Skip to main content Accessibility help
×
Home
  • Print publication year: 2016
  • Online publication date: June 2016

4 - Synthetic polymeric fibers

Summary

In this chapter we describe synthetic polymeric fibers, which saw tremendous advancement in the last half of the twentieth century. In fact, a reasonable case can be made that the so-called age of fibers began with the advent of synthetic fibers such as nylon, polyester, etc. in the late 1930s and early 1940s. Many companies such as DuPont, Monsanto, BASF, Hoechst, ICI, etc. contributed very heavily in this area. For a historical account of the scientific and technological progress made in this area, the reader is referred to a study of research and development activities at DuPont during the period of 1902–1980 (Hounshell and Smith, 1988). Most of these synthetic polymeric fibers such as polyester, nylon, etc. have very uniform and reproducible properties. They have a rather low elastic modulus, however, which restricts them mostly to the apparel or textile market. It was the research work aimed at making strong and stiff synthetic polymeric fibers for use as reinforcements in polymers, which started sometime in the late 1960s, that resulted in the commercial availability of strong and stiff fibers such as aramid and polyethylene. We describe below the processing, structure, and properties of some important synthetic polymeric fibers in some detail.

The age of synthetic polymeric fibers

A brief historical review of the work in the area of organic fibers will be helpful in placing things in perspective. We begin with the discovery of nylon, also known as polyamide (PA). Nylon was discovered and commercialized by DuPont in 1938 (Magat and Morrison, 1976). Wallace Carrothers of DuPont is generally regarded as the father of nylon. Nylon first penetrated the silk hosiery market just before the start of World War II. In fact, 1988 marked the 50th anniversary of the introduction of nylon silk stockings. Nylon is made by melt spinning. It is a very flexible, knittable, and durable fiber; all these attributes have made it one of the most important fibers for the textile industry. Nylon's reasonably high strength, good impact, and fatigue resistance also led to its use in the tire industry. It should be noted that the term nylon is a generic term that represents a group of similar materials, in the same vein as glass, steel, or carbon. Accordingly, we spell it without a capital letter.

