients périodiques’, Annales Scientifiques de l'École Normale Supérieure, Sér. 2 12, 47–88.CrossRefGoogle Scholar
Foa Torres, L. E. F. (2005), ‘Mono-parametric quantum charge pumping: Interplay between spatial interference and photon-assisted tunneling’, Phys. Rev. B 72, 245339.CrossRefGoogle Scholar
Foa Torres, L. E. F., Avriller, R. & Roche, S. (2008), ‘Nonequilibrium energy gaps in carbon nanotubes: Role of phonon symmetries’, Phys. Rev. B 78, 035412.CrossRefGoogle Scholar
Foa Torres, L. E. F., Calvo, H. L., Rocha, C. G. & Cuniberti, G. (2011), ‘Enhancing single-parameter quantum charge pumping in carbon-based devices’, Appl. Phys. Lett. 99, 092102.CrossRefGoogle Scholar
Foa Torres, L. E. F. & Cuniberti, G. (2009), ‘Controlling the conductance and noise of driven carbon-based Fabry-Perot devices’, Applied Physics Letters 94, 222103.CrossRefGoogle Scholar
Foa Torres, L. E. F., Lewenkopf, C. H. & Pastawski, H. M. (2003), ‘Coherent versus sequential electron tunneling in quantum dots’, Phys. Rev. Lett. 91, 116801.CrossRefGoogle ScholarPubMed
Foa Torres, L. E. F. & Roche, S. (2006), ‘Inelastic quantum transport and Peierls-like mechanism in carbon nanotubes’, Phys. Rev. Lett. 97, 076804.CrossRefGoogle ScholarPubMed
Franklin, A. D. & Chen, Z. (2010), ‘Length scaling of carbon nanotube transistors’, Nature Nanotechnology 5, 858–862.CrossRefGoogle ScholarPubMed
Gabor, N. M., Song, J. C. W., Ma, Q., et al. (2011), ‘Hot carrier-assisted intrinsic photoresponse in graphene’, Science 334, 648–652.CrossRefGoogle ScholarPubMed
Gao, B., Komnik, A., Egger, R., Glattli, D. C. & Bachtold, A. (2004), ‘Evidence for Luttingerliquid behavior in crossed metallic single-wall nanotubes’, Phys. Rev. Lett. 92, 216804.CrossRefGoogle ScholarPubMed
Geim, A. K. (2011), ‘Nobel lecture: Random walk to graphene’, Rev. Mod. Phys. 83, 851–862.CrossRefGoogle Scholar
Geim, A. K. & Novoselov, K. S. (2007), ‘The rise of graphene’, Nature Materials 6, 183–191.CrossRefGoogle ScholarPubMed
Gheorghe, M., Gutierrez, R., Ranjan, N., et al. (2005), ‘Vibrational effects in the linear conductance of carbon nanotubes’, EPL (Europhysics Letters) 71, 438.CrossRefGoogle Scholar
Giaever, I. & Zeller, H. R. (1968), ‘Superconductivity of small tin particles measured by tunneling’, Phys. Rev. Lett. 20, 1504–1507.CrossRefGoogle Scholar
Giannozzi, P., Baroni, S., Bonini, N., et al. (2009), ‘Quantum Espresso: A modular and open-source software project for quantum simulations of materials’, Journal of Physics: Condensed Matter 21, 395502.Google ScholarPubMed
Giantomassi, M., Stankovski, M., Shaltaf, R., et al. (2011), ‘Electronic properties of interfaces and defects from many-body perturbation theory: Recent developments and applications’, Physica Status Solidi (B) 248, 275–289.CrossRefGoogle Scholar
Giesbers, A. J. M., Ponomarenko, L. A., Novoselov, K. S., et al. (2009), ‘Gap opening in the zeroth Landau level of graphene’, Phys. Rev. B 80, 201403.CrossRefGoogle Scholar
Girit, C., Meyer, J. C., Erni, R., et al. (2009), ‘Graphene at the edge: Stability and dynamics’, Science 323, 1705–1708.CrossRefGoogle ScholarPubMed
Glazov, M. M. & Ganichev, S. D., ‘High frequency electric field-induced nonlinear effects in graphene’, arXiv:1306.2049[cond-mat.mes-hall].CrossRef
Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C. & Fabian, J. (2009), ‘Band-structure topologies of graphene: Spin–orbit coupling effects from first principles’, Phys. Rev. B 80, 235431.CrossRefGoogle Scholar
Godby, R. W. & Needs, R. J. (1989), ‘Metal–insulator transition in Kohn–Sham theory and quasiparticle theory’, Phys. Rev. Lett. 62, 1169–1172.CrossRefGoogle ScholarPubMed
Goerbig, M. (2011), ‘Electronic properties of graphene in a strong magnetic field’, Rev. Mod. Phys. 83, 1193.CrossRefGoogle Scholar
Goldoni, A., Petaccia, L., Lizzit, S. & Larciprete, R. (2010), ‘Sensing gases with carbon nano-tubes: A review of the actual situation’, Journal of Physics: Condensed Matter 22, 013001.Google Scholar
Gómez-Navarro, C., de Pablo, P., Biel, B., et al. (2005), ‘Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime’, Nature Materials 4, 534.CrossRefGoogle ScholarPubMed
Gonze, X., Rignanese, G. M., Verstraete, M. J., et al. (2005), ‘A brief introduction to the Abinit software package’, Zeitschrift für Kristallographie – Crystalline Materials 220, 558–562.CrossRefGoogle Scholar
Gonze, X., Amadon, B., Anglade, P.-M., et al. (2009), ‘Abinit: First-principles approach to material and nanosystem properties’, Computer Physics Communications 180, 2582–2615.CrossRefGoogle Scholar
Grichuk, E. & Manykin, E. (2010), ‘Quantum pumping in graphene nanoribbons at resonant transmission’, EPL (Europhysics Letters) 92, 47010.CrossRefGoogle Scholar
Grossmann, F., Dittrich, T., Jung, P. & Hänggi, P. (1991), ‘Coherent destruction of tunneling’, Phys. Rev. Lett. 67, 516–519.CrossRefGoogle ScholarPubMed
Grosso, G. & Parravicini, G. P. (2006), Solid State Physics, Elsevier, London.Google Scholar
Gruber, M., Heimel, G., Romaner, L., Brédas, J.-L. & Zojer, E. (2008), ‘First-principles study of the geometric and electronic structure of Au13 clusters: Importance of the prism motif’, Phys. Rev. B 77, 165411.CrossRefGoogle Scholar
Gruneis, A., Attaccalite, C., Wirtz, L., et al. (2008), ‘Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene’, Phys. Rev. B 78, 205425.CrossRefGoogle Scholar
Grushina, A. L. & Morpurgo, A. F. (2013) ‘A ballistic pn junction in suspended graphene with split bottom gates’, Appl. Phys. Lett. 102, 223102.CrossRefGoogle Scholar
Gu, Z., Fertig, H. A., Arovas, D. P. & Auerbach, A. (2011), ‘Floquet spectrum and transport through an irradiated graphene ribbon’, Phys. Rev. Lett. 107, 216601.CrossRefGoogle ScholarPubMed
Guinea, F., Tejedor, C., Flores, F. & Louis, E. (1983), ‘Effective two-dimensional Hamiltonian at surfaces’, Phys. Rev. B 28, 4397–4402.CrossRefGoogle Scholar
Guinea, F. & Vergés, J. A. (1987), ‘Localization and topological disorder’, Phys. Rev. B 35, 979–986.CrossRefGoogle ScholarPubMed
Gunlycke, D. & White, C. T. (2008), ‘Tight-binding energy dispersions of armchair-edge graphene nanostrips’, Phys. Rev. B 77, 115116.CrossRefGoogle Scholar
Gunlycke, D. & White, C. T. (2011), ‘Graphene valley filter using a line defect’, Phys. Rev. Lett. 106, 136806.CrossRefGoogle ScholarPubMed
Güttinger, J., Molitor, F., Stampfer, C., et al. (2012), ‘Transport through graphene quantum dots’, Reports on Progress in Physics 75, 126502.CrossRefGoogle ScholarPubMed
Haeckel, E. (1862), Die Radiolarien, Georg Reimer, Berlin.Google Scholar
Haering, R. R. (1958), ‘Band structure of rhombohedral graphite’, Canadian Journal of Physics 36, 352–362.CrossRefGoogle Scholar
Haldane, F. D. M. (1988), ‘Model for a quantum Hall effect without Landau levels: Condensedmatter realization of the parity anomaly’, Phys. Rev. Lett. 61, 2015–2018.CrossRefGoogle ScholarPubMed
Hamada, N., Sawada, S.-I. & Oshiyama, A. (1992), ‘New one-dimensional conductors: Graphitic microtubules’, Phys. Rev. Lett. 68, 1579–1581.CrossRefGoogle ScholarPubMed
Hamann, D. R., Schlüter, M. & Chiang, C. (1979), ‘Norm-conserving pseudopotentials’, Phys. Rev. Lett. 43, 1494–1497.CrossRefGoogle Scholar
Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. (2007), ‘Energy band-gap engineering of graphene nanoribbons’, Phys. Rev. Lett. 98, 206805.CrossRefGoogle ScholarPubMed
Han, W. & Kawakami, R. K. (2011), ‘Spin relaxation in single-layer and bilayer graphene’, Phys. Rev. Lett. 107, 047207.CrossRefGoogle ScholarPubMed
Harris, P. (1999), Carbon Nanotubes and Related Structures: New Materials for the XXI Century, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Harrison, W. (1989), Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Dover Publications, New York.Google Scholar
Hartree, D. R. (1957), The Calculation of Atomic Structures, John Wiley and Sons, New York.Google Scholar
Hasan, M. Z. & Kane, C. L. (2010), ‘Colloquium: Topological insulators’, Rev. Mod. Phys. 82, 3045–3067.CrossRefGoogle Scholar
Haydock, R., Heine, V. & Kelly, M. J. (1972), ‘Electronic structure based on the local atomic environment for tight-binding bands’, Journal of Physics C: Solid State Physics 5, 2845.CrossRefGoogle Scholar
Haydock, R., Heine, V. & Kelly, M. J. (1975), ‘Electronic structure based on the local atomic environment for tight-binding bands. II’, Journal of Physics C: Solid State Physics 8, 2591.CrossRefGoogle Scholar
Hedin, L. (1965), ‘New method for calculating the one-particle Green's function with application to the electron-gas problem’, Phys. Rev. 139, A796–A823.CrossRefGoogle Scholar
Hedin, L. & Lundqvist, S. (1970), Effects of Electron–Electron and Electron–Phonon Interactions on the One-Electron States of Solids, Vol. 23 of Solid State Physics, Academic Press, New York, pp. 1–181.Google Scholar
Heimann, R., Evsyukov, S. & Kavan, L. (1999), Carbyne and Carbynoid Structures, Kluwer Academic, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Heinze, S., Tersoff, J., Martel, R., et al. (2002), ‘Carbon nanotubes as Schottky barrier transistors’, Phys. Rev. Lett. 89, 106801.CrossRefGoogle ScholarPubMed
Hemstreet, Louis A., Fong, C. Y. & Cohen, M. L. (1970), ‘Calculation of the band structure and optical constants of diamond using the nonlocal-pseudopotential method’, Phys. Rev. B 2, 2054–2063.CrossRefGoogle Scholar
Herrmann, L. G., Delattre, T., Morfin, P., et al. (2007), ‘Shot noise in Fabry-Perot interferometers based on carbon nanotubes’, Phys. Rev. Lett. 99, 156804.CrossRefGoogle ScholarPubMed
Hikami, S., Larkin, A. I. & Nagaoka, Y. (1980), ‘Spin–orbit interaction and magnetoresistance in the two dimensional random system’, Progress of Theoretical Physics 63, 707–710.CrossRefGoogle Scholar
Hjort, M. & Stafstrom, S. (2001), ‘Disorder-induced electron localization in metallic carbon nanotubes’, Phys. Rev. B 63, 113406.CrossRefGoogle Scholar
Hofstadter, D. R. (1976), ‘Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields’, Phys. Rev. B 14, 2239–2249.CrossRefGoogle Scholar
Hohenberg, P. & Kohn, W. (1964), ‘Inhomogeneous electron gas’, Phys. Rev. 136, B864–B871.CrossRefGoogle Scholar
Holmström, E., Fransson, J., Eriksson, O., et al. (2011), ‘Disorder-induced metallicity in amorphous graphene’, Phys. Rev. B 84, 205414.CrossRefGoogle Scholar
Hong, A. J., Song, E. B., Yu, H. S., et al. (2011), ‘Graphene flash memory’, ACS Nano 5, 7812–7817.CrossRefGoogle ScholarPubMed
Hong, S. K., Kim, J. E., Kim, S. O., Choi, S.-Y. & Cho, B. J. (2010), ‘Flexible resistive switching memory device based on graphene oxide’, Electron Device Letters, IEEE Sl, 1005–1007.Google Scholar
Horsell, D. W., Tikhonenko, F. V., Gorbachev, R. V. & Savchenko, A. K. (2008), ‘Weak localization in monolayer and bilayer graphene’, Phil. Trans. Roy. Soc. A 366, 245.CrossRefGoogle ScholarPubMed
Hoshi, T., Yamamoto, S., Fujiwara, T., Sogabe, T. & Zhang, S.-L. (2012), ‘An order-N electronic structure theory with generalized eigenvalue equations and its application to a ten-million-atom system’, J. Phys.: Condens. Matter 24, 165502.Google ScholarPubMed
Hossain, M. Z., Johns, J. E., Bevan, K. H., et al. (2012), ‘Chemically homogeneous and thermally reversible oxidation of epitaxial graphene’, Nature Chemistry 4, 305–309.CrossRefGoogle ScholarPubMed
Huang, B., Liu, M., Su, N., et al. (2009), ‘Quantum manifestations of graphene edge stress and edge instability: A first-principles study’, Phys. Rev. Lett. 102, 166404.CrossRefGoogle ScholarPubMed
Huang, L., Lai, Y.-C. & Grebogi, C. (2010), ‘Relativistic quantum level-spacing statistics in chaotic graphene billiards’, Phys. Rev. E 81, 055203.CrossRefGoogle ScholarPubMed
Huang, P., Ruiz-Vargas, C. S., van der Zande, A. M., et al. (2011), ‘Grains and grain boundaries in single-layer graphene atomic patchwork quilts’, Nature 469, 389–392.CrossRefGoogle ScholarPubMed
Huertas-Hernando, D., Guinea, F. & Brataas, A. (2006), ‘Spin–orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps’, Phys. Rev. B 74, 155426.CrossRefGoogle Scholar
