Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T14:55:39.678Z Has data issue: false hasContentIssue false

7 - Ceramic fibers

Published online by Cambridge University Press:  05 June 2016

Krishan Chawla
Affiliation:
University of Alabama, Birmingham
Get access

Summary

In this chapter, we provide a description of the processing, structure, and properties of high temperature ceramic fibers, excluding glass and carbon, which are dealt with in separate chapters because of their greater commercial importance. Before we do that, however, we review, ever so briefly, some fundamental characteristics of ceramics (crystalline and noncrystalline). Once again, readers already familiar with this basic information may choose to go directly to Section 7.3.

Some important ceramics

We provide a summary of the characteristics of some important ceramic materials that have been converted into a fibrous form.

Bonding and crystalline structure

Ceramics are primarily compounds. Ceramics (excluding glasses) generally have a crystalline structure, while silica-based glasses, a subclass of ceramic materials, are noncrystalline. In crystalline ceramic compounds, stoichiometry dictates the ratio of one element to another. Nonstoichiometric ceramic compounds, however, occur frequently. Some important ceramic materials are listed in Table 7.1. Physical and mechanical characteristics of some ceramic materials are given in Table 7.2. It should be noted that the values shown in Table 7.2 are more indicative than absolute.

In terms of bonding, ceramics have mostly ionic bonding and some covalent bonding. Ionic bonding involves a transfer of electrons between atoms that make the compound. Generally, positively charged ions balance the negatively charged ions to give an electrically neutral compound, for example, NaCl. In covalent bonding, the electrons are shared between atoms. The characteristic high strength as well as brittleness of ceramic materials can be traced to this type of bonding which make the Peierls–Nabarro potential very high, i.e., inherent lattice resistance to dislocation motion is very high. Thus, crystalline ceramics have crystal imperfections such as dislocations but, unlike in metals, they are not very mobile. Also, the number of slip systems available in ceramics is fewer than that in metals. Thus, unlike metals, the stress concentration at a crack tip in a crystalline ceramic cannot be relieved by plastic deformation, at least not at low and moderate temperatures. This has led to attempts at toughening ceramics by means other than large scale dislocation motion, for example, by incorporating fibers or second phases (Chawla, 2003).