Related content

Powered by UNSILO
Allen, S. R. (1987) J. Mater. Sci., 22, 853.
Argon, A. S. (1972) in Treatise on Materials Science and Technology, Herman, H. (ed.) New York, Academic Press, p. 79.
Bhattacharya, S. (1989) Proc. Amer. Chem. Soc., Div. Poly. Mater. Sci. & Eng., 60, 512.
Biro, D. A., Pleizier, G., and Deslandes, Y. (1992) J. Mater. Sci. Lett., 11, 698
Brown, J. R., Chappell, P. J. C., and Mathys, Z. (1992) J. Mater. Sci., 27, 3167.
Bunn, C. W. (1939) Trans. Faraday Soc., 35, 482.
Capaccio, G., Gibson, A. G., and Ward, I. M. (1979) in UltraHigh Modulus Polymers, Ciferri, A. and Ward, I. M. (eds.), London, Applied Science, p. 1.
Couper, M. (1985) in High Technology Fibers, Part A, Lewin, M. and Preston, J. (eds.), New York, Marcel Dekker, p. 113.
Cunniff, P. M., Auerbach, M. A., Vetter, E., and Sikkema, D. J., (2002) in Proc. of 23rd Army Science Conf., Orlando.
DeTeresa, S. J., Farris, R. J., and Porter, R. S. (1982) Polymer Composites, 3, 57.
DeTeresa, S. J., Allen, S. R., Farris, R. J., and Porter, R. S. (1984) J. Mater. Sci., 19, 57.
DeTeresa, S. J., Farris, R. J., and Porter, R. S. (1985) J. Mater. Sci., 20, 1645.
DeTeresa, S. J., Farris, R. J., and Porter, R. S. (1988) J. Mater. Sci., 23, 1886.
Dobbs, M. G., Johnson, D. J., and Saville, B. P. (1980) Phil. Trans. R. Soc. Lond., A294, 483.
Flory, P. J. (1956) Proc. Roy. Soc. London, A234, 73.
Greszczuk, L. B. (1975) AIAA J., 3, 1311.
Hadley, D. W., Pinnock, P. R. and Ward, I. M. (1969) J. Mater. Sci., 4, 152.
Hall, M. E. and Horrocks, A. E. (1993) Trends in Poymer Sci., 1, 55.
Hannant, D. J. (1995) Mater. Sci. Tech., 11, 853.
Hild, D. N. and Schwart, P. (1992a) J. Adhes. Sci. Technol., 6, 879.
Hild, D. N. and Schwartz, P. (1992b) J. Adhes. Sci. Technol., 6, 897.
Hodd, K. A. and Turley, D. C. (1978) Chemistry in Britain, 14, 545.
Hokudoh, T., Yabuki, K., and Nomura, Y. (1995) in Proc. 2nd Int. Conf. on Composites Engineering, New Orleans, LA, p. 333.
Holme, I. (1994) J. Soc. Dyers. Color., 110, 362.
Hounshell, D. A. and Smith, J. K. (1988) Science and Corporate Strategy, Cambridge, Cambridge University Press.
Irwin, R. S. (1997) in Applications of High Temperature Polymers, Luise, R. R. (ed.), Boca Raton, FL, CRC Press, p. 149.
Jaffe, M. and Jones, R. S. (1985), in Handbook of Fiber and Technology, 3, Lewin, M. and Preston, P. (eds.), New York, Marcel Dekker, Chapter 9.
Kalb, B. and Pennings, A. J. (1980) J. Mater. Sci., 15, 2584.
Kaplan, S. L., Rose, P. W., Nguyen, H. X., and Chang, H. W. (1988) SAMPE Quarterly, 19, 55.
Kikuchi, T (1982) Surface, 20, 270.
Kozey, V. V. and Kumar, S. (1994) J. Mater. Res., 9, 2717.
Krassig, H. A., Lenz, J., and Mark, H. F. (1984) Fiber Technology, from Film to Fiber, New York, Marcel Dekker.
Kumar, S. (1989), SAMPE Q, 20, 3.
Kumar, S. (1990a) in Int. Encyclopedia of Composites 4, Weinheim, VCH, p. 51.
Kumar, S. (1990b), 35th SAMPE Int. Symp., p. 2224.
Kumar, S. and Adams, W. W. (1990), Polymer 31, 15.
Kumar, S. and Heliminiack, T. E. (1989) in The Materials Science and Engineering of Rigid-Rod Polymers, Adams, W. W., Eby, R. K., and McLemore, D. E. (eds.), Materials Research Society Symp., Vol. 134, Pittsburgh, p. 363.
Kumar, S., Adams, W. W., and Heliminiack, T. E. (1988) J. Reinf. Plast. Compos., 7,108.
Leal Ayala, A. A. (2008) Ph.D Thesis, University of Delaware.
Li, Z. F., Netravali, A. N., and Sachse, W. (1992) J. Mater. Sci., 27, 4625.