Hueso, L. E., Pruneda, J. M., Ferrari, V., et al. (2007), ‘Transformation of spin information into large electrical signals using carbon nanotubes’, Nature 445, 410–413.CrossRefGoogle ScholarPubMed
Hwang, C., Park, C.-H., Siegel, D. A., et al. (2011), ‘Direct measurement of quantum phases in graphene via photoemission spectroscopy’, Phys. Rev. B 84, 125422.CrossRefGoogle Scholar
Hwang, E. H. & Sarma, S. D. (2008), ‘Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene’, Phys. Rev. B 77, 115449.CrossRefGoogle Scholar
Hwang, W. S., Tahy, K., Li, X., et al. (2012), ‘Transport properties of graphene nanoribbon transistors on chemical-vapor-deposition grown wafer-scale graphene’, Appl. Phys. Lett. 100, 203107.CrossRefGoogle Scholar
Iijima, S. (1991), ‘Helical microtubules of graphitic carbon’, Nature 354, 56–58.CrossRefGoogle Scholar
Iijima, S. & Ichihashi, T. (1993), ‘Single-shell carbon nanotubes of 1 nm diameter’, Nature 363, 603–605.CrossRefGoogle Scholar
Iijima, S., Yudasaka, M., Yamada, R., et al. (1999), ‘Nano-aggregates of single-walled graphitic carbon nano-horns’, Chemical Physics Letters 309, 165–170.CrossRefGoogle Scholar
Imry, Y. & Landauer, R. (1999), ‘Conductance viewed as transmission’, Rev. Mod. Phys. 71, S306–S312.CrossRefGoogle Scholar
Ingaramo, L. H. & Foa Torres, L. E. F. (2013), ‘Quantum charge pumping in graphene-based devices: When lattice defects do help’, Appl. Phys. Lett. 103, 123508 (2013).CrossRefGoogle Scholar
Ishii, H., Roche, S., Kobayashi, N. & Hirose, K. (2010), ‘Inelastic transport in vibrating disordered carbon nanotubes: Scattering times and temperature-dependent decoherence effects’, Phys. Rev. Lett. 104, 116801.CrossRefGoogle ScholarPubMed
Ishii, H., Triozon, F., Kobayashi, N., Hirose, K. & Roche, S. (2009), ‘Charge transport in carbon nanotube based materials, a Kubo Greenwood computational approach’, Comptes Rendus Physique 10, 283–296.CrossRefGoogle Scholar
Jain, M., Chelikowsky, J. R. & Louie, S. G. (2011), ‘Reliability of hybrid functionals in predicting band gaps’, Phys. Rev. Lett. 107, 216806.CrossRefGoogle ScholarPubMed
Jalabert, R. A., Stone, A. D. & Alhassid, Y. (1992), ‘Statistical theory of Coulomb blockade oscillations: Quantum chaos in quantum dots’, Phys. Rev. Lett. 68, 3468–3471.CrossRefGoogle ScholarPubMed
Javey, A., Guo, J., Paulsson, M., et al. (2004), ‘High-field quasiballistic transport in short carbon nanotubes’, Phys. Rev. Lett. 92, 106804.CrossRefGoogle ScholarPubMed
Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. (2003), ‘Ballistic carbon nanotube fieldeffect transistors’, Nature 424, 654–657.CrossRefGoogle Scholar
Jayasekera, T. & Mintmire, J. W. (2007), ‘Transport in multiterminal graphene nanodevices’, Nanotechnology 18, 424033.CrossRefGoogle ScholarPubMed
Jensen, K., Kim, K. & Zettl, A. (2008), ‘An atomic-resolution nanomechanical mass sensor’, Nature Nanotechnology 3, 533–537.CrossRefGoogle ScholarPubMed
Jia, X., Campos-Delgado, J., Terrones, M., Meunier, V. & Dresselhaus, M. S. (2011), ‘Graphene edges: A review of their fabrication and characterization’, Nanoscale 3, 86–95.CrossRefGoogle ScholarPubMed
Jia, X., Goswami, P. & Chakravarty, S. (2008), ‘Dissipation and criticality in the lowest Landau level of graphene’, Phys. Rev. Lett. 101, 036805.CrossRefGoogle ScholarPubMed
Jia, X., Hofmann, M., Meunier, V., et al. (2009), ‘Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons’, Science 323, 1701–1705.CrossRefGoogle ScholarPubMed
Jiang, H., Qiao, Z., Liu, H., Shi, J. & Niu, Q. (2012), ‘Stabilizing topological phases in graphene via random adsorption’, Phys. Rev. Lett. 109, 116803.CrossRefGoogle ScholarPubMed
Jiang, J., Dong, J. & Xing, D. Y. (2003), ‘Quantum interference in carbon-nanotube electron resonators’, Phys. Rev. Lett. 91, 056802.CrossRefGoogle ScholarPubMed
Jiang, Z., Zhang, Y., Stormer, H. L. & Kim, P. (2007), ‘Quantum Hall states near the chargeneutral Dirac point in graphene’, Phys. Rev. Lett. 99, 106802.CrossRefGoogle ScholarPubMed
Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. (2010), ‘Facile synthesis of high-quality graphene nanoribbons’, Nature Nanotechnology 5, 321–325.CrossRefGoogle ScholarPubMed
Jiao, L., Zhang, L., Ding, L., Liu, J. & Dai, H. (2010), ‘Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes’, Nano Research 3, 387–394.CrossRefGoogle Scholar
Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. (2009), ‘Narrow graphene nanoribbons from carbon nanotubes’, Nature 458, 877–880.CrossRefGoogle ScholarPubMed
Jin, C., Lan, H., Peng, L., Suenaga, K. & Iijima, S. (2009), ‘Deriving carbon atomic chains from graphene’, Phys. Rev. Lett. 102, 205501.CrossRefGoogle ScholarPubMed
Jonson, M. & Grincwajg, A. (1987), ‘Effect of inelastic scattering on resonant and sequential tunneling in double barrier heterostructures’, Applied Physics Letters 51, 1729–1731.CrossRefGoogle Scholar
Jorio, A., Dresselhaus, M. S., Saito, R. & Dresselhaus, G. (2011), Raman Spectroscopy in Graphene Related Systems, Wiley-VCH, Singapore.CrossRefGoogle Scholar
Jorio, A., Souza Filho, A. G., Dresselhaus, G., et al. (2001), ‘Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering’, Phys. Rev. B 63, 245416.CrossRefGoogle Scholar
Kaestner, B., Kashcheyevs, V., Amakawa, S., et al. (2008), ‘Single-parameter nonadiabatic quantized charge pumping’, Phys. Rev. B 77, 153301.CrossRefGoogle Scholar
Kane, C. L. & Mele, E. J. (1997), ‘Size, shape, and low energy electronic structure of carbon nanotubes’, Phys. Rev. Lett. 78, 1932–1935.CrossRefGoogle Scholar
Kane, C. L. & Mele, E. J. (2005), ‘Z2 topological order and the quantum spin Hall effect’, Phys. Rev. Lett. 95, 146802.CrossRefGoogle ScholarPubMed
Kapko, V., Drabold, D. & Thorpe, M. (2010), ‘Electronic structure of a realistic model of amorphous graphene’, Phys. Stat. Sol. B 247, 1197.Google Scholar
Karch, J., Drexler, C., Olbrich, P., et al. (2011), ‘Terahertz radiation driven chiral edge currents in graphene’, Phys. Rev. Lett. 107, 276601.CrossRefGoogle ScholarPubMed
Kashcheyevs, V., Aharony, A. & Entin-Wohlman, O. (2004), ‘Resonance approximation and charge loading and unloading in adiabatic quantum pumping’, Phys. Rev. B 69, 195301.CrossRefGoogle Scholar
Kastner, M. A. (1992), ‘The single-electron transistor’, Rev. Mod. Phys. 64, 849–858.CrossRefGoogle Scholar
Kato, T. & Hatakeyama, R. (2012), ‘Site- and alignment-controlled growth of graphene nanorib-bons from nickel nanobars’, Nature Nanotechnology 7, 651–656.CrossRefGoogle ScholarPubMed
Katsnelson, M. I. (2012), Graphene: Carbon in Two Dimensions, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. (2006), ‘Chiral tunnelling and the Klein paradox in graphene’, Nature Physics 2, 620–625.CrossRefGoogle Scholar
Kauffman, D. R., Sorescu, D. C., Schofield, D. P., et al. (2010), ‘Understanding the sensor response of metal-decorated carbon nanotubes’, Nano Lett. 10, 958–963.CrossRefGoogle ScholarPubMed
Kavan, L. & Kastner, J. (1994), ‘Carbyne forms of carbon: Continuation of the story’, Carbon 32, 1533–1536.CrossRefGoogle Scholar
Kawai, T., Miyamoto, Y., Sugino, O. & Koga, Y. (2000), ‘Graphitic ribbons without hydrogentermination: Electronic structures and stabilities’, Phys. Rev. B 62, R16349–R16352.CrossRefGoogle Scholar
Kazymyrenko, K. & Waintal, X. (2008), ‘Knitting algorithm for calculating Green functions in quantum systems’, Phys. Rev. B 77, 115119.CrossRefGoogle Scholar
Keating, P. N. (1966), ‘Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure’, Phys. Rev. 145, 637.CrossRefGoogle Scholar
Kechedzhi, K., McCann, E. I. F. V., Suzuura, H., Ando, T. & Altshuler, B. (2007), ‘Weak localization in monolayer and bilayer graphene’, Eur. Phys. J. Special Topics 148, 39.CrossRefGoogle Scholar
Kibis, O. V. (2010), ‘Metal-insulator transition in graphene induced by circularly polarized photons’, Phys. Rev. B 81, 165433.CrossRefGoogle Scholar
Kim, K., Lee, Z., Regan, W., et al. (2011), ‘Grain boundary mapping in polycrystalline graphene’, ACS Nano 5, 2142.CrossRefGoogle ScholarPubMed
Kim, K. Su, Walter, A. L., Moreschini, L., et al. (2013), ‘Co-existing massive and massless Dirac fermions in symmetry-broken bi-layer graphene’, Nature Materials, advance online publication, DOI: 10.1038/NMAT3717.Google Scholar
Kim, N. Y., Recher, P., Oliver, W. D., et al. (2007), ‘Tomonaga–Luttinger liquid features in ballistic single-walled carbon nanotubes: Conductance and shot noise’, Phys. Rev. Lett. 99, 036802.CrossRefGoogle ScholarPubMed
Kim, S. Y. & Park, H. S. (2010), ‘On the utility of vacancies and tensile strain-induced quality factor enhancement for mass sensing using graphene monolayers’, Nanotechnology 21, 105710.CrossRefGoogle ScholarPubMed
Kim, W., Javey, A., Tu, R., et al. (2005), ‘Electrical contacts to carbon nanotubes down to 1 nm in diameter’, Applied Physics Letters 87, 173101.CrossRefGoogle Scholar
Kirwan, D. F., Rocha, C. G., Costa, A. T. & Ferreira, M. S. (2008), ‘Sudden decay of indirect exchange coupling between magnetic atoms on carbon nanotubes’, Phys. Rev. B 77, 085432.CrossRefGoogle Scholar
Kitagawa, T., Oka, T., Brataas, A., Fu, L. & Demler, E. (2011), ‘Transport properties of nonequi-librium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels’, Phys. Rev. B 84, 235108.CrossRefGoogle Scholar
Klein, O. (1929), ‘Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von Dirac’, Zeitschrift fr Physik A Hadrons and Nuclei 53, 157–165.Google Scholar
Kleinman, L. & Bylander, D. M. (1982), ‘Efficacious form for model pseudopotentials’, Phys. Rev. Lett. 48, 1425–1428.CrossRefGoogle Scholar
Klitzing, K. V., Dorda, G. & Pepper, M. (1980), ‘New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance’, Phys. Rev. Lett. 45, 494–497.CrossRefGoogle Scholar
Klos, J. W. & Zozoulenko, I. V. (2010), ‘Effect of short- and long-range scattering in the conductivity of graphene: Boltzmann approach vs tight-binding calculations’, Phys. Rev. B 82, 081414.CrossRefGoogle Scholar
Kobayashi, Y., Fukui, K.-I., Enoki, T., Kusakabe, K. & Kaburagi, Y. (2005), ‘Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy’, Phys. Rev.B 71, 193406.CrossRefGoogle Scholar
Kohler, S., Lehmann, J. & Hänggi, P. (2005), ‘Driven quantum transport on the nanoscale’, Physics Reports 406, 379–443.CrossRefGoogle Scholar
Kohn, W. (1959), ‘Image of the Fermi surface in the vibration spectrum of a metal’, Phys. Rev. Lett. 2, 393–394.CrossRefGoogle Scholar
Kohn, W. & Sham, L. J. (1965), ‘Self-consistent equations including exchange and correlation effects’, Phys. Rev. 140, A1133–A1138.CrossRefGoogle Scholar
Konschuh, S., Gmitra, M. & Fabian, J. (2010), ‘Tight-binding theory of the spin–orbit coupling in graphene’, Phys. Rev. B 82, 245412.CrossRefGoogle Scholar
Konstantatos, G., Badioli, M., Gaudreau, L., et al. (2012), ‘Hybrid graphene-quantum dot photo-transistors with ultrahigh gain’, Nature Nanotechnology 7, 363–368.CrossRefGoogle Scholar
Koppens, F. H. L., Chang, D. E. & Garcia de Abajo, F. J. (2011), ‘Graphene plasmonics: A platform for strong light-matter interactions’, Nano Lett. 11, 3370–3377.CrossRefGoogle ScholarPubMed
Koskinen, P., Malola, S. & Hakkinen, H. (2008), ‘Self-passivating edge reconstructions of graphene’, Phys. Rev. Lett. 101, 115502.CrossRefGoogle ScholarPubMed
Kostyrko, T., Bartkowiak, M. & Mahan, G. D. (1999), ‘Localization in carbon nanotubes within a tight-binding model’, Phys. Rev. B 60, 10735–10738.CrossRefGoogle Scholar
Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., et al. (2009), ‘Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons’, Nature 458, 872–876.CrossRefGoogle ScholarPubMed
Kotakoski, J., Krasheninnikov, A. V., Kaiser, U. & Meyer, J. C. (2011), ‘From point defects in graphene to two-dimensional amorphous carbon’, Phys. Rev. Lett. 106, 105505.CrossRefGoogle ScholarPubMed
Kotakoski, J. & Meyer, J. C. (2012), ‘Mechanical properties of polycrystalline graphene based on a realistic atomistic model,’, Phys. Rev. B 85, 195447.CrossRefGoogle Scholar
Kouwenhoven, L. & Glazman, L. (2001), ‘Revival of the Kondo effect’, Physics World (Jan.), 33–38.Google Scholar