Type
Chapter
Information
Fibrous Materials , pp. 150 - 198
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R. P. I. and Hammond, M. L. (1969) App. Phys. Lett. 14, 354.CrossRef
Anon. (1993) Bull Amer. Ceram. Soc., 72, October, 42
Aveston, J. (1969) J. Mater Sci., 84, 625.CrossRef
Birchall, J. D., Bradley, J. A. A., and Dinwoodie, J. (1985) in Strong Fibers, Amsterdam, North-Holland, p. 115.Google Scholar
Bogy, D. B. (1979) Ann. Rev. Fluid Mech., 11, 207.CrossRef
Brenner, S. S. (1958) in Growth and Perfection of Crystals, Doremus, R. H., Roberts, B. W., and Turnbull, D. (eds.), New York, John Wiley, p. 157.Google Scholar
Brenner, S. S. (1962) J. App. Phys., 33, 33.CrossRef
Bunsell, A. R. (ed.) (1988) Fibre Reinforcements for Composite Materials, Amsterdam, Elsevier.Google Scholar
Chawla, K. K. (2003) Ceramic Matrix Composites, edn., Boston, MA, Kluwer Academic Publishers.CrossRefGoogle Scholar
Chawla, N., Holmes, J. W., and Mansfield, J. E. (1995) Materials Characterization, 35, 199.CrossRef
Chawla, N., Kerr, M., and Chawla, K. K. (2005) J. Amer. Ceram. Soc., 88, 101.CrossRef
Cooper, W. C. (1971) Asbestos: the Need for and Feasibility of Air Pollution Controls, Committee on Biological Effects of Atmosphere Pollutants, Washington, DC, Div. of Medical Sciences/National Research Council.Google Scholar
Deléglise, F., Berger, M. H., and Bunsell, A. R. (2002) J. Euro. Ceramic Society, 22, 1501.CrossRef
Deren, G. (1995) Amer. Ceram. Soc. Bull., 74, 65.
Dhingra, A. K. (1980) Philos. Trans. R. Soc. London, A294, 411.CrossRef
DiCarlo, J. A. (1985) J. Metals, 37, June, 44.
DiCarlo, J. A. (1994) Composites Science and Technology, 51, 213.CrossRef
DiCarlo, J. A., Yun, H. M., and Golsby, J. C., (1995) in HITEMP Review, Vol. III, NASA Conf. Publication 10178, Cleveland, OH, NASA Lewis Research Center, p. 53Google Scholar
Diefendorf, R. J. and Mazlout, L., Composites Science and Technology, (1994) 51, 181.CrossRef
Economy, J. and Anderson, R. V. (1967) J. Polymer Sci., C19, 283.
Economy, J. and Lin, R. (1977) in Boron and Refractory Borides, Matkovich, V. I. (ed.), Berlin, Springer-Verlag, p. 552.CrossRefGoogle Scholar
Eickhoff, K. and Gurs, K. (1969) J. Cryst. Growth, 6, 21.CrossRef
Ewart, L. and Suresh, S. (1992) J. Mater. Sci., 27, 5181.CrossRef
Fazen, P. J., Beck, J. S., Lynch, A. T., Remsen, E. E., and Sneddon, L. G., (1990) Chem. Mater., 2, 96.CrossRef
Feigelson, R. S. (1988) MRS Bulletin, 14, October, 47.CrossRef
Feigelson, R. S. (1985) in Crystal Growth of Electronic Materials, Kaldis, E. (ed.), Amsterdam, North-Holland, p. 127.Google Scholar
Gasson, D. G. and Cockayne, B. (1970) J. Mater Sci., 5, 100.CrossRef
Gooch, D. J. and Grover, G. W. (1973) J. Mater Sci., 8, 1238.CrossRef
Griffith, E. J. (1995) Phosphate Fiber, New York, Plenum Press.CrossRefGoogle Scholar
Haggerty, J. S. (1972) NASA-CR-120948, May.
Hollar, W. E. Jr., and Kim, J. J. (1991) Ceram. Eng. Sci. Proc., 12, 979.CrossRef
Hurley, G. F. and Pollack, J. T. A. (1972) Met. Trans., 7, 397.
Ishikawa, T. (1994) Composites Sci. Tech., 51, 135.CrossRef
Jakus, K. and Tulluri, V. (1989) Ceram. Eng. Sci. Proc., 10, 1338.CrossRef
Jang, T. and Subramanian, R. V. (1993) Scripta Met. et Mater., 28, 527.CrossRef
Johnson, D. D., Holz, A. R., and Grether, M. F. (1987) Ceram. Eng. Sci. Proc., 8, 744.CrossRef
Kimura, Y., Kubo, Y., and Hayashi, N. (1994) Composites Sci. Tech., 51, 173,CrossRef
Krukonis, K (1977) in Boron and Refractories Borides, Matkovich, V. I. (ed.), Berlin, Springer-Verlag, p. 517.CrossRefGoogle Scholar
Kun, J., Tlali, S., Jackson, H. E., Webb, J. E., and Singh, R. N. (1996) App. Phys. Lett., 68, 2352.
LaBelle, H. E. (1971) Mater. Res. Bull., 6, 581.CrossRef
LaBelle, H. E. and Mlavsky, A. I. (1971) Mater. Res. Bull., 6, 571.CrossRef
Laffon, C., Flank, A. M., Lagarde, P. et al. (1989) J. Mater. Sci., 24, 1503.CrossRef
Laine, R. M. and Babonneau, F. (1993) Chem. Mater., 5, 260.CrossRef
Laine, R. M., Zhang, Z -F., Chew, K. W., Kannisto, M., and Scotto, C. (1995) in Ceramic Processing Science and Technology, Westerville, OH, American Ceramic Society, p 179.Google Scholar
Lara-Curzio, E. and Sternstein, S. (1993) Composite Sci. Tech., 46, 265.CrossRef
Layden, J. K. (1973) J. Mater. Sci., 8, 1581.CrossRef
Lee, J. -G. and Cutler, I. B. (1975) Amer. Ceram. Soc. Bull., 54, 167.
Lesniewski, C., Aubin, C., and Bunsell, A. R. (1990) Comp. Sci. Tech., 37, 63.CrossRef
Lipowitz, J., Barnard, T., Bujalski, D., Rabe, J., Zank, G., Zangvil, A., and Xu, Y. (1994) Composites Sci. Tech., 51, 167.CrossRef