Magat, E. E. (1980) Phil. Trans. Roy. Soc. Lond., A296, 463.
Magat, E. E. and Morrison, R. E. (1976) Chemtech., November, 702.
Marissen, R. (2011) Materials Sciences and Application, 2, 319.
Mark, H. (1936) Trans. Faraday Soc. 32, 143.
Martin, D. C. and Thomas, E. L. (1989) in The Materials Science and Engineering of Rigid-Rod Polymers, adams, W. W., Eby, R. K., and McLemose, D. E. (eds.), Materials Research Society Symp., Vol. 134, Pittsburgh, p. 415.
Martin, D. C. and Thomas, E. L. (1991) Macromolecules, 24, 2450.
McGarry, F. J. and Moalli, J. E. (1991) Polymer, 32, 35.
McGarry, F. J. and Moalli, J. E. (1992) SAMPE Quarterly, July, 35.
Morgan, P. W. (1979) Plastics and Rubber: Materials and Applications, 4, February, 1.
Nakajima, T. (ed.) (1994) Advanced Fiber Spinning Technology, Cambridge, Woodhead.
Ohta, T. (1983) Poly. Eng. Sci., 23, 697.
Ozawa, S., Nakagawa, Y., Matsuda, K., Nishihara, T., and Yunoki, H. (1978) US patent 4,075,172.
Panar, M., Avakian, P., Blume, R. C., Gardner, K. H., Gierke, T. D., and Yang, H. H. (1983) J. Polymer Sci., Polymer Phys., 21,1955.
Pennings, A. J. (1976) Colloid Polymer Sci., 253, 452.
Pennings, A. J., Schouteten, C. J. H. and Kiel, A. M. (1972) J. Polymer Sci., C38, 167.
Polis, D. W., Dalton, L. R. and Vachon, D. J. (1989) in The Materials Science and Engineering of Rigid-Rod Polymers, Adams, W. W., Eby, R. K., and McLemore, D. E. (eds.), Materials Research Society Symp. Vol. 134, Pittsburgh, p. 679.
Schuerch, H. (1966) AIAA J., 4,102.
Sikkema, D. J., Northolt, M. G., and Pourdeyhimi, B. (2003) MRS Bulletin, 28, 579.
Smith, P. and Lemstra, P. J. (1976) Colloid Polymer Sci., 15, 258.
Smith, P. and Lemstra, P. J. (1980) J. Materials Sci., 15, 505.
Smook, J. and Pennings, A. J. (1984) J. Materials Sci., 19, 31.
van Stone, J. C. (1985) in Handbook of Dialysis, Wuppertal, Germany, AKZO, p. 21.
Wallenberger, F. T., Weston, N. E., Motzfeldt, K., and Swartzfager, D. G. (1992) J. Am. Ceram. Soc., 75, 629.
West, A. R. (1981) J. Materials Sci., 16, 2025.
Wilson, N. (1967) J. Text. Inst., 58, 611.
Wilson, N. (1968) J. Text. Inst., 59, 296.
Wolfe, J. F., Loo, B. H., and Seviller, E. R. (1981a) Polymer Preprint, 22 (1), 60.
Wolfe, J. F., Loo, B. H., and Arnold, F. E. (1981b) Macromolecules, 14, 915.
Wynne, K., Zachariades, A. E., Inabe, T. and Marks, T. J. (1985) Polymer Comm., 26, 162.
Young, R. J. (1989) in Handbook of Fiber Science and Technology, 3, High Technology Fibers, Part A, New York, Marcel Dekker.
Adams, W. W., Eby, R. K., and McLemore, D. E. (eds.) (1989) The Materials Science and Engineering of Rigid-Rod Polymers, Materials Research Society Symp. Vol. 134, MRS, Pittsburgh, PA.
Baer, E. and Moet, A. (eds.) (1991) High Performance Polymers, Munich, Hanser Publishing.
Carter, M. E. (1971) Essential Fiber Chemistry, New York, Marcel Dekker.
Donald, A.M. and Windle, A. H. (1992) Liquid Crystalline Polymers, Cambridge, Cambridge University Press.
Jiang, H., Adams, W. W. and Eby, R. K. (eds.) (1993) High Performance Polymer Fibers, Weinheim, Germany, VCH.
Reimschuessel, H. (1985) in Fiber Chemistry, Handbook of Fiber Science and Technology: Volume IV, Lewin, M. and Pearce, E. M. (eds.), New York, Marcel Dekker, p. 73.
Warner, S. B. (1995) Fiber Science, Englewood Cliffs, NJ, Prentice Hall.
Watt, W. and Perov, B. V. (eds.) (1985) Strong Fibres, Amsterdam, North-Holland.
Yang, H. H. (1993) Kevlar Aramid Fiber, Chichester, John Wiley.