Kouwenhoven, L. P., Marcus, C. M., McEuen, P. L., et al. (1997), Nato ASI conference proceedings, Kluwer Academic, Dordrecht, The Netherlands, chapter ‘Electron transport in quantum dots’, pp. 105–214.Google Scholar
Kowalczyk, P., Holyst, R., Terrones, M. & Terrones, H. (2007), ‘Hydrogen storage in nanoporous carbon materials: Myth and facts’, Phys. Chem. Chem. Phys. 9, 1786–1792.CrossRefGoogle ScholarPubMed
Krasheninnikov, A. V. & Banhart, F. (2007), ‘Engineering of nanostructured carbon materials with electron or ion beams’, Nature Materials 6, 723–733.CrossRefGoogle ScholarPubMed
Kresse, G. & Furthmüller, J. (1996 a), ‘Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set’, Computational Materials Science 6, 15–50.CrossRefGoogle Scholar
Kresse, G. & Furthmüller, J. (1996 b), ‘Efficient iterative schemes for ab initio total energy calculations using aplane-wave basis set’, Phys. Rev. B 54, 11169–11186.CrossRefGoogle ScholarPubMed
Krishnan, A., Dujardin, E., Treacy, M. M. J., et al. (1997), ‘Graphitic cones and the nucleation of curved carbon surfaces’, Nature 388, 451–454.CrossRefGoogle Scholar
Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. (1985), ‘C60: Buckmin-sterfullerene’, Nature 318, 162–163.CrossRefGoogle Scholar
Kroto, H. W. & McKay, K. (1988), ‘The formation of quasi-icosahedral spiral shell carbon particles’, Nature 331, 328–331.CrossRefGoogle Scholar
Kubo, R. (1966), ‘The fluctuation-dissipation theorem’, Reports on Progress in Physics 29, 255.CrossRefGoogle Scholar
Kümmel, S. & Kronik, L. (2008), ‘Orbital-dependent density functionals: Theory and applications’, Rev. Mod. Phys. 80, 3–60.CrossRefGoogle Scholar
Kurasch, S., Kotakoski, J., Lehtinen, O., et al. (2012), ‘Atom-by-atom observation of grain boundary migration in graphene’, Nano Lett. 12, 3168–3173.CrossRefGoogle ScholarPubMed
Kurganova, E. V., van Elferen, H. J., McCollam, A., et al. (2011), ‘Spin splitting in graphene studied by means of tilted magnetic-field experiments’, Phys. Rev. B 84, 121407.CrossRefGoogle Scholar
Kwon, Y.-K. & Tomanek, D. (1998), ‘Electronic and structural properties of multiwall carbon nanotubes’, Phys. Rev. B 58, R16001–R16004.CrossRefGoogle Scholar
Lagendijk, A., van Tiggelen, B. & Wiersma, D. S. (2009), ‘Fifty years of Anderson localization’, Phys. Today 62, 24–29.CrossRefGoogle Scholar
Lagow, R. J., Kampa, J. J., Wei, H.-C., et al. (1995), ‘Synthesis of linear acetylenic carbon: The “sp” carbon allotrope’, Science 267, 362–367.CrossRefGoogle ScholarPubMed
Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I. & Batzill, M. (2010), ‘An extended defect in graphene as a metallic wire’, Nature Nanotechnology 5, 326–329.CrossRefGoogle ScholarPubMed
Lambin, P., Fonseca, A., Vigneron, J., Nagy, J. & Lucas, A. (1995), ‘Structural and electronic properties of bent carbon nanotubes’, Chemical Physics Letters 245, 85–89.CrossRefGoogle Scholar
Lambin, P., Philippe, L., Charlier, J. & Michenaud, J. (1994), ‘Electronic band structure of multi-layered carbon tubules’, Computational Materials Science 2, 350–356.CrossRefGoogle Scholar
Lanczos, C. (1950), ‘Solution of systems of linear equations by minimized iterations’, J. Res. Natl. Bur. Stand. 45, 255.CrossRefGoogle Scholar
Landau, L. & Lifschitz, E. (1980), Statistical Physics Part II, Pergamon, Oxford.Google Scholar
Landauer, R. (1957), ‘Spatial variation of currents and fields due to localized scatterers in metallic conduction’, IBM J. Res. Dev. 1, 223.CrossRefGoogle Scholar
Landauer, R. (1970), ‘Electrical resistance of disordered one-dimensional lattices’, Philosophical Magazine 21, 863–867.CrossRefGoogle Scholar
Landman, U. (2005), ‘Materials by numbers: Computations as tools of discovery’, Proceedings of the National Academy of Sciences of the United States of America 102, 6671–6678.CrossRefGoogle Scholar
Lassagne, B., Garcia-Sanchez, D., Aguasca, A. & Bachtold, A. (2008), ‘Ultrasensitive mass sensing with a nanotube electromechanical resonator’, Nano Lett. 8, 3735–3738.CrossRefGoogle ScholarPubMed
Latil, S. & Henrard, L. (2006), ‘Charge carriers in few-layer graphene films’, Phys. Rev. Lett. 97, 036803.CrossRefGoogle ScholarPubMed
Latil, S., Meunier, V. & Henrard, L. (2007), ‘Massless fermions in multilayer graphitic systems with misoriented layers: ab initio calculations and experimental fingerprints’, Phys. Rev. B 76, 201402.CrossRefGoogle Scholar
Latil, S., Roche, S. & Charlier, J.-C. (2005), ‘Electronic transport in carbon nanotubes with random coverage of physisorbed molecules’, Nano Lett. 5, 2216–2219.CrossRefGoogle ScholarPubMed
Latil, S., Roche, S., Mayou, D. & Charlier, J.-C. (2004), ‘Mesoscopic transport in chemically doped carbon nanotubes’, Phys. Rev. Lett. 92, 256805.CrossRefGoogle ScholarPubMed
Laughlin, R. B. (1983), ‘Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations’, Phys. Rev. Lett. 50, 1395–1398.CrossRefGoogle Scholar
Lazzeri, M. & Mauri, F. (2006), ‘Coupled dynamics of electrons and phonons in metallic nanotubes: Current saturation from hot-phonon generation’, Phys. Rev. B 73, 165419.CrossRefGoogle Scholar
Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A. C. & Robertson, J. (2006), ‘Phonon linewidths and electron–phonon coupling in graphite and nanotubes’, Phys. Rev. B 73, 155426.CrossRefGoogle Scholar
Leconte, N., Lherbier, A., Varchon, F., et al. (2011), ‘Quantum transport in chemically modified two-dimensional graphene: From minimal conductivity to Anderson localization’, Phys. Rev. B 84, 235420.CrossRefGoogle Scholar
Leconte, N., Moser, J., Ordejon, P., et al. (2010), ‘Damaging graphene with ozone treatment: A chemically tunable metal-insulator transition’, ACS Nano 4, 4033–4038.CrossRefGoogle ScholarPubMed
Lee, G.-D., Wang, C. Z., Yoon, E., et al. (2005), ‘Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers’, Phys. Rev. Lett. 95, 205501.CrossRefGoogle ScholarPubMed
Lee, H., Son, Y.-W., Park, N., Han, S. & Yu, J. (2005), ‘Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states’, Phys. Rev. B 72, 174431.CrossRefGoogle Scholar
Lee, P. A. & Ramakrishnan, T. V. (1985), ‘Disordered electronic systems’, Rev. Mod. Phys. 57, 287–337.CrossRefGoogle Scholar
Lee, P. A. & Stone, A. D. (1985), ‘Universal conductance fluctuations in metals’, Phys. Rev. Lett. 55, 1622–1625.CrossRefGoogle ScholarPubMed
Lee, S., Jagannathan, B., Narasimha, S., et al. (2007), Record RF performance of 45 nm SOI CMOS technology, in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp. 255–258.Google Scholar
Lee, Y.-S. & Marzari, N. (2006), ‘Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes’, Phys. Rev. Lett. 97, 116801.CrossRefGoogle ScholarPubMed
Leek, P. J., Buitelaar, M. R., Talyanskii, V. I., et al. (2005), ‘Charge pumping in carbon nanotubes’, Phys. Rev. Lett. 95, 256802.CrossRefGoogle ScholarPubMed
Lefebvre, J., Homma, Y. & Finnie, P. (2003), ‘Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes’, Phys. Rev. Lett. 90, 217401.CrossRefGoogle ScholarPubMed
Leghrib, R., Felten, A., Demoisson, F., et al. (2010), ‘Room-temperature, selective detection of benzene at trace levels using plasma-treated metal-decorated multiwalled carbon nanotubes’, Carbon 48, 3477–3484.CrossRefGoogle Scholar
Lehtinen, P. O., Foster, A. S., Ayuela, A., Vehvilinen, T. T. & Nieminen, R. M. (2004 a), ‘Structure and magnetic properties of adatoms on carbon nanotubes’, Phys. Rev. B 69, 155422.CrossRefGoogle Scholar
Lehtinen, P. O., Foster, A. S., Ma, Y., Krasheninnikov, A. V. & Nieminen, R. M. (2004 b), ‘Irradiation-induced magnetism in graphite: A density functional study’, Phys. Rev. Lett. 93, 187202.CrossRefGoogle ScholarPubMed
Léonard, F. & Talin, A. A. (2011), ‘Electrical contacts to one- and two-dimensional nanomaterials’, Nature Nanotechnology 6, 773–783.CrossRefGoogle ScholarPubMed
Léonard, F. & Tersoff, J. (1999), ‘Novel length scales in nanotube devices’, Phys. Rev. Lett. 83, 5174–5177.CrossRefGoogle Scholar
Léonard, F. & Tersoff, J. (2000 a), ‘Negative differential resistance in nanotube devices’, Phys. Rev. Lett. 85, 4767–4770.CrossRefGoogle ScholarPubMed
Léonard, F. & Tersoff, J. (2000 b), ‘Role of Fermi-level pinning in nanotube Schottky diodes’, Phys. Rev. Lett. 84, 4693–4696.CrossRefGoogle ScholarPubMed
Léonard, F. & Tersoff, J. (2002), ‘Multiple functionality in nanotube transistors’, Phys. Rev. Lett. 88, 258302.CrossRefGoogle ScholarPubMed
Lepro, X., Vega-Cantu, Y., Rodriguez-Macias, F., et al. (2007), ‘Production and characterization of coaxial nanotube junctions and networks of cnx/cnt’, Nano Lett. 7, 2220–2226.CrossRefGoogle ScholarPubMed
Lewenkopf, C. H. & Mucciolo, E. R. (2013), ‘The recursive Green's function method for graphene’, J. Comput. Electron., 12, 203.CrossRefGoogle Scholar
Lherbier, A. (2008), Étude des propriétés électroniques et des propriétés de transport de nanofils semiconducteurs et de plans de graphène, Ph.D. thesis, Université Joseph-Fourier.Google Scholar
Lherbier, A., Biel, B., Niquet, Y.-M. & Roche, S. (2008), ‘Transport length scales in disordered graphene-based materials: Strong localization regimes and dimensionality effects’, Phys. Rev. Lett. 100, 036803.CrossRefGoogle ScholarPubMed
Lherbier, A., Blase, X., Niquet, Y. M., Triozon, F. & Roche, S. (2008), ‘Charge transport in chemically doped 2D graphene’, Phys. Rev. Lett. 101, 036808.CrossRefGoogle ScholarPubMed
Lherbier, A., Dubois, S. M.-M., Declerck, X., et al. (2012), ‘Transport properties of graphene containing structural defects’, Phys. Rev. B 86, 075402.CrossRefGoogle Scholar
Lherbier, A., Dubois, S. M.-M., Declerck, X., et al. (2011), ‘Two-dimensional graphene with structural defects: Elastic mean free path, minimum conductivity, and Anderson transition’, Phys. Rev. Lett. 106, 046803.CrossRefGoogle ScholarPubMed
Lherbier, A., Roche, S., Restrepo, O. A., et al. (2013), Nano Research, in press.Google Scholar
Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. (2008), ‘Processable aqueous dispersions of graphene nanosheets’, Nature Nanotechnology 3, 101–105.CrossRefGoogle ScholarPubMed
Li, G., Luican, A. & Andrei, E. Y. (2009), ‘Scanning tunneling spectroscopy of graphene on graphite’, Phys. Rev. Lett. 102, 176804.CrossRefGoogle Scholar
Li, G., Luican, A., Lopes dos Santos, J. M. B., et al. (2010), ‘Observation of Van Hove singularities in twisted graphene layers’, Nat Phys 6, 109–113.CrossRefGoogle Scholar
Li, S. & Jiang, Y. (1995), ‘Bond lengths, reactivities, and aromaticities of benzenoid hydrocarbons based on valence bond calculations’, J. Am. Chem. Soc. 117, 8401–8406.CrossRefGoogle Scholar
Li, W., Sevincli, H., Cuniberti, G. & Roche, S. (2010), ‘Phonon transport in large scale carbon-based disordered materials: Implementation of an efficient order-N and real-space Kubo methodology’, Phys. Rev. B 82, 041410.CrossRefGoogle Scholar
Li, W., Sevincli, H., Roche, S. & Cuniberti, G. (2011), ‘Efficient linear scaling method for computing the thermal conductivity of disordered materials’, Phys. Rev. B 83, 155416.CrossRefGoogle Scholar
Li, X., Magnuson, C. W., Venugopal, A., et al. (2010), ‘Graphene films with large domain size by a two-step chemical vapor deposition process’, Nano Lett. 10, 4328–4334.CrossRefGoogle ScholarPubMed
Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. (2008), ‘Chemically derived, ultrasmooth graphene nanoribbon semiconductors’, Science 319, 1229–1232.CrossRefGoogle ScholarPubMed
Liang, W., Bockrath, M., Bozovic, D., et al. (2001), ‘Fabry–Perot interference in a nanotube electron waveguide’, Nature 411, 665–669.CrossRefGoogle Scholar
Liao, L., Lin, Y.-C., Bao, M., et al. (2010), ‘High-speed graphene transistors with a self-aligned nanowire gate’, Nature 467, 305–308.CrossRefGoogle ScholarPubMed
Libisch, F., Stampfer, C. & Burgdörfer, J. (2009), ‘Graphene quantum dots: Beyond a Dirac billiard’, Phys. Rev. B 79, 115423.CrossRefGoogle Scholar
Lieb, E. H. (1989), ‘Two theorems on the Hubbard model’, Phys. Rev. Lett. 62, 1201–1204.CrossRefGoogle ScholarPubMed
