Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T12:57:11.992Z Has data issue: false hasContentIssue false

4 - Synthetic polymeric fibers

Published online by Cambridge University Press:  05 June 2016

Krishan Chawla
Affiliation:
University of Alabama, Birmingham
Get access

Summary

In this chapter we describe synthetic polymeric fibers, which saw tremendous advancement in the last half of the twentieth century. In fact, a reasonable case can be made that the so-called age of fibers began with the advent of synthetic fibers such as nylon, polyester, etc. in the late 1930s and early 1940s. Many companies such as DuPont, Monsanto, BASF, Hoechst, ICI, etc. contributed very heavily in this area. For a historical account of the scientific and technological progress made in this area, the reader is referred to a study of research and development activities at DuPont during the period of 1902–1980 (Hounshell and Smith, 1988). Most of these synthetic polymeric fibers such as polyester, nylon, etc. have very uniform and reproducible properties. They have a rather low elastic modulus, however, which restricts them mostly to the apparel or textile market. It was the research work aimed at making strong and stiff synthetic polymeric fibers for use as reinforcements in polymers, which started sometime in the late 1960s, that resulted in the commercial availability of strong and stiff fibers such as aramid and polyethylene. We describe below the processing, structure, and properties of some important synthetic polymeric fibers in some detail.

The age of synthetic polymeric fibers

A brief historical review of the work in the area of organic fibers will be helpful in placing things in perspective. We begin with the discovery of nylon, also known as polyamide (PA). Nylon was discovered and commercialized by DuPont in 1938 (Magat and Morrison, 1976). Wallace Carrothers of DuPont is generally regarded as the father of nylon. Nylon first penetrated the silk hosiery market just before the start of World War II. In fact, 1988 marked the 50th anniversary of the introduction of nylon silk stockings. Nylon is made by melt spinning. It is a very flexible, knittable, and durable fiber; all these attributes have made it one of the most important fibers for the textile industry. Nylon's reasonably high strength, good impact, and fatigue resistance also led to its use in the tire industry. It should be noted that the term nylon is a generic term that represents a group of similar materials, in the same vein as glass, steel, or carbon. Accordingly, we spell it without a capital letter.

