Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-01T03:45:37.801Z Has data issue: false hasContentIssue false

1 - Introduction to carbon-based nanostructures

Published online by Cambridge University Press:  05 February 2014

Luis E. F. Foa Torres
Affiliation:
Universidad Nacional de Córdoba, Argentina
Stephan Roche
Affiliation:
Catalan Insitute of Nanotechnology - ICN
Jean-Christophe Charlier
Affiliation:
Université Catholique de Louvain, Belgium
Get access

Summary

Carbon is a truly unique chemical element. It can form a broad variety of architectures in all dimensions, both at the macroscopic and nanoscopic scales. During the last 20+ years, brave new forms of carbon have been unveiled. The family of carbon-based materials now extends from C60 to carbon nanotubes, and from old diamond and graphite to graphene. The properties of the new members of this carbon family are so impressive that they may even redefine our era. This chapter provides a brief overview of these carbon structures.

Carbon structures and hybridizations

Carbon is one of the most versatile elements in the periodic table in terms of the number of compounds it may create, mainly due to the types of bonds it may form (single, double, and triple bonds) and the number of different atoms it can join in bonding. When we look at its ground state (lowest energy) electronic configuration, 1s22s22p2, carbon is found to possess two core electrons (1s) that are not available for chemical bonding and four valence electrons (2s and 2p) that can participate in bond formation (Fig. 1.1(a)). Since two unpaired 2p electrons are present, carbon should normally form only two bonds from its ground state.

However, carbon should maximize the number of bonds formed, since chemical bond formation will induce a decrease of the system energy. Consequently, carbon will re-arrange the configuration of these valence electrons.

Type
Chapter
Information
Introduction to Graphene-Based Nanomaterials
From Electronic Structure to Quantum Transport
, pp. 1 - 10
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×