Lin, Y.-M., Dimitrakopoulos, C., Jenkins, K. A., et al. (2010), ‘100 GHz transistors from wafer-scale epitaxial graphene’, Science 327, 662.CrossRefGoogle ScholarPubMed
Lin, Y.-M., Jenkins, K. A., Valdes-Garcia, A., et al. (2008), ‘Operation of graphene transistors at gigahertz frequencies’, Nano Lett. 9, 422–426.Google Scholar
Lindner, N. H., Refael, G. & Galitski, V. (2011), ‘Floquet topological insulator in semiconductor quantum wells’, Nature Physics 7, 490–495.CrossRefGoogle Scholar
Lipson, H. & Stokes, A. R. (1942), ‘The structure of graphite’, Proc. Roy. Soc. of London. Series A. Mathematical and Physical Sciences 181, 101–105.Google Scholar
Liu, J., Dai, H., Hafner, J. H., et al. (1997), ‘Fullerene “crop circles”’, Nature 385, 780–781.CrossRefGoogle Scholar
Liu, J. & Hersam, M. C. (2010), ‘Recent developments in carbon nanotube sorting and selective growth’, MRS Bulletin 35, 315–321.CrossRefGoogle Scholar
Liu, K., Avouris, P., Martel, R. & Hsu, W. K. (2001), ‘Electrical transport in doped multiwalled carbon nanotubes’, Phys. Rev. B 63, 161404.CrossRefGoogle Scholar
Liu, X., Oostinga, J. B., Morpurgo, A. F. & Vandersypen, L. M. K. (2009), ‘Electrostatic confinement of electrons in graphene nanoribbons’, Phys. Rev. B 80, 121407.CrossRefGoogle Scholar
Liu, Y., Bian, G., Miller, T. & Chiang, T.-C. (2011), ‘Visualizing electronic chirality and Berry phases in graphene systems using photoemission with circularly polarized light’, Phys. Rev. Lett. 107, 166803.CrossRefGoogle ScholarPubMed
Liu, Z., Suenaga, K., Harris, P. J. F. & Iijima, S. (2009), ‘Open and closed edges of graphene layers’, Phys. Rev. Lett. 102, 015501.CrossRefGoogle ScholarPubMed
Lohmann, T., von Klitzing, K. & Smet, J. H. (2009), ‘Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping’, Nano Lett. 9, 1973–1979.CrossRefGoogle ScholarPubMed
Lohrmann, D. (1989), ‘Shallow and deep impurity levels in multivalley semiconductors: A Green-function study of a cubic model by the recursion method’, Phys. Rev. B 40, 8404.CrossRefGoogle ScholarPubMed
Lopez-Bezanilla, A. (2009), Etude à partir des premiers principes de l'effet de la fonctionnalisation sur le transport de charge dans les systemes à base de carbone a l'echelle mesoscopique, Ph.D. thesis, Université Joseph Fourier.Google Scholar
López-Bezanilla, A., Blase, X. & Roche, S. (2010), ‘Quantum transport properties of chemically functionalized long semiconducting carbon nanotubes’, Nano Research 3, 288–295.CrossRefGoogle Scholar
López-Bezanilla, A., Triozon, F., & Roche, S. (2009 a), ‘Chemical functionalization effects on armchair graphene nanoribbons transport’, Nano Lett. 9, 2527.CrossRefGoogle ScholarPubMed
López-Bezanilla, A., Triozon, F., Latil, S., Blase, X. & Roche, S. (2009 b), ‘Effect of the chemical functionalization on charge transport in carbon nanotubes at the mesoscopic scale’, Nano Lett. 9, 940–944.CrossRefGoogle ScholarPubMed
Lopez Sancho, M. P., Sancho, J. M. L., & Rubio, J. (1985), ‘Highly convergent schemes for the calculation of bulk and surface Green functions’, Journal of Physics F: Metal Physics 15, 851.CrossRefGoogle Scholar
Low, T., Jiang, Y., Katsnelson, M. & Guinea, F. (2012), ‘Electron pumping in graphene mechanical resonators’, Nano Lett. 12, 850–854.CrossRefGoogle ScholarPubMed
Luryi, S. (1989), ‘Coherent versus incoherent resonant tunneling and implications for fast devices’, Superlattices and Microstructures 5, 375–382.CrossRefGoogle Scholar
Luttinger, J. M. (1951), ‘The effect of a magnetic field on electrons in a periodic potential’, Phys. Rev. 84, 814–817.CrossRefGoogle Scholar
Luttinger, J. M. (1963), ‘An exactly soluble model of a many-fermion system’, J. Math. Phys. 4, 1154–1162.CrossRefGoogle Scholar
Maassen, J., Zahid, F. & Guo, H. (2009), ‘Effects of dephasing in molecular transport junctions using atomistic first principles’, Phys. Rev. B 80, 125423.CrossRefGoogle Scholar
Mak, K. F., Lui, C. H., Shan, J. & Heinz, T. F. (2009), ‘Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy’, Phys. Rev. Lett. 102, 256405.CrossRefGoogle ScholarPubMed
Marconcini, P. & Macucci, M. (2011), ‘The k.p method and its application to graphene, carbon nanotubes and graphene nanoribbons: The Dirac equation’, La Rivista del Nuovo Cimento 34, 489–584.Google Scholar
Margine, E. R., Bocquet, M.-L. & Blase, X. (2008), ‘Thermal stability of graphene and nanotube covalent functionalization’, Nano Lett. 8, 3315–3319.CrossRefGoogle ScholarPubMed
Martel, R., Derycke, V., Lavoie, C., et al. (2001), ‘Ambipolar electrical transport in semiconducting single-wall carbon nanotubes’, Phys. Rev. Lett. 87, 256805.CrossRefGoogle ScholarPubMed
Martinez, D. F. (2003), ‘Floquet-Green function formalism for harmonically driven Hamiltonians’, Journal of Physics A: Mathematical and General 36, 9827.CrossRefGoogle Scholar
Marx, D. & Hutter, J. (2000), Modern Methods and Algorithms of Quantum Chemistry, chapter ‘Ab initio molecular dynamics: Theory and implementation’, pp. 329–477.Google Scholar
Marzari, N. & Vanderbilt, D. (1997), ‘Maximally localized generalized Wannier functions for composite energy bands’, Phys. Rev. B 56, 12847–12865.CrossRefGoogle Scholar
Matsumura, H. & Ando, T. (2001), ‘Conductance of carbon nanotubes with a Stone–Wales defect’, J. Phys. Soc. Jpn. 70, 2657–2665.CrossRefGoogle Scholar
Matsuo, Y., Tahara, K. & Nakamura, E. (2003), ‘Theoretical studies on structures and aromaticity of finite-length armchair carbon nanotubes’, Org. Lett. 5, 3181–3184.CrossRefGoogle ScholarPubMed
Mayorov, A. S., Gorbachev, R. V., Morozov, S. V., et al. (2011), ‘Micrometer-scale ballistic transport in encapsulated graphene at room temperature’, Nano Lett. 11, 2396–2399.CrossRefGoogle ScholarPubMed
McCann, E., Abergel, D. S. & Fal'ko, V. I. (2007), ‘The low energy electronic band structure of bilayer graphene’, The European Physical Journal Special Topics 148, 91–103.CrossRefGoogle Scholar
McCann, E. & Fal'ko, V. I. (2006), ‘Landau-level degeneracy and quantum Hall effect in a graphite bilayer’, Phys. Rev. Lett. 96, 086805.CrossRefGoogle Scholar
McCann, E., Kechedzhi, K., Fal'ko, V. I., et al. (2006), ‘Weak-localization magnetoresistance and valley symmetry in graphene’, Phys. Rev. Lett. 97, 146805.CrossRefGoogle ScholarPubMed
McClure, J. (1969), ‘Electron energy band structure and electronic properties of rhombohedral graphite’, Carbon 7, 425–432.CrossRefGoogle Scholar
McClure, J. W. (1956), ‘Diamagnetism of graphite’, Phys. Rev. 104, 666–671.CrossRefGoogle Scholar
McClure, J. W. (1957), ‘Band structure of graphite and de Haas-van Alphen effect’, Phys. Rev. 108, 612–618.CrossRefGoogle Scholar
McCreary, K. M., Swartz, A. G., Han, W., Fabian, J. & Kawakami, R. K. (2012), ‘Magnetic moment formation in graphene detected by scattering of pure spin currents’, Phys. Rev. Lett. 109, 186604.CrossRefGoogle ScholarPubMed
Meir, Y. & Wingreen, N. S. (1992), ‘Landauer formula for the current through an interacting electron region’, Phys. Rev. Lett. 68, 2512–2515.CrossRefGoogle ScholarPubMed
Mello, P. A., Pereyra, P. & Kumar, N. (1988), ‘Macroscopic approach to multichannel disordered conductors’, Ann. Phys. 181, 290–317.CrossRefGoogle Scholar
Meric, I., Baklitskaya, N., Kim, P. & Shepard, K. (2008), ‘RF performance of top-gated, zero-bandgap graphene field-effect transistors’, in ‘Electron devices’ meeting, 2008. IEEE International, pp. 1–4.Google Scholar
Meyer, J. C., Girit, C. O., Crommie, M. F. & Zettl, A. (2008), ‘Imaging and dynamics of light atoms and molecules on graphene’, Nature 454, 319–322.CrossRefGoogle Scholar
Meyer, J. C., Kisielowski, C., Erni, R., et al. (2008), ‘Direct imaging of lattice atoms and topological defects in graphene membranes’, Nano Lett. 8, 3582–3586.CrossRefGoogle ScholarPubMed
Miao, F., Wijeratne, S., Zhang, Y., et al. (2007), ‘Phase-coherent transport in graphene quantum billiards’, Science 317, 1530–1533.CrossRefGoogle ScholarPubMed
Mingo, N. (2006), ‘Anharmonic phonon flow through molecular-sized junctions’, Phys. Rev. B 74, 125402.CrossRefGoogle Scholar
Mingo, N., Esfarjani, K., Broido, D. A. & Stewart, D. A. (2010), ‘Cluster scattering effects on phonon conduction in graphene’, Phys. Rev. B 81, 045408.CrossRefGoogle Scholar
Mingo, N. & Han, J. (2001), ‘Conductance of metallic carbon nanotubes dipped into metal’, Phys. Rev. B 64, 201401.CrossRefGoogle Scholar
Mingo, N., Yang, L., Han, J. & Anantram, M. (2001), ‘Resonant versus anti-resonant tunneling at carbon nanotube ABA heterostructures’, Physica Status Solidi (B) 226, 79–85.3.0.CO;2-5>CrossRefGoogle Scholar
Mintmire, J. W., Dunlap, B. I. & White, C. T. (1992), ‘Are fullerene tubules metallic?’, Phys. Rev. Lett. 68, 631–634.CrossRefGoogle ScholarPubMed
Mintmire, J. W. & White, C. T. (1998), ‘Universal density of states for carbon nanotubes’, Phys. Rev. Lett. 81, 2506–2509.CrossRefGoogle Scholar
Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. (2010), ‘Fano resonances in nanoscale structures’, Rev. Mod. Phys. 82, 2257–2298.CrossRefGoogle Scholar
Miyake, T. & Saito, S. (2003), ‘Quasiparticle band structure of carbon nanotubes’, Phys. Rev. B 68, 155424.CrossRefGoogle Scholar
Miyamoto, Y., Nakada, K. & Fujita, M. (1999), ‘First-principles study of edge states of hterminated graphitic ribbons’, Phys. Rev. B 59, 9858–9861.CrossRefGoogle Scholar
Miyamoto, Y., Saito, S. & Tománek, D. (2001), ‘Electronic interwall interactions and charge redistribution in multiwall nanotubes’, Phys. Rev. B 65, 041402.CrossRefGoogle Scholar
Monkhorst, H. J. & Pack, J. D. (1976), ‘Special points for Brillouin-zone integrations’, Phys. Rev. B 13, 5188–5192.CrossRefGoogle Scholar
Monteverde, M., Ojeda-Aristizabal, C., Weil, R., et al. (2010), ‘Transport and elastic scattering times as probes of the nature of impurity scattering in single-layer and bilayer graphene’, Phys. Rev. Lett. 104, 126801.CrossRefGoogle ScholarPubMed
Moon, J., Curtis, D., Hu, M., et al. (2009), ‘Epitaxial-graphene RF field-effect transistors on Si-face 6h-SiC substrates’, Electron Device Letters, IEEE 30, 650–652.CrossRefGoogle Scholar
Moore, A. (1974), Chemistry and Physics of Carbon, Vol. 11, P. L., WalkerandP. A., Thrower (eds.), Marcel Dekker Inc., New York, chapter ‘Highly oriented pyrolytic graphite’.Google Scholar
Moser, J., Tao, H., Roche, S., et al. (2010), ‘Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization’, Phys. Rev. B 81, 205445.CrossRefGoogle Scholar
Moskalets, M. & Büttiker, M. (2002), ‘Floquet scattering theory of quantum pumps’, Phys. Rev. B 66, 205320.CrossRefGoogle Scholar
Mott, N. F. (1990), Metal–Insulator Transitions, 2nd edition. Taylor and Francis, UK.Google Scholar
Mpourmpakis, G., Andriotis, A. N. & Vlachos, D. G. (2010), ‘Identification of descriptors for the co-interaction with metal nanoparticles’, Nano Lett. 10, 1041–1045.CrossRefGoogle ScholarPubMed
Mucciolo, E. R., Castro Neto, A. H. & Lewenkopf, C. H. (2009), ‘Conductance quantization and transport gaps in disordered graphene nanoribbons’, Phys. Rev. B 79, 075407.CrossRefGoogle Scholar
Mueller, T., Xia, F. & Avouris, P. (2010), ‘Graphene photodetectors for high-speed optical communications’, Nature Photonics 4, 297–301.CrossRefGoogle Scholar
Mukhopadhyay, P. & Gupta, R. (2011), ‘Trends and frontiers in graphene-based polymer nanocomposites’, Plastics Engineeering (Jan.), 32–42.Google Scholar
Muñoz, E. (2012), ‘Phonon-limited transport coefficients in extrinsic graphene’, J. Phys.: Condens. Matter 24, 195302.Google ScholarPubMed
Muscat, J., Wander, A. & Harrison, N. (2001), ‘On the prediction of band gaps from hybrid functional theory’, Chemical Physics Letters 342, 397–401.CrossRefGoogle Scholar
Nair, R. R., Blake, P., Grigorenko, A. N., et al. (2008), ‘Fine structure constant defines visual transparency of graphene’, Science 320, 1308.CrossRefGoogle ScholarPubMed
Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. (1996), ‘Edge state in graphene ribbons: Nanometer size effect and edge shape dependence’, Phys. Rev. B 54, 17954–17961.CrossRefGoogle Scholar