Type
Chapter
Information
Fibrous Materials , pp. 69 - 113
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, S. R. (1987) J. Mater. Sci., 22, 853.CrossRef
Argon, A. S. (1972) in Treatise on Materials Science and Technology, Herman, H. (ed.) New York, Academic Press, p. 79.Google Scholar
Bhattacharya, S. (1989) Proc. Amer. Chem. Soc., Div. Poly. Mater. Sci. & Eng., 60, 512.
Biro, D. A., Pleizier, G., and Deslandes, Y. (1992) J. Mater. Sci. Lett., 11, 698CrossRef
Brown, J. R., Chappell, P. J. C., and Mathys, Z. (1992) J. Mater. Sci., 27, 3167.CrossRef
Bunn, C. W. (1939) Trans. Faraday Soc., 35, 482.CrossRef
Capaccio, G., Gibson, A. G., and Ward, I. M. (1979) in UltraHigh Modulus Polymers, Ciferri, A. and Ward, I. M. (eds.), London, Applied Science, p. 1.Google Scholar
Couper, M. (1985) in High Technology Fibers, Part A, Lewin, M. and Preston, J. (eds.), New York, Marcel Dekker, p. 113.Google Scholar
Cunniff, P. M., Auerbach, M. A., Vetter, E., and Sikkema, D. J., (2002) in Proc. of 23rd Army Science Conf., Orlando.
DeTeresa, S. J., Farris, R. J., and Porter, R. S. (1982) Polymer Composites, 3, 57.CrossRef
DeTeresa, S. J., Allen, S. R., Farris, R. J., and Porter, R. S. (1984) J. Mater. Sci., 19, 57.CrossRef
DeTeresa, S. J., Farris, R. J., and Porter, R. S. (1985) J. Mater. Sci., 20, 1645.CrossRef
DeTeresa, S. J., Farris, R. J., and Porter, R. S. (1988) J. Mater. Sci., 23, 1886.CrossRef
Dobbs, M. G., Johnson, D. J., and Saville, B. P. (1980) Phil. Trans. R. Soc. Lond., A294, 483.CrossRef
Flory, P. J. (1956) Proc. Roy. Soc. London, A234, 73.CrossRef
Greszczuk, L. B. (1975) AIAA J., 3, 1311.CrossRef
Hadley, D. W., Pinnock, P. R. and Ward, I. M. (1969) J. Mater. Sci., 4, 152.CrossRef
Hall, M. E. and Horrocks, A. E. (1993) Trends in Poymer Sci., 1, 55.
Hannant, D. J. (1995) Mater. Sci. Tech., 11, 853.CrossRef
Hild, D. N. and Schwart, P. (1992a) J. Adhes. Sci. Technol., 6, 879.CrossRef
Hild, D. N. and Schwartz, P. (1992b) J. Adhes. Sci. Technol., 6, 897.CrossRef
Hodd, K. A. and Turley, D. C. (1978) Chemistry in Britain, 14, 545.
Hokudoh, T., Yabuki, K., and Nomura, Y. (1995) in Proc. 2nd Int. Conf. on Composites Engineering, New Orleans, LA, p. 333.Google Scholar
Holme, I. (1994) J. Soc. Dyers. Color., 110, 362.CrossRef
Hounshell, D. A. and Smith, J. K. (1988) Science and Corporate Strategy, Cambridge, Cambridge University Press.Google Scholar
Irwin, R. S. (1997) in Applications of High Temperature Polymers, Luise, R. R. (ed.), Boca Raton, FL, CRC Press, p. 149.Google Scholar
Jaffe, M. and Jones, R. S. (1985), in Handbook of Fiber and Technology, 3, Lewin, M. and Preston, P. (eds.), New York, Marcel Dekker, Chapter 9.Google Scholar
Kalb, B. and Pennings, A. J. (1980) J. Mater. Sci., 15, 2584.CrossRef
Kaplan, S. L., Rose, P. W., Nguyen, H. X., and Chang, H. W. (1988) SAMPE Quarterly, 19, 55.
Kikuchi, T (1982) Surface, 20, 270.
Kozey, V. V. and Kumar, S. (1994) J. Mater. Res., 9, 2717.CrossRef
Krassig, H. A., Lenz, J., and Mark, H. F. (1984) Fiber Technology, from Film to Fiber, New York, Marcel Dekker.Google Scholar
Kumar, S. (1989), SAMPE Q, 20, 3.
Kumar, S. (1990a) in Int. Encyclopedia of Composites 4, Weinheim, VCH, p. 51.Google Scholar
Kumar, S. (1990b), 35th SAMPE Int. Symp., p. 2224.
Kumar, S. and Adams, W. W. (1990), Polymer 31, 15.
Kumar, S. and Heliminiack, T. E. (1989) in The Materials Science and Engineering of Rigid-Rod Polymers, Adams, W. W., Eby, R. K., and McLemore, D. E. (eds.), Materials Research Society Symp., Vol. 134, Pittsburgh, p. 363.
Kumar, S., Adams, W. W., and Heliminiack, T. E. (1988) J. Reinf. Plast. Compos., 7,108.CrossRef
Leal Ayala, A. A. (2008) Ph.D Thesis, University of Delaware.
Li, Z. F., Netravali, A. N., and Sachse, W. (1992) J. Mater. Sci., 27, 4625.CrossRef
