Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T08:44:19.200Z Has data issue: false hasContentIssue false

6 - Quantum transport beyond DC

Published online by Cambridge University Press:  05 February 2014

Luis E. F. Foa Torres
Affiliation:
Universidad Nacional de Córdoba, Argentina
Stephan Roche
Affiliation:
Catalan Insitute of Nanotechnology - ICN
Jean-Christophe Charlier
Affiliation:
Université Catholique de Louvain, Belgium
Get access

Summary

In this chapter we give a flavor of quantum transport beyond DC conditions, when time-dependent potentials are applied to a device. Our main focus is on Floquet theory, one of the most useful approaches for driven systems. Section 6.4 is devoted to an overview of some of the most recent advances on driven transport in graphene-related materials, while Section 6.5 presents an illustrative application to laser-illuminated graphene.

Introduction: why AC fields?

Though less explored, quantum transport beyond the DC conditions considered in previous sections also offers fascinating opportunities. Alternating current (AC) fields such as alternating gate voltages, alternating bias voltages or illumination with a laser can be used to achieve control of the electrical response (current and noise), thereby providing a novel road for applications. Furthermore, there are many novel phenomena unique to the presence of AC fields such as quantum charge pumping (Thouless, 1983, Altshuler & Glazman, 1999, Büttiker & Moskalets, 2006, Switkes et al., 1999), i.e. the generation of a DC current even in the absence of a bias voltage due to quantum inter-ference, coherent destruction of tunneling (Grossmann et al., 1991) or laser-induced topological insulators (Lindner, Refael & Galitski, 2011, Kitagawa et al., 2011).

The activity in this area has grown rapidly in the arena of nanoscale systems (Platero & Aguado, 2004, Kohler, Lehmann & Hänggi, 2005). Notwithstanding, it was not until the last few years that advances in the applications to graphene-related systems started to lourish (see the overview in Section 6.4).

Type
Chapter
Information
Introduction to Graphene-Based Nanomaterials
From Electronic Structure to Quantum Transport
, pp. 219 - 231
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×