Nakaharaim, S., Iijima, T., Ogawa, S., et al. (2013), ‘Conduction tuning of graphene based on defect-induced localization’, ACS Nano 7, 5694–5700.Google Scholar
Nathan, A., Ahnood, A., Cole, M., et al. (2012), ‘Flexible electronics: The next ubiquitous platform’, Proceedings of the IEEE 100 (Special Centennial Issue), 1486–1517.CrossRefGoogle Scholar
Nemec, N., Tománek, D. & Cuniberti, G. (2006), ‘Contact dependence of carrier injection in carbon nanotubes: An ab initio study’, Phys. Rev. Lett. 96, 076802.CrossRefGoogle Scholar
Nobunaga, D., Abedifard, E., Roohparvar, F., et al. (2008), ‘A 50nm 8GB nand flash memory with 100 MB/s program throughput and 200 MB/s ddr interface’, in ‘Solid-state circuits’ Conference, 2008. Digest of Technical Papers. IEEE International, pp. 426–625.Google Scholar
Nogueira, F., Castro, A. & Marques, M. A. L. (2003), ‘A tutorial on density functional theory’, A Primer in Density Functional Theory, Fiolhais, C., Nogueira, F. & Marques, M. A. L., eds., Lecture Notes in Physics 620, Springer, Berlin, pp. 218–256.CrossRefGoogle Scholar
Nomura, K. & MacDonald, A. H. (2006), ‘Quantum Hall ferromagnetism in graphene’, Phys. Rev. Lett. , 256602.CrossRefGoogle Scholar
Nomura, K. & MacDonald, A. H. (2007), ‘Quantum transport of massless Dirac fermions’, Phys. Rev. Lett. 98, 076602.CrossRefGoogle ScholarPubMed
Novoselov, K. S., Fal'ko, V. I., Colombo, L., et al. (2012), ‘A roadmap for graphene’, Nature 490, 192–200.CrossRefGoogle ScholarPubMed
Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2005 b), ‘Two-dimensional gas of massless Dirac fermions in graphene’, Nature 490, 197–200.Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2004), ‘Electric field effect in atomically thin carbon films’, Science 306, 666–669.CrossRefGoogle ScholarPubMed
Novoselov, K. S., Jiang, D., Schedin, F., et al. (2005 a), ‘Two-dimensional atomic crystals’, Proceedings of the National Academy of Sciences of the United States of America 102, 10451–10453.CrossRefGoogle ScholarPubMed
Novoselov, K. S., Jiang, Z., Zhang, Y., et al. (2007), ‘Room-temperature quantum Hall effect in graphene’, Science 315, 1379.CrossRefGoogle ScholarPubMed
Nozaki, D., Girard, Y. & Yoshizawa, K. (2008), ‘Theoretical study of long-range electron transport in molecular junctions’, The Journal of Physical Chemistry C 112, 17408–17415.CrossRefGoogle Scholar
Nyakiti, L., Wheeler, V., Garces, N., et al. (2012), ‘Enabling graphene-based technologies: Toward wafer-scale production of epitaxial graphene’, MRS Bulletin 37, 1149–1157.CrossRefGoogle Scholar
Oberlin, A., Endo, M. & Koyama, T. (1976), ‘Filamentous growth of carbon through benzene decomposition’, Journal of Crystal Growth 32, 335–349.CrossRefGoogle Scholar
Ochoa, H., Castro Neto, A. H. & Guinea, F. (2012), ‘Elliot–Yafet mechanism in graphene’, Phys. Rev. Lett. 108, 206808.CrossRefGoogle ScholarPubMed
O'Connell, M. J., Bachilo, S. M., Huffman, C. B., et al. (2002), ‘Band gap fluorescence from individual single-walled carbon nanotubes’, Science 297, 593–596.CrossRefGoogle ScholarPubMed
Odom, T. W., Huang, J.-L., Kim, P. & Lieber, C. M. (1998), ‘Atomic structure and electronic properties of single-walled carbon nanotubes’, Nature 391, 62–64.CrossRefGoogle Scholar
Odom, T. W., Huang, J.-L. & Lieber, C. M. (2002), ‘STM studies of single-walled carbon nanotubes’, Journal of Physics: Condensed Matter 14, R145.Google Scholar
Oezyilmaz, B., Jarillo-Herrero, P., Efetov, D., et al. (2007), ‘Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions’, Phys. Rev. Lett. 99, 166804.CrossRefGoogle Scholar
Oka, T. & Aoki, H. (2009), ‘Photovoltaic Hall effect in graphene’, Phys. Rev. B 79, 081406.CrossRefGoogle Scholar
Okada, S. & Oshiyama, A. (2001), ‘Magnetic ordering in hexagonally bonded sheets with first-row elements’, Phys. Rev. Lett. 87, 146803.CrossRefGoogle ScholarPubMed
Oksanen, M., Uppstu, A., & Laitinen, A., et al. (undated), ‘Single-and multi-mode Fabry-perot interference in suspended graphene’, arXiv: 1306.1212 [cond-mat.mes-hall].
Onida, G., Reining, L. & Rubio, A. (2002), ‘Electronic excitations: Density-functional versus many-body Green's-function approaches’, Rev. Mod. Phys. 74, 601–659.CrossRefGoogle Scholar
Orellana, P. A. & Pacheco, M. (2007), ‘Photon-assisted transport in a carbon nanotube calculated using Green's function techniques’, Phys. Rev. B 75, 115427.CrossRefGoogle Scholar
Ormsby, J. L. & King, B. T. (2004), ‘Clar valence bond representation of bonding in carbon nanotubes’, J. Org. Chem. 69, 4287–4291.CrossRefGoogle ScholarPubMed
Ortmann, F., Cresti, A., Montambaux, G. & Roche, S. (2011), ‘Magnetoresistance in disordered graphene: The role of pseudospin and dimensionality effects unraveled’, EPL (Europhysics Letters )94, 47006.CrossRefGoogle Scholar
Ortmann, F. & Roche, S. (2011), ‘Polaron transport in organic crystals: Temperature tuning of disorder effects’, Phys. Rev. B 84, 180302.CrossRefGoogle Scholar
Ortmann, F. & Roche, S. (2013), ‘Splitting of the zero-energy Landau level and universal dissipative conductivity at critical points in disordered graphene’, Phys. Rev. Lett. 110, 086602.CrossRefGoogle ScholarPubMed
Ostrovsky, P. M., Gornyi, I. V. & Mirlin, A. D. (2006), ‘Electron transport in disordered graphene’, Phys. Rev. B 74, 235443.CrossRefGoogle Scholar
Ostrovsky, P. M., Gornyi, I. V. & Mirlin, A. D. (2008), ‘Theory of anomalous quantum Hall effects in graphene’, Phys. Rev. B 77, 195430.CrossRefGoogle Scholar
Ostrovsky, P. M., Titov, M., Bera, S., Gornyi, I. V. & Mirlin, A. D. (2010), ‘Diffusion and criticality in undoped graphene with resonant scatterers’, Phys. Rev. Lett. 105, 266803.CrossRefGoogle ScholarPubMed
Ouyang, M., Huang, J.-L., Cheung, C. L. & Lieber, C. M. (2001 a), ‘Atomically resolved single-walled carbon nanotube intramolecular junctions’, Science 291, 97–100.CrossRefGoogle ScholarPubMed
Ouyang, M., Huang, J.-L., Cheung, C. L. & Lieber, C. M. (2001 b), ‘Energy gaps in “metallic” single-walled carbon nanotubes’, Science 292, 702–705.CrossRefGoogle ScholarPubMed
Ouyang, Y., Dai, H. & Guo, J. (2010), ‘Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material’, 3, 8–15.Google Scholar
Paier, J., Marsman, M., Hummer, K., et al. (2006), ‘Screened hybrid density functionals applied to solids’, The Journal of Chemical Physics 124, 154709.CrossRefGoogle ScholarPubMed
Palacios, J. J., Pérez-Jiménez, A. J., Louis, E., SanFabián, E. & Vergés, J. A. (2003), ‘First-principles phase-coherent transport in metallic nanotubes with realistic contacts’, Phys. Rev. Lett. 90, 106801.CrossRefGoogle ScholarPubMed
Park, H., Zhao, J. & Lu, J. P. (2006), ‘Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes’, Nano Lett. 6, 916–919.CrossRefGoogle ScholarPubMed
Park, J. K., Song, S. M., Mun, J. H. & Cho, B. J. (2011), ‘Graphene gate electrode for MOS structure-based electronic devices’, Nano Lett. 11, 5383–5386.CrossRefGoogle ScholarPubMed
Park, J.-Y., Rosenblatt, S., Yaish, Y., et al. (2004), ‘Electron-phonon scattering in metallic single-walled carbon nanotubes’, Nano Letters 4, 517–520.CrossRefGoogle Scholar
Park, K.-T., Kang, M., Kim, D., et al. (2008), ‘A zeroing cell-to-cell interference page architecture with temporary lsb storing and parallel msb program scheme for mlc nand flash memories’, IEEE Journal of Solid-State Circuits 43, 919–928.CrossRefGoogle Scholar
Park, N., Sung, D., Lim, S., Moon, S. & Hong, S. (2009), ‘Realistic adsorption geometries and binding affinities of metal nanoparticles onto the surface of carbon nanotubes’, Appl. Phys. Lett. 94, 073105.CrossRefGoogle Scholar
Parks, E. K., Zhu, L., Ho, J. & Riley, S. J. (1994), ‘The structure of small nickel clusters. I. Ni3–Ni15’, J. Chem. Phys. 100, 7206–7222.CrossRefGoogle Scholar
Pastawski, H. M. (1991), ‘Classical and quantum transport from generalized Landauer Buttiker equations’, Phys. Rev. B 44, 6329–6339.CrossRefGoogle ScholarPubMed
Pastawski, H. M. & Medina, E. (2001), ‘Tight binding methods in quantum transport through molecules and small devices: From the coherent to the decoherent description’, Revista Mexicana de Fisica 47 S1, 1–23.Google Scholar
Pastawski, H. M., Weisz, J. F. & Albornoz, S. (1983), ‘Matrix continued-fraction calculation of localization length’, Phys. Rev. B 28, 6896–6903.CrossRefGoogle Scholar
Patel, S. R., Stewart, D. R., Marcus, C. M., et al. (1998), ‘Non-Gaussian distribution of Coulomb blockade peak heights in quantum dots’, Phys. Rev. Lett. 81, 5900.CrossRefGoogle Scholar
Paulsson, M. & Brandbyge, M. (2007), ‘Transmission eigenchannels from nonequilibrium Green's functions’, Phys. Rev. B 76, 115117.CrossRefGoogle Scholar
Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. (1992), ‘Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients’, Rev. Mod. Phys. 64, 1045–1097.CrossRefGoogle Scholar
Peierls, R. (1933), ‘On the theory of the diamagnetism of conduction electrons’, Z. Phys 80, 763.CrossRefGoogle Scholar
Peng, S. & Cho, K. (2003), ‘Ab initio study of doped carbon nanotube sensors’, Nano Lett. 3, 513517.CrossRefGoogle Scholar
Perdew, J. P. (1991), Electronic Structure of Solids '91, Akademie Verlag, Berlin, p. 11.Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. (1996), ‘Generalized gradient approximation made simple’, Phys. Rev. Lett. 77, 3865–3868.CrossRefGoogle ScholarPubMed
Perdew, J. P. & Zunger, A. (1981), ‘Self-interaction correction to density-functional approximations for many-electron systems’, Phys. Rev. B 23, 5048–5079.CrossRefGoogle Scholar
Pereira, V. M., dos Santos, L. & Neto, A. H. C. (2008), ‘Modeling disorder in graphene’, Phys. Rev.B 77, 115109.CrossRefGoogle Scholar
Perez-Piskunow, P. M., Usaj, G., Balseiro, C. A. & Foa Torres, L. E. F. (2013), ‘Unveiling laser-induced chiral edge states in graphene’, arxiv: 1308.4362 [cond-mat.mes-hall].Google Scholar
Perfetto, E., Stefanucci, G. & Cini, M. (2010), ‘Time-dependent transport in graphene nanoribbons’, Phys. Rev. B 82, 035446.CrossRefGoogle Scholar
Persson, M. P., Lherbier, A., Niquet, Y.-M., Triozon, F. & Roche, S. (2008), ‘Orientational dependence of charge transport in disordered silicon nanowires’, Nano Lett. 8, 4146–4150.CrossRefGoogle ScholarPubMed
Phillips, J. C. (1958), ‘Energy-band interpolation scheme based on a pseudopotential’, Phys. Rev. 112, 685–695.CrossRefGoogle Scholar
Pisana, S., Lazzeri, M., Casiraghi, C., et al. (2007), ‘Breakdown of the adiabatic Born–Oppenheimer approximation in graphene’, Nature Materials 6, 198–201.CrossRefGoogle ScholarPubMed
Platero, G. & Aguado, R. (2004), ‘Photon-assisted transport in semiconductor nanostructures’, Physics Reports 395, 1–157.CrossRefGoogle Scholar
Poncharal, P., Berger, C., Yi, Y., Wang, Z. L. & de Heer, W. A. (2002), ‘Room temperature ballistic conduction in carbon nanotubes’, The Journal of Physical Chemistry B 106, 12104–12118.CrossRefGoogle Scholar
Ponomarenko, L. A., Geim, A. K., Zhukov, A. A., et al. (2011), ‘Tunable metal-insulator transition in double-layer graphene heterostructures’, Nature Physics 7, 958–961.CrossRefGoogle Scholar
Ponomarenko, L. A., Gorbachev, R. V., Yu, G. L., et al. (2013), ‘Cloning of Dirac fermions in graphene superlattices’, Nature 497, 594–597.CrossRefGoogle ScholarPubMed
Ponomarenko, L. A., Schedin, F., Katsnelson, M. I., et al. (2008), ‘Chaotic Dirac billiard in graphene quantum dots’, Science 320, 356–358.CrossRefGoogle ScholarPubMed
Poumirol, J.-M., Cresti, A., Roche, S., et al. (2010), ‘Edge magnetotransport fingerprints in disordered graphene nanoribbons’, Phys. Rev. B 82, 041413.CrossRefGoogle Scholar
Prada, E., San-Jose, P. & Schomerus, H. (2009), ‘Quantum pumping in graphene’, Phys. Rev. B 80, 245414.CrossRefGoogle Scholar
Prasher, R. S., Hu, X. J., Chalopin, Y., et al. (2009), ‘Turning carbon nanotubes from exceptional heat conductors into insulators’, Phys. Rev. Lett. 102, 105901.CrossRefGoogle ScholarPubMed
Purewal, M. S., Hong, B. H., Ravi, A., et al. (2007), ‘Scaling of resistance and electron mean free path of single-walled carbon nanotubes’, Phys. Rev. Lett. 98, 186808.CrossRefGoogle ScholarPubMed