Mackenzie, K. J. D. and Meinhold, R. H., (1994) J. Mater. Sci., 29, 2775.CrossRef
Milewski, J. V., Gac, F. D., Petrovic, J. J., and Skaggs, S. R. (1985) J. Mater. Sci., 20, 1160.CrossRef
Mouthuy, P.-A., Crossley, A., and Ye, H. (2013) Mater. Lett., 106, 145.CrossRef
Narula, C. K., Schaffer, R., Datye, A. K., Borek, T. T., Rapko, B. M., and Paine, R. T. (1990) Chem. Mater., 2, 394.
Nourbakhsh, S., Liang, F. L., and Margolin, H. (1989) J. Mater. Sci. Lett., 8, 1252.CrossRef
Okamura, K. and Seguchi, T. (1992) J. lnorganic and Organometallic Polymers, 2, 171.CrossRef
Paciorek, K. J. L., Harris, D. H., and Kratzer, R. H. (1986) J. Polym. Sci. Polym. Chem. Ed., 24, p. 173.CrossRef
Petrovic, J. J., Milewski, J. V., Rohr, D. L., and Gac, F. D. (1985) J. Mater. Sci., 20, 1167.CrossRef
Pollack, J. T. A. (1972) J. Mater. Sci., 7, 787.CrossRef
Pysher, D. J. and Tressler, R. E. (1992) J. Mater. Sci., 27, 423.CrossRef
Rayleigh, L. (1879) Proc. London Math. Soc., 10, 4.
Romine, J. C. (1987) Cer. Eng. Sci. Proc., 8, 755.CrossRef
Sacks, M. D., Scheiffele, G. W., Saleem, M., Staab, G. A., Morrone, A. A., and Williams, T. J. (1995) Ceramic Matrix Composites: Advanced High-Temperature Structural Materials, Pittsburgh, PA, MRS, p. 3.Google Scholar
Saitow, Y., Iwanaga, K., Itou, S. et al. (1992) Proc. of the SAMPE Annual Meeting, Vol. 37, Anaheim, CA.Google Scholar
Sakka, S. (1982) in Treatise on Materials Science and Technology, 22 (Tomozawa, M. and Doremus, R. H., eds.), New York, Academic Press, p. 129.Google Scholar
Savart, F. (1833) Ann. de Chim. 53, 337
Sayir, A. and Farmer, A. C. (1995) in Ceramic Matrix Composites – Advanced High-Temperature Structural Materials, Lowden, R. A., Ferber, M. K., Hellmann, J. R., Chawla, K. K., and DiPietro, S. G. (eds.), Pittsburgh, PA, MRS, p. 11.Google Scholar
Sayir, A., Farmer, A. C., Dickerson, P. O., and Yun, H. M. (1995) in Ceramic Matrix Composites – Advanced High-Temperature Structural Materials, Lowden, R. A., Ferber, M. K., Hellmann, J. R., Chawla, K. K., and DiPietra, S. G. (eds.), Pittsburgh, PA, MRS, p. 21.Google Scholar
Schneider, H. and Komarneni, S. (eds.) (2006) Mullite, New York, Wiley.Google Scholar
Seguchi, T., Sugimoto, M., and Okamura, K. (1993) in High Temperature Ceramic Matrix Composites, Naslain, R., Lamon, J., and Doumeingts, D. (eds.), Cambridge, Woodhead, p. 51.Google Scholar
Simon, G. and Bunsell, A. R. (1984) J. Mater. Sci., 19, 3649.CrossRef
Skinner, H. C. W., Ross, M., and Frondel, C., (1988) Asbestos and Other Fibrous Materials, New York, Oxford University Press.Google Scholar
Smith, W. D. (1977) in Boron and Refractory Borides, Matkovich, V. I. (ed.), Berlin, Springer-Verlag, p. 541.CrossRefGoogle Scholar
Sowman, H. G. (1988) in Sol-Gel Technology, Klein, L. J. (ed.), Park Ridge, NJ, Noyes Pub., p. 162.Google Scholar
Subramanian, R. V., Austin, H. F., and Wang, T. J. Y. (1977) SAMPE Quarterly, 8, 1.
Talley, C. P. (1959) J. Appl. Phys., 30, 1114.CrossRef
van Maaren, A. C., Schob, O., and Westerveld, W. (1975) Phillips Tech. Rev., 35, 125.
Vega-Boggio, J. and Vingsbo, O. (1976a) J. Mater. Sci., 11, 2242.CrossRef
Vega-Boggio, J. and Vingsbo, O. (1976b) J. Mater. Sci., 12, 2519.CrossRef
Vega-Boggio, J. and Vingsbo, O. (1978) in 1978 Int. Conf. Composite Materials, ICCM/2, Noton, B. R., Signorelli, R., Street, K., and Phillips, L. (eds.), New York, TMS-AIME, p. 909.Google Scholar
Wallenberger, F. T., Weston, N. E., Motzfeldt, K., and Swartzfager, D. G. (1992) J. Amer. Ceram. Soc., 75, 629.CrossRef
Wallenberger, F. T. and Nordine, P. C. (1992) Mater. Lett., 14 (4), 198.CrossRef
Wawner, F. W. (1967) in Modern Composite Materials, Broutman, L. J. and Krock, R. H. (eds.), Reading, MA, Addison-Wesley, p. 244.Google Scholar
Wax, S. G. (1985) Amer. Ceram. Soc. Bull., 64, 1096.
Weintraub, E. (1911) J. Ind. Eng. Chem., 3, 299.CrossRef
Wills, R. R., Mankle, R. A. and Mukherjee, S. P. (1983) Amer. Ceram. Soc. Bull., 62, 904.
Wilson, D. M. (1990) in Proc. 19th Conf. on Metal Matrix, Carbon, and Ceramic Matrix Composites, NASA Conference Publication 3097, part 1, p. 105.
Wilson, D. M., Lieder, S. L., and Lueneburg, D. C. (1995) Ceram. Eng. Sci. Proc., 16, 1005.CrossRef
Xu, Z. R., Chawla, K. K., and Li, X. (1993) Mater. Sci. Eng., A171, 249.CrossRef
Yajima, S. (1980) Phil. Trans. R. Soc. London, A294, 419.CrossRef
Yajima, S., Okamura, K., Hayashi, J., and Omori, M. (1976) J. Amer. Ceram. Soc., 59, 324.CrossRef
Zaremba, T. and Witkowska, D. (2010) Mater. Sci. Poland, 28, 25.
Zhang, Z