Magat, E. E. (1980) Phil. Trans. Roy. Soc. Lond., A296, 463.CrossRef
Magat, E. E. and Morrison, R. E. (1976) Chemtech., November, 702.
Marissen, R. (2011) Materials Sciences and Application, 2, 319.CrossRef
Mark, H. (1936) Trans. Faraday Soc. 32, 143.CrossRef
Martin, D. C. and Thomas, E. L. (1989) in The Materials Science and Engineering of Rigid-Rod Polymers, adams, W. W., Eby, R. K., and McLemose, D. E. (eds.), Materials Research Society Symp., Vol. 134, Pittsburgh, p. 415.Google Scholar
Martin, D. C. and Thomas, E. L. (1991) Macromolecules, 24, 2450.CrossRef
McGarry, F. J. and Moalli, J. E. (1991) Polymer, 32, 35.
McGarry, F. J. and Moalli, J. E. (1992) SAMPE Quarterly, July, 35.
Morgan, P. W. (1979) Plastics and Rubber: Materials and Applications, 4, February, 1.
Nakajima, T. (ed.) (1994) Advanced Fiber Spinning Technology, Cambridge, Woodhead.Google Scholar
Ohta, T. (1983) Poly. Eng. Sci., 23, 697.CrossRef
Ozawa, S., Nakagawa, Y., Matsuda, K., Nishihara, T., and Yunoki, H. (1978) US patent 4,075,172.
Panar, M., Avakian, P., Blume, R. C., Gardner, K. H., Gierke, T. D., and Yang, H. H. (1983) J. Polymer Sci., Polymer Phys., 21,1955.CrossRef
Pennings, A. J. (1976) Colloid Polymer Sci., 253, 452.
Pennings, A. J., Schouteten, C. J. H. and Kiel, A. M. (1972) J. Polymer Sci., C38, 167.
Polis, D. W., Dalton, L. R. and Vachon, D. J. (1989) in The Materials Science and Engineering of Rigid-Rod Polymers, Adams, W. W., Eby, R. K., and McLemore, D. E. (eds.), Materials Research Society Symp. Vol. 134, Pittsburgh, p. 679.Google Scholar
Schuerch, H. (1966) AIAA J., 4,102.CrossRef
Sikkema, D. J., Northolt, M. G., and Pourdeyhimi, B. (2003) MRS Bulletin, 28, 579.CrossRef
Smith, P. and Lemstra, P. J. (1976) Colloid Polymer Sci., 15, 258.
Smith, P. and Lemstra, P. J. (1980) J. Materials Sci., 15, 505.CrossRef
Smook, J. and Pennings, A. J. (1984) J. Materials Sci., 19, 31.CrossRef
van Stone, J. C. (1985) in Handbook of Dialysis, Wuppertal, Germany, AKZO, p. 21.Google Scholar
Wallenberger, F. T., Weston, N. E., Motzfeldt, K., and Swartzfager, D. G. (1992) J. Am. Ceram. Soc., 75, 629.CrossRef
West, A. R. (1981) J. Materials Sci., 16, 2025.
Wilson, N. (1967) J. Text. Inst., 58, 611.CrossRef
Wilson, N. (1968) J. Text. Inst., 59, 296.CrossRef
Wolfe, J. F., Loo, B. H., and Seviller, E. R. (1981a) Polymer Preprint, 22 (1), 60.
Wolfe, J. F., Loo, B. H., and Arnold, F. E. (1981b) Macromolecules, 14, 915.CrossRef
Wynne, K., Zachariades, A. E., Inabe, T. and Marks, T. J. (1985) Polymer Comm., 26, 162.
Young, R. J. (1989) in Handbook of Fiber Science and Technology, 3, High Technology Fibers, Part A, New York, Marcel Dekker.Google Scholar
Adams, W. W., Eby, R. K., and McLemore, D. E. (eds.) (1989) The Materials Science and Engineering of Rigid-Rod Polymers, Materials Research Society Symp. Vol. 134, MRS, Pittsburgh, PA.Google Scholar
Baer, E. and Moet, A. (eds.) (1991) High Performance Polymers, Munich, Hanser Publishing.Google Scholar
Carter, M. E. (1971) Essential Fiber Chemistry, New York, Marcel Dekker.Google Scholar
Donald, A.M. and Windle, A. H. (1992) Liquid Crystalline Polymers, Cambridge, Cambridge University Press.Google Scholar
Jiang, H., Adams, W. W. and Eby, R. K. (eds.) (1993) High Performance Polymer Fibers, Weinheim, Germany, VCH.Google Scholar
Reimschuessel, H. (1985) in Fiber Chemistry, Handbook of Fiber Science and Technology: Volume IV, Lewin, M. and Pearce, E. M. (eds.), New York, Marcel Dekker, p. 73.Google Scholar
Warner, S. B. (1995) Fiber Science, Englewood Cliffs, NJ, Prentice Hall.Google Scholar
Watt, W. and Perov, B. V. (eds.) (1985) Strong Fibres, Amsterdam, North-Holland.Google Scholar
Yang, H. H. (1993) Kevlar Aramid Fiber, Chichester, John Wiley.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×