Querlioz, D., Apertet, Y., Valentin, A., et al. (2008), ‘Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder’, Applied Physics Letters 92, 042108.CrossRefGoogle Scholar
Radchenko, T. M., Shylau, A. A. & Zozoulenko, I. V. (2012), ‘Influence of correlated impurities on conductivity of graphene sheets: Time-dependent real-space Kubo approach’, Phys. Rev. B 86, 035418.CrossRefGoogle Scholar
Raquet, B., Avriller, R., Lassagne, B., et al. (2008), ‘Onset of Landau-level formation in carbon-nanotube-based electronic Fabry–Perot resonators’, Phys. Rev. Lett. 101, 046803.CrossRefGoogle ScholarPubMed
Ravagnan, L., Piseri, P., Bruzzi, M., et al. (2007), ‘Influence of cumulenic chains on the vibrational and electronic properties of sp-sp2 amorphous carbon’, Phys. Rev. Lett. 98, 216103.CrossRefGoogle Scholar
Ravagnan, L., Siviero, F., Lenardi, C., et al. (2002), ‘Cluster-beam deposition and in situ characterization of carbyne-rich carbon films’, Phys. Rev. Lett. 89, 285506.CrossRefGoogle ScholarPubMed
Rechtsman, M. C., Zeuner, J. M., Plotnik, Y., et al. (2013), ‘Photonic Floquet topological insulators’, Nature 496, 196–200.CrossRefGoogle ScholarPubMed
Reich, S., Maultzsch, J., Thomsen, C. & Ordejón, P. (2002), ‘Tight-binding description of graphene’, Phys. Rev. B 66, 035412.CrossRefGoogle Scholar
Ribeiro, R., Poumirol, J.-M., Cresti, A., et al. (2011), ‘Unveiling the magnetic structure of graphene nanoribbons’, Phys. Rev. Lett. 107, 086601.CrossRefGoogle ScholarPubMed
Rickhaus, P., Maurand, R., Liu, M.-H., et al. (2013), ‘Ballistic interferences in suspended graphene’, Nature Communications 4, 2342, DOI 10.1038/ncomms 2342.CrossRefGoogle ScholarPubMed
Rignanese, G.-M. (1998), First-principles molecular dynamics study of SiO2: Surface and interface with Si, Ph.D. thesis, Université Catholique de Louvain.Google Scholar
Ritter, K. A. & Lyding, J. W. (2009), ‘The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons’, Nature Materials 8, 235–242.CrossRefGoogle ScholarPubMed
Rocha, A. R. (2007), Theoretical and computational aspects of electronic transport at the nanoscale, Ph.D. thesis, University of Dublin, Trinity College.Google Scholar
Rocha, A. R., Garcia-Suarez, V. M., Bailey, S. W., et al. (2005), ‘Towards molecular spintronics’, Nature Materials 4, 335–339.CrossRefGoogle ScholarPubMed
Rocha, A. R., Garca-Surez, V. M., Bailey, S., et al. (2006), ‘Spin and molecular electronics in atomically generated orbital landscapes’, Phys. Rev. B 73, 085414.CrossRefGoogle Scholar
Rocha, A. R., Rossi, M., Fazzio, A. & da Silva, A. J. R. (2008), ‘Designing real nanotube-based gas sensors’, Phys. Rev. Lett. 100, 176803.CrossRefGoogle ScholarPubMed
Rocha, C. G., Foa Torres, L. E. F. & Cuniberti, G. (2010), ‘AC transport in graphene-based Fabry–Pérot devices’, Phys. Rev. B 81, 115435.CrossRefGoogle Scholar
Roche, S. (1996), Contribution à l'étude théorique du transport electronique dan les quasicristaux, Ph.D. thesis, Université Joseph-Fourier.Google Scholar
Roche, S. (1999), ‘Quantum transport by means of o(n) real-space methods’, Phys. Rev. B 59, 2284–2291.CrossRefGoogle Scholar
Roche, S. (2011), ‘Nanoelectronics: Graphene gets a better gap’, Nature Nanotechnology 6, 8–9.CrossRefGoogle ScholarPubMed
Roche, S., Akkermans, E., Chauvet, O., et al. (2006), Understanding Carbon Nanotubes, from Basics to Application, Lect. Notes Phys., chapter ‘Transport properties’, pp. 335–437.Google Scholar
Roche, S., Dresselhaus, G., Dresselhaus, M. S. & Saito, R. (2000), ‘Aharonov–Bohm spectral features and coherence lengths in carbon nanotubes’, Phys. Rev. B 62, 16092–16099.CrossRefGoogle Scholar
Roche, S., Jiang, J., Triozon, F. & Saito, R. (2005), ‘Quantum dephasing in carbon nanotubes due to electron–phonon coupling’, Phys. Rev. Lett. 95, 076803.CrossRefGoogle ScholarPubMed
Roche, S., Leconte, N., Ortmann, F., et al. (2012), ‘Quantum transport in disordered graphene: A theoretical perspective’, Solid State Commun. 152, 1404–1410.CrossRefGoogle Scholar
Roche, S. & Mayou, D. (1997), ‘Conductivity of quasiperiodic systems: A numerical study’, Phys. Rev. Lett. 79, 2518–2521.CrossRefGoogle Scholar
Roche, S. & Saito, R. (2001), ‘Magnetoresistance of carbon nanotubes: From molecular to meso-scopic fingerprints’, Phys. Rev. Lett. 87, 246803.CrossRefGoogle Scholar
Roche, S., Triozon, F., Rubio, A. & Mayou, D. (2001), ‘Conduction mechanisms and magneto-transport in multiwalled carbon nanotubes’, Phys. Rev. B 64, 121401.CrossRefGoogle Scholar
Rohlfing, M., Wang, N.-P., Krüger, P. & Pollmann, J. (2003), ‘Image states and excitons at insulator surfaces with negative electron affinity’, Phys. Rev. Lett. 91, 256802.CrossRefGoogle ScholarPubMed
Romo-Herrera, J. M., Terrones, M., Terrones, H., Dag, S. & Meunier, V. (2006), ‘Covalent 2D and 3D networks from 1D nanostructures: Designing new materials’, Nano Lett. 7, 570–576.Google Scholar
Romo-Herrera, J. M., Terrones, M., Terrones, H. & Meunier, V. (2008), ‘Guiding electrical current in nanotube circuits using structural defects: A step forward in nanoelectronics’, ACS Nano 2, 2585–2591.CrossRefGoogle ScholarPubMed
Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. (2013), ‘Anomalous edge states and the bulk-edge correspondence for periodically-driven two dimensional systems’, Phys. Rev. X 3, 031005.Google Scholar
Rycerz, A., Tworzydo, J. & Beenakker, C. W. J. (2007), ‘Anomalously large conductance fluctuations in weakly disordered graphene’, Europhys. Lett. 79, 57003.CrossRefGoogle Scholar
Saito, R., Dresselhaus, G. & Dresselhaus, M. (1998), Physical Properties of Carbon Nanotubes, Imperial College Press, London.CrossRefGoogle Scholar
Saito, R., Dresselhaus, G. & Dresselhaus, M. S. (1994), ‘Magnetic energy bands of carbon nanotubes’, Phys. Rev. B 50, 14698–14701.CrossRefGoogle ScholarPubMed
Saito, R., Dresselhaus, G. & Dresselhaus, M. S. (1996 a), ‘Erratum: Magnetic energy bands of carbon nanotubes’, Phys. Rev. B 53, 10408.CrossRefGoogle ScholarPubMed
Saito, R., Dresselhaus, G. & Dresselhaus, M. S. (1996 b), ‘Tunneling conductance of connected carbon nanotubes’, Phys. Rev. B 53, 2044–2050.CrossRefGoogle ScholarPubMed
Saito, R., Dresselhaus, G. & Dresselhaus, M. S. (2000), ‘Trigonal warping effect of carbon nanotubes’, Phys. Rev. B 61, 2981–2990.CrossRefGoogle Scholar
Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. (1992 a), ‘Electronic structure of chiral graphene tubules’, Applied Physics Letters 60, 2204–2206.CrossRefGoogle Scholar
Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. (1992 b), ‘Electronic structure of graphene tubules based on C60’, Phys. Rev. B 46, 1804–1811.CrossRefGoogle ScholarPubMed
Sakhaee-Pour, A., Ahmadian, M. & Vafai, A. (2008), ‘Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors’, Solid State Communications 145, 168–172.CrossRefGoogle Scholar
Sambe, H. (1973), ‘Steady states and quasienergies of a quantum-mechanical system in an oscillating field’, Phys. Rev. A 7, 2203–2213.CrossRefGoogle Scholar
San-Jose, P., Prada, E., Kohler, S. & Schomerus, H. (2011), ‘Single-parameter pumping in graphene’, Phys. Rev. B 84, 155408.CrossRefGoogle Scholar
San-Jose, P., Prada, E., Schomerus, H. & Kohler, S. (2012), ‘Laser-induced quantum pumping in graphene’, Appl. Phys. Lett. 101, 153506.CrossRefGoogle Scholar
Sanvito, S., Lambert, C. J., Jefferson, J. H. & Bratkovsky, A. M. (1999), ‘General Greens-function formalism for transport calculations with spd Hamiltonians and giant magnetoresistance in Co- and Ni-based magnetic multilayers’, Phys. Rev. B 59, 11936–11948.CrossRefGoogle Scholar
Sasaki, K., Murakami, S. & Saito, R. (2006), ‘Stabilization mechanism of edge states in graphene’, Applied Physics Letters 88, 113110.CrossRefGoogle Scholar
Savelev, S. E. & Alexandrov, A. S. (2011), ‘Massless Dirac fermions in a laser field as a counterpart of graphene superlattices’, Phys. Rev. B 84, 035428.CrossRefGoogle Scholar
Savelev, S. E., Häusler, W. & Hänggi, P. (2012), ‘Current resonances in graphene with time-dependent potential barriers’, Phys. Rev. Lett. 109, 226602.CrossRefGoogle Scholar
Savić, I., Mingo, N. & Stewart, D. A. (2008), ‘Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: Is localization observable?’, Phys. Rev. Lett. 101, 165502.CrossRefGoogle ScholarPubMed
Scholz, A., Lopez, A. & Schliemann, J. (2013), ‘Interplay between spin-orbit interactions and a time-dependent electromagnetic field in monolayer graphene’, Phys. Rev. B 88, 045118.CrossRefGoogle Scholar
Schrödinger, E. (1926), ‘An undulatory theory of the mechanics of atoms and molecules’, Phys. Rev. 28, 1049–1070.CrossRefGoogle Scholar
Schwierz, F. (2010), ‘Graphene transistors’, Nature Nanotechnology 5, 487–496.CrossRefGoogle ScholarPubMed
Segall, M. D., Lindan, P. J. D., Probert, M. J., et al. (2002), ‘First-principles simulation: Ideas, illustrations and the Castep code’, Journal of Physics: Condensed Matter 14, 2717.Google Scholar
Sela, I. & Cohen, D. (2008), ‘Quantum stirring in low-dimensional devices’, Phys. Rev. B 77, 245440.CrossRefGoogle Scholar
Semenov, Y. G., Kim, K. W. & Zavada, J. M. (2007), ‘Spin field effect transistor with a graphene channel’, Appl. Phys. Lett. 91, 153105.CrossRefGoogle Scholar
Seneor, P., Dlubak, B., Martin, M.-B., et al. (2012), ‘Spintronics with graphene’, MRS Bulletin 37, 1245–1254.CrossRefGoogle Scholar
Seol, J. H., Jo, I., Moore, A. L., et al. (2010), ‘Two-dimensional phonon transport in supported graphene’, Science 328, 213–216.CrossRefGoogle ScholarPubMed
Sevincli, H., Li, W., Mingo, N., Cuniberti, G. & Roche, S. (2011), ‘Effects of domains in phonon conduction through hybrid boron nitride and graphene sheets’, Phys. Rev. B 84, 205444.CrossRefGoogle Scholar
Sheng, D. N., Sheng, L. & Weng, Z. Y. (2006), ‘Quantum Hall effect in graphene: Disorder effect and phase diagram’, Phys. Rev. B 73, 233406.CrossRefGoogle Scholar
Shibayama, Y., Sato, H., Enoki, T. & Endo, M. (2000), ‘Disordered magnetism at the metal–insulator threshold in nano-graphite-based carbon materials’, Phys. Rev. Lett. 84, 1744–1747.CrossRefGoogle ScholarPubMed
Shimizu, T., Haruyama, J., Marcano, D., et al. (2011), ‘Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons’, Nature Nanotechnology 6, 45–50.CrossRefGoogle ScholarPubMed
Shin, Y. (2005), Non-volatile memory technologies for beyond 2010, in ‘VLSI circuits, 2005’. Digest of Technical Papers, pp. 156–159.Google Scholar
Shirley, J. H. (1965), ‘Solution of the Schrodinger equation with a Hamiltonian periodic in time’, Phys. Rev. 138, B979–B987.CrossRefGoogle Scholar
Shon, N. H. & Ando, T. (1998), ‘Quantum transport in two-dimensional graphite system’, J. Phys. Soc. Jpn. 67, 2421–2429.CrossRefGoogle Scholar
Shytov, A. V., Rudner, M. S. & Levitov, L. S. (2008), ‘Klein backscattering and Fabry–Perot interference in graphene heterojunctions’, Phys. Rev. Lett. 101, 156804.CrossRefGoogle ScholarPubMed
Siegel, D. A., Park, C.-H.,Hwang, C., et al. (2011), ‘Many-body interactions in quasi-freestanding graphene’, Proceedings of the National Academy of Sciences 108, 11365–11369.CrossRefGoogle ScholarPubMed
Simmons, J. M., In, I., Campbell, V. E., et al. (2007), ‘Optically modulated conduction in chromophore-functionalized single-wall carbon nanotubes’, Phys. Rev. Lett. 98, 086802.CrossRefGoogle ScholarPubMed
Sire, C., Ardiaca, F., Lepilliet, S., et al. (2012), ‘Flexible gigahertz transistors derived from solution-based single-layergraphene’, Nano Lett. 12, 1184–1188.CrossRefGoogle Scholar
Skylaris, C.-K., Haynes, P. D., Mostofi, A. A. & Payne, M. C. (2005), ‘Introducing [ONETEP]: Linear-scaling density functional simulations on parallel computers’, J. Chem. Phys. 122, 084119.CrossRefGoogle Scholar
Slonczewski, J. C. & Weiss, P. R. (1958), ‘Band structure of graphite’, Phys. Rev. 109, 272–279.CrossRefGoogle Scholar
Sluiter, M. H. F. & Kawazoe, Y. (2003), ‘Cluster expansion method for adsorption: Application to hydrogenchemisorptionongraphene’, Phys. Rev. B 68, 085410.CrossRefGoogle Scholar
Smith, B. W., Monthioux, M. & Luzzi, D. E. (1998), ‘Encapsulated C60 in carbon nanotubes’, Nature 396, 323–324.CrossRefGoogle Scholar
Sofo, J. O., Chaudhari, A. S. & Barber, G. D. (2007), ‘Graphane: A two-dimensional hydrocarbon’, Phys. Rev. B 75, 153401.CrossRefGoogle Scholar
Soler, J. M., Artacho, E., Gale, J. D., et al. (2002), ‘The siesta method for ab initio order-N materials simulation’, Journal of Physics: Condensed Matter 14, 2745.Google Scholar
Son, Y.-W., Cohen, M. L. & Louie, S. G. (2006 a), ‘Energy gaps in graphene nanoribbons’, Phys. Rev. Lett. 97, 216803.CrossRefGoogle ScholarPubMed
Son, Y.-W., Cohen, M. L. & Louie, S. G. (2006 b), ‘Half-metallic graphene nanoribbons’, Nature 444, 347–349.CrossRefGoogle ScholarPubMed
Soriano, D., Leconte, N., Ordejon, P., et al. (2011), ‘Magnetoresistance and magnetic ordering fingerprints in hydrogenated graphene’, Phys. Rev. Lett. 107, 016602.CrossRefGoogle ScholarPubMed
Spataru, C. D., Ismail-Beigi, S., Benedict, L. X. & Louie, S. G. (2004), ‘Excitonic effects and optical spectra of single-walled carbon nanotubes’, Phys. Rev. Lett. 92, 077402.CrossRefGoogle ScholarPubMed
Sprinkle, M. M. R., Hu, Y., Hankinson, J., et al. (2010), ‘Scalable templated growth of graphene nanoribbons on SiC’, Nature Nanotechnology 5, 727–731.CrossRefGoogle ScholarPubMed
Stampfer, C., Güttinger, J., Hellmüller, S., et al. (2009), ‘Energy gaps in etched graphene nanoribbons’, Phys. Rev. Lett. 102, 056403.CrossRefGoogle ScholarPubMed
Stampfer, C., Guttinger, J., Molitor, F., et al. (2008), ‘Tunable Coulomb blockade in nanostructured graphene’, Appl. Phys. Lett. 92, 012102.CrossRefGoogle Scholar
Stander, N., Huard, B. & Goldhaber-Gordon, D. (2009), ‘Evidence for Klein tunneling in graphene p-n junctions’, Phys. Rev. Lett. 102, 026807.CrossRefGoogle ScholarPubMed
Star, A., Gabriel, J.-C. P., Bradley, K. & Grüner, G. (2003), ‘Electronic detection of specific protein binding using nanotube FET devices’, Nano Lett. 3, 459–463.CrossRefGoogle Scholar
Stauber, T., Peres, N. M. R. & Guinea, F. (2007), ‘Electronic transport in graphene: A semiclas-sical approach including midgap states’, Phys. Rev. B 76, 205423.CrossRefGoogle Scholar
Stefanucci, G., Kurth, S., Rubio, A. & Gross, E. K. U. (2008), ‘Time-dependent approach to electron pumping in open quantum systems’, Phys. Rev. B 77, 075339.CrossRefGoogle Scholar
Stern, A., Aharonov, Y. & Imry, Y. (1990), ‘Phase uncertainty and loss of interference: A general picture’, Phys. Rev. A 41, 3436–3448.CrossRefGoogle ScholarPubMed
Stojetz, B., Miko, C., Forró, L. & Strunk, C. (2005), ‘Effect of band structure on quantum interference inmultiwall carbon nanotubes’, Phys. Rev. Lett. 94, 186802.CrossRefGoogle ScholarPubMed
Stone, A. & Wales, D. (1986), ‘Theoretical studies of icosahedral C60 and some related species’, Chemical Physics Letters 128, 501–503.CrossRefGoogle Scholar
Strano, M. S., Dyke, C. A., Usrey, M. L., et al. (2003), ‘Electronic structure control of singlewalled carbon nanotube functionalization’, Science 301, 1519–1522.CrossRefGoogle Scholar
Strunk, C., Stojetz, B. & Roche, S. (2006), ‘Quantum interference inmultiwall carbon nanotubes’, Semiconductor Science and Technology 21, S38.CrossRefGoogle Scholar
Stützel, E. U., Burghard, M., Kern, K., et al. (2010), ‘A graphene nanoribbon memory cell’, Small 6, 2822–2825.Google ScholarPubMed
Suárez Morell, E. & Foa Torres, L. E. F. (2012), ‘Radiation effects on the electronic properties of bilayer graphene’, Phys. Rev. B 86, 125449.CrossRefGoogle Scholar
Suárez Morell, E. E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. (2010), ‘Flat bands in slightly twisted bilayer graphene: Tight-binding calculations’, Phys. Rev. B 82, 121407.CrossRefGoogle Scholar
Suenaga, K., Wakabayashi, H., Koshino, M., et al. (2007), ‘Imaging active topological defects in carbon nanotubes’, Nature Nanotechnology 2, 358–360.CrossRefGoogle ScholarPubMed
Suzuura, H. & Ando, T. (2002), ‘Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice’, Phys. Rev. Lett. 89, 266603.CrossRefGoogle Scholar
Svensson, J. & Campbell, E. E. B. (2011), ‘Schottky barriers in carbon nanotube–metal contacts’, Journal of Applied Physics 110, 111101.CrossRefGoogle Scholar
Swartz, A. G., Odenthal, P. M., Hao, Y., Ruoff, R. S. & Kawakami, R. K. (2012), ‘Integration of the ferromagnetic insulator EuO onto graphene’, ACS Nano 6, 10063–10069.CrossRefGoogle ScholarPubMed
Switkes, M., Marcus, C. M., Campman, K. & Gossard, A. C. (1999), ‘An adiabatic quantum electron pump’, Science 283, 1905–1908.CrossRefGoogle ScholarPubMed
Syzranov, S. V., Fistul, M. V. & Efetov, K. B. (2008), ‘Effect of radiation on transport in graphene’, Phys. Rev. B 78, 045407.CrossRefGoogle Scholar
Takayama, R., Hoshi, T. & Fujiwara, T. (2004), ‘Krylov subspace method for molecular dynamics simulation based on large-scale electronic structure theory’, J. Phys. Soc. Jpn 73, 1519.CrossRefGoogle Scholar
Tamura, R. & Tsukada, M. (1994), ‘Disclinations of monolayer graphite and their electronic states’, Phys. Rev. B 49, 7697–7708.CrossRefGoogle ScholarPubMed
Tan, Y.-W., Zhang, Y., Bolotin, K., et al. (2007), ‘Measurement of scattering rate and minimum conductivity in graphene’, Phys. Rev. Lett. 99, 246803.CrossRefGoogle ScholarPubMed
Tang, Z. K., Zhang, L., Wang, N., et al. (2001), ‘Superconductivity in 4 angstrom single-walled carbon nanotubes’, Science 292, 2462–2465.CrossRefGoogle ScholarPubMed
Tapaszto, L., Dobrik, G., Lambin, P. & Biro, L. P. (2008), ‘Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography’, Nature Nanotechnology 3, 397–401.CrossRefGoogle ScholarPubMed
Terrones, H. & Terrones, M. (2003), ‘Curved nanostructured materials’, New Journal of Physics 5, 126.CrossRefGoogle Scholar
Terrones, H., Terrones, M., Hernández, E., et al. (2000), ‘New metallic allotropes of planar and tubular carbon’, Phys. Rev. Lett. 84, 1716–1719.CrossRefGoogle ScholarPubMed
Terrones, M. (2009), ‘Materials science: Nanotubes unzipped’, Nature 458, 845–846.CrossRefGoogle ScholarPubMed
Terrones, M., Banhart, F., Grobert, N., et al. (2002), ‘Molecular junctions by joining single-walled carbon nanotubes’, Phys. Rev. Lett. 89, 075505.CrossRefGoogle ScholarPubMed
Terrones, M., Botello-Mendez, A. R., Campos-Delgado, J., et al. (2010), ‘Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications’, Nano Today S, 351–372.Google Scholar
Terrones, M., Terrones, H., Banhart, F., Charlier, J.-C. & Ajayan, P. M. (2000), ‘Coalescence of single-walled carbon nanotubes’, Science 288, 1226–1229.CrossRefGoogle ScholarPubMed
Tersoff, J. (2003), ‘Nanotechnology: A barrier falls’, Nature 424, 622–623.CrossRefGoogle ScholarPubMed
Thess, A., Lee, R., Nikolaev, P., Dai, H., et al. (1996), ‘Crystalline ropes of metallic carbon nanotubes’, Science 273, 483–487.CrossRefGoogle ScholarPubMed
Thomas, L. (1927), ‘On the capture of electrons by swiftly moving electrified particles’, Proc. Roy. Soc. London. Series A 114, 561–576.CrossRefGoogle Scholar
Thouless, D. (1998), Topological Quantum Numbers in Nonrelativistic Physics, World Scientific, Singapore.CrossRefGoogle Scholar
Thouless, D. J. (1973), ‘Localization distance and mean free path in one-dimensional disordered systems’, Journal of Physics C: Solid State Physics 6, L49.CrossRefGoogle Scholar
Thouless, D. J. (1977), ‘Maximum metallic resistance in thin wires’, Phys. Rev. Lett. 39, 1167–1169.CrossRefGoogle Scholar
Thouless, D. J. (1983), ‘Quantization of particle transport’, Phys. Rev. B 27, 6083–6087.CrossRefGoogle Scholar
Tielrooij, K. J., Song, J. C. W., Jensen, S. A., et al. (2013), ‘Photoexcitation cascade and multiple hot-carrier generation in graphene’, Nature Physics advance online publication.Google Scholar
Tien, P. K. & Gordon, J. P. (1963), ‘Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films’, Phys. Rev. 129, 647–651.CrossRefGoogle Scholar
Tikhonenko, F. V., Horsell, D. W., Gorbachev, R. V. & Savchenko, A. K. (2008), ‘Weak localization in graphene flakes’, Phys. Rev. Lett. 100, 056802.CrossRefGoogle ScholarPubMed
Tikhonenko, F. V., Kozikov, A. A., Savchenko, A. K. & Gorbachev, R. V. (2009), ‘Transition between electron localization and antilocalization in graphene’, Phys. Rev. Lett. 103, 226801.CrossRefGoogle ScholarPubMed
Todd, K., Chou, H.-T., Amasha, S. & Goldhaber-Gordon, D. (2009), ‘Quantum dot behavior in graphene nanoconstrictions’, Nano Lett. 9, 416–421.CrossRefGoogle ScholarPubMed
Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. (2007), ‘Electronic spin transport and spin precession in single graphene layers at room temperature’, Nature 448, 571574.CrossRefGoogle ScholarPubMed
Torrisi, F., Hasan, T., Wu, W., et al. (2012), ‘Inkjet-printed graphene electronics’, ACS Nano ó, 2992–3006.Google Scholar
Tournus, F., Latil, S., Heggie, M. I. & Charlier, J.-C. (2005), ‘Stacking interaction between carbon nanotubes and organic molecules’, Phys. Rev. B 72, 075431.CrossRefGoogle Scholar
Trevisanutto, P. E., Giorgetti, C., Reining, L., Ladisa, M. & Olevano, V. (2008), ‘Ab initio gw many-body effects in graphene’, Phys. Rev. Lett. 101, 226405.CrossRefGoogle ScholarPubMed
Triozon, F. (2002), Diffusion quantique et conductivité dans les systèmes aperiodiques, Ph.D. thesis, Universit Joseph-Fourier.Google Scholar
Triozon, F., Lambin, P. & Roche, S. (2005), ‘Electronic transport properties of carbon nanotube based metal/semiconductor/metal intramolecular junctions’, Nanotechnology 16, 230.CrossRefGoogle ScholarPubMed
Triozon, F., Roche, S., Rubio, A. & Mayou, D. (2004), ‘Electrical transport in carbon nanotubes: Role of disorder and helical symmetries’, Phys. Rev. B 69, 121410.CrossRefGoogle Scholar
Triozon, F. & Roche, S. (2005), ‘Efficient linear scaling method for computing the Landauer–Buttiker conductance’, The European Physical Journal B – Condensed Matter and Complex Systems 46, 427–431.CrossRefGoogle Scholar
Troullier, N. & Martins, J. L. (1991), ‘Efficient pseudopotentials for plane-wave calculations’, Phys. Rev. B 43, 1993–2006.Google ScholarPubMed
Tsen, A. W., Brown, L., Levendorf, M. P., et al. (2012), ‘Tailoring electrical transport across grain boundaries in polycrystalline graphene’, Science 336, 1143.CrossRefGoogle ScholarPubMed
Tsui, D. C., Stormer, H. L. & Gossard, A. C. (1982), ‘Two-dimensional magnetotransport in the extreme quantum limit’, Phys. Rev. Lett. 48, 1559–1562.CrossRefGoogle Scholar
Tsukagoshi, K., Alphenaar, B. W. & Ago, H. (1999), ‘Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube’, Nature 401, 572–574.CrossRefGoogle Scholar
Tuan, D. V., Kotakoski, J., Louvet, T., et al. (2013), ‘Scaling properties of charge transport in polycrystalline graphene: Role of grain boundary morphologies and atomic scale electron-hole puddles’, Nano Letters 13, 1730–1735.Google Scholar
Tworzydło, J., Trauzettel, B., Titov, M., Rycerz, A. & Beenakker, C. W. J. (2006), ‘Sub-Poissonian shot noise in graphene’, Phys. Rev. Lett. 96, 246802.CrossRefGoogle ScholarPubMed
Ugarte, D. (1992), ‘Curling and closure of graphitic networks under electron-beam irradiation’, Nature 359, 707–709.CrossRefGoogle ScholarPubMed
Ugeda, M. M., Brihuega, I., Guinea, F. & Rodríguez, J. M. G. (2010), ‘Missing atom as a source of carbon magnetism’, Phys. Rev. Lett. 104, 096804.CrossRefGoogle ScholarPubMed
Ugeda, M. M., Brihuega, I., Hiebel, F., et al. (2012), ‘Electronic and structural characterization of divacancies in irradiated graphene’, Phys. Rev. B 85, 121402.CrossRefGoogle Scholar
Usaj, G. (2009), ‘Edge states interferometry and spin rotations in zigzag graphene nanoribbons’, Phys. Rev. B 80, 081414.CrossRefGoogle Scholar
van der Zande, A. M., Barton, R. A., Alden, J. S., et al. (2010), ‘Large-scale arrays of single-layer graphene resonators’, Nano Lett. 10, 4869–4873.Google ScholarPubMed
Vanderbilt, D. (1990), ‘Soft self-consistent pseudopotentials in a generalized eigenvalue formalism’, Phys. Rev. B 41, 7892–7895.CrossRefGoogle Scholar
Varchon, F., Feng, R., Hass, J., et al. (2007), ‘Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate’, Phys. Rev. Lett. 99, 126805.CrossRefGoogle Scholar
Venema, L. C., Wilder, J. W. G., Janssen, J. W., et al. (1999), ‘Imaging electron wave functions of quantized energy levels in carbon nanotubes’, Science 283, 52–55.CrossRefGoogle ScholarPubMed
Venezuela, P., Muniz, R. B., Costa, A. T., et al. (2009), ‘Emergence of local magnetic moments in doped graphene-related materials’, Phys. Rev. B 80, 241413.CrossRefGoogle Scholar
Vogt, P., De Padova, P., Quaresima, C., et al. (2012), ‘Silicene: Compelling experimental evidence for graphene-like two-dimensional silicon’, Phys. Rev. Lett. 108, 155501.CrossRefGoogle Scholar
Wakabayashi, K., Fujita, M., Ajiki, H. & Sigrist, M. (1999), ‘Electronic and magnetic properties of nanographite ribbons’, Phys. Rev. B 59, 8271–8282.CrossRefGoogle Scholar
Wallace, P. R. (1947), ‘The band theory of graphite’, Phys. Rev. 71, 622–634.CrossRefGoogle Scholar
Wang, H., Nezich, D., Kong, J. & Palacios, T. (2009), ‘Graphene frequency multipliers’, Electron Device Letters, IEEE 30, 547–549.Google Scholar
Wang, H., Yu, L., Lee, Y.-H., et al. (2012), ‘Integrated circuits based on bilayer MOS2 transistors’, Nano Lett. 12, 4674–4680.CrossRefGoogle Scholar
Wang, N., Tang, Z. K., Li, G. D. & Chen, J. S. (2000), ‘Materials science: Single-walled 4 Å carbon nanotube arrays’, Nature 408, 50–51.CrossRefGoogle Scholar
Wang, X. & Dai, H. (2010), ‘Etching and narrowing of graphene from the edges’, Nature Chemistry 2, 661–665.CrossRefGoogle ScholarPubMed
Wang, X., Ouyang, Y., Jiao, L., et al. (2011), ‘Graphene nanoribbons with smooth edges behave as quantum wires’, Nature Nanotechnology 6, 563–567.CrossRefGoogle ScholarPubMed
Wang, X., Ouyang, Y., Li, X., et al. (2008), ‘Room-temperature all-semiconducting sub-10 nm graphene nanoribbon field-effect transistors’, Phys. Rev. Lett. 100, 206803.CrossRefGoogle ScholarPubMed
Wassmann, T., Seitsonen, A. P., Saitta, A. M., Lazzeri, M. & Mauri, F. (2008), ‘Structure, stability, edge states, and aromaticity of graphene ribbons’, Phys. Rev. Lett. 101, 096402.CrossRefGoogle ScholarPubMed
Weeks, C., Hu, J., Alicea, J., Franz, M. & Wu, R. (2011), ‘Engineering a robust quantum spin Hall state in graphene via adatom deposition’, Phys. Rev. X 1, 021001.Google Scholar
Weil, T. & Vinter, B. (1987), ‘Equivalence between resonant tunneling and sequential tunneling in double-barrier diodes’, Applied Physics Letters 50, 1281–1283.CrossRefGoogle Scholar
Weisse, A., Wellein, G., Alvermann, A. & Fehske, H. (2006), ‘The kernel polynomial method’, Rev. Mod. Phys. 78, 275.CrossRefGoogle Scholar
White, C. T., Li, J., Gunlycke, D. & Mintmire, J. W. (2007), ‘Hidden one-electron interactions in carbon nanotubes revealed in graphene nanostrips’, Nano Lett. 7, 825–830.CrossRefGoogle ScholarPubMed
White, C. T. & Mintmire, J. W. (1998), ‘Density of states reflects diameter in nanotubes’, Nature 394, 29–30.Google Scholar
White, C. T. & Todorov, T. N. (1998), ‘Carbon nanotubes as long ballistic conductors’, Nature 393, 240–242.CrossRefGoogle Scholar
White, I. D., Godby, R. W., Rieger, M. M. & Needs, R. J. (1998), ‘Dynamic image potential at an Al(111) surface’, Phys. Rev. Lett. 80, 4265–4268.CrossRefGoogle Scholar
Wilder, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. (1998), ‘Electronic structure of atomically resolved carbon nanotubes’, Nature 391, 59–62.CrossRefGoogle Scholar
Wimmer, M. (2009), Quantum transport in nanostructures: From computational concepts to spintronics in graphene and magnetic tunnel junctions, Ph.D. thesis, Universitat Regensburg.Google Scholar
Wimmer, M., Adagideli, I.Berber, Tománek, D. & Richter, K. (2008), ‘Spin currents in rough graphene nanoribbons: Universal fluctuations and spin injection’, Phys. Rev. Lett. 100, 177207.CrossRefGoogle ScholarPubMed
Wong, C.-L., Annamalai, M., Wang, Z.-Q. & Palaniapan, M. (2010), ‘Characterization of nanomechanical graphene drum structures’, Journal of Micromechanics and Microengineering 20, 115029.CrossRefGoogle Scholar
Wooten, F., Winer, K. & Weaire, D. (1985), ‘Computer generation of structural models of amorphous Si and Ge’, Phys. Rev. Lett. 54, 1392.CrossRefGoogle ScholarPubMed
Wu, C., Li, F., Zhang, Y. & Guo, T. (2012), ‘Recoverable electrical transition in a single graphene sheet for application in nonvolatile memories’, Appl. Phys. Lett. 100, 042105.CrossRefGoogle Scholar
Wu, F., Queipo, P., Nasibulin, A., et al. (2007), ‘Shot noise with interaction effects in single-walled carbon nanotubes’, Phys. Rev. Lett. 99, 156803.CrossRefGoogle ScholarPubMed
Wu, Y., Lin, Y.-M., Bol, A. A., et al. (2011), ‘High-frequency, scaled graphene transistors on diamond-like carbon’, Nature 472, 74–78.CrossRefGoogle ScholarPubMed
Wu, Y., Perebeinos, V., Lin, Y.-M., et al. (2012), ‘Quantum behavior of graphene transistors near the scaling limit’, Nano Lett. 12, 1417–1423.CrossRefGoogle ScholarPubMed
Xia, F., Farmer, D. B., Lin, Y.-M. & Avouris, P. (2010), ‘Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature’, Nano Lett. 10, 715718.CrossRefGoogle ScholarPubMed
Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. (2009), ‘Ultrafast graphene photodetector’, Nature Nanotechnology 4, 839–843.CrossRefGoogle ScholarPubMed
Xia, F., Perebeinos, V., Lin, Y.-M., Wu, Y. & Avouris, P. (2011), ‘The origins and limits of metal–graphene junction resistance’, Nature Nanotechnology 6, 179–184.CrossRefGoogle ScholarPubMed
Xiao, D., Chang, M.-C. & Niu, Q. (2010), ‘Berry phase effects on electronic properties’, Rev. Mod. Phys. 82, 1959–2007.CrossRefGoogle Scholar
Yacoby, A. (2011), ‘Graphene: Tri and tri again’, Nature Physics 7, 925–926.CrossRefGoogle Scholar
Yamamoto, T. & Watanabe, K. (2006), ‘Nonequilibrium Greens function approach to phonon transport in defective carbon nanotubes’, Phys. Rev. Lett. 96, 255503.CrossRefGoogle Scholar
Yan, J. & Fuhrer, M. S. (2011), ‘Correlated charged impurity scattering in graphene’, Phys. Rev. Lett. 107, 206601.CrossRefGoogle ScholarPubMed
Yang, H. X., Hallal, A., Terrade, D., et al. (2013), ‘Magnetic insulator-induced proximity effects in graphene: Spin filtering and exchange splitting gaps’, Phys. Rev. Lett. 110, 046603.CrossRefGoogle ScholarPubMed
Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L. & Louie, S. G. (2007), ‘Quasiparticle energies and band gaps in graphene nanoribbons’, Phys. Rev. Lett. 99, 186801.CrossRefGoogle ScholarPubMed
Yao, Z., Kane, C. L. & Dekker, C. (2000), ‘High-field electrical transport in single-wall carbon nanotubes’, Phys. Rev. Lett. 84, 2941–2944.CrossRefGoogle ScholarPubMed
Yao, Z., Postma, H. W. C., Balents, L. & Dekker, C. (1999), ‘Carbon nanotube intramolecular junctions’, Nature 402, 273–276.Google Scholar
Yazyev, O. V. (2008), ‘Magnetism in disordered graphene and irradiated graphite’, Phys. Rev. Lett. 101, 037203.CrossRefGoogle ScholarPubMed
Yazyev, O. V. (2010), ‘Emergence of magnetism in graphene materials and nanostructures’, Reports on Progress in Physics 73, 056501.CrossRefGoogle Scholar
Yazyev, O. V. & Helm, L. (2007), ‘Defect-induced magnetism in graphene’, Phys. Rev. B 75, 125408.CrossRefGoogle Scholar
Yazyev, O. V. & Louie, S. (2010 a), ‘Electronic transport in polycrystalline graphene’, Nature Materials 9, 806.CrossRefGoogle ScholarPubMed
Yazyev, O. V. & Louie, S. G. (2010 b), ‘Topological defects in graphene: Dislocations and grain boundaries’, Phys. Rev. B 81, 195420.CrossRefGoogle Scholar
Young, A. F. & Kim, P. (2009), ‘Quantum interference and Klein tunnelling in graphene heterojunctions’, Nature Physics 5, 222–226.CrossRefGoogle Scholar
Young, A. F. & Kim, P. (2011), ‘Electronic transport in graphene heterostructures’, Annual Review of Condensed Matter Physics 2, 101–120.CrossRefGoogle Scholar
Yu, Q., Jauregui, L. A., Wu, W., et al. (2011), ‘Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition’, Nature Materials 10, 443–449.CrossRefGoogle ScholarPubMed
Yuan, S., De Raedt, H. & Katsnelson, M. I. (2010), ‘Modeling electronic structure and transport properties of graphene with resonant scattering centers’, Phys. Rev. B 82, 115448.CrossRefGoogle Scholar
Zanolli, Z. & Charlier, J.-C. (2009), ‘Defective carbon nanotubes for single-molecule sensing’, Phys. Rev. B 80, 155447.CrossRefGoogle Scholar
Zanolli, Z. & Charlier, J.-C. (2010), ‘Spin transport in carbon nanotubes with magnetic vacancy-defects’, Phys. Rev. B 81, 165406.CrossRefGoogle Scholar
Zanolli, Z. & Charlier, J.-C. (2012), ‘Single-molecule sensing using carbon nanotubes decorated with magnetic clusters’, ACS Nano 6, 10786–10791.CrossRefGoogle ScholarPubMed
Zanolli, Z., Leghrib, R., Felten, A., et al. (2011), ‘Gas sensing with Au-decorated carbon nanotubes’, ACS Nano 5, 4592–4599.CrossRefGoogle ScholarPubMed
Zaric, S., Ostojic, G. N., Kono, J., et al. (2004), ‘Optical signatures of the Aharonov–Bohm phase in single-walled carbon nanotubes’, Science 304, 1129–1131.CrossRefGoogle ScholarPubMed
Zhan, N., Olmedo, M., Wang, G. & Liu, J. (2011), ‘Graphene based nickel nanocrystal flash memory’, Appl. Phys. Lett. 99, 113112.CrossRefGoogle Scholar
Zhang, L., Zhang, Y., Khodas, M., Valla, T. & Zaliznyak, I. A. (2010), ‘Metal to insulator transition on the n = 0 Landau level in graphene’, Phys. Rev. Lett. 105, 046804.CrossRefGoogle Scholar
Zhang, Y., Jiang, Z., Small, J. P., et al. (2006), ‘Landau-level splitting in graphene in high magnetic fields’, Phys. Rev. Lett. 96, 136806.CrossRefGoogle ScholarPubMed
Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. (2005), ‘Experimental observation of the quantum Hall effect and Berry's phase in graphene’, Nature 438, 201–204.CrossRefGoogle ScholarPubMed
Zhang, Y., Tang, T.-T., Girit, C., et al. (2009), ‘Direct observation of a widely tunable bandgap in bilayer graphene’, Nature 459, 820–823.CrossRefGoogle ScholarPubMed
Zhang, Y.-Y., Hu, J., Bernevig, B. A., et al. (2009), ‘Localization and the Kosterlitz–Thouless transition in disordered graphene’, Phys. Rev. Lett. 102, 106401.CrossRefGoogle ScholarPubMed
Zhao, J., Park, H., Han, J. & Lu, J. P. (2004), ‘Electronic properties of carbon nanotubes with covalent sidewall functionalization’, J. Phys. Chem. B 108, 4227–4230.CrossRefGoogle Scholar
Zhao, P. & Guo, J. (2009), ‘Modeling edge effects in graphene nanoribbon field-effect transistors with real and mode space methods’, J. Appl. Phys. 105, 034503.CrossRefGoogle Scholar
Zhao, Y., Cadden-Zimansky, P., Ghahari, F. & Kim, P. (2012), ‘Magnetoresistance measurements of graphene at the charge neutrality point’, Phys. Rev. Lett. 108, 106804.CrossRefGoogle ScholarPubMed
Zheng, L. X., O'Connell, M. J., Doorn, S. K., et al. (2004), ‘Ultralong single-wall carbon nanotubes’, Nature Materials 3, 673–676.CrossRefGoogle ScholarPubMed
Zhou, S. Y., Gweon, G.-H., Fedorov, A. V., et al. (2007), ‘Substrate-induced bandgap opening in epitaxial graphene’, Nature Materials 6, 770–775.Google ScholarPubMed
Zhou, Y. & Wu, M. W. (2011), ‘Optical response of graphene under intense terahertz fields’, Phys. Rev. B 83, 245436.CrossRefGoogle Scholar
Zhou, Y. & Wu, M. W. (2012), ‘Single-parameter quantum charge and spin pumping in armchair graphene nanoribbons’, Phys. Rev. B 86, 085406.CrossRefGoogle Scholar
Zhu, R. & Chen, H. (2009), ‘Quantum pumping with adiabatically modulated barriers in graphene’, Applied Physics Letters 95, 122111.CrossRefGoogle Scholar
Zhu, W., Li, W., Shi, Q. W., et al. (2012), ‘Vacancy-induced splitting of the Dirac nodal point in graphene’, Phys. Rev. B 85, 073407.CrossRefGoogle Scholar
Zimmermann, J., Pavone, P. & Cuniberti, G. (2008), ‘Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: Minimal force-constant model’, Phys. Rev.B 78, 045410.CrossRefGoogle Scholar
Zomer, P. J., Guimares, M. H. D., Tombros, N. & van Wees, B. J. (2012), ‘Long-distance spin transport in high-mobility graphene on hexagonal boron nitride’, Phys. Rev. B 86, 161416.CrossRefGoogle Scholar
Zurek, W. H. (2003), ‘Decoherence and the transition from quantum to classical revisited’, arXiv:quant-ph/0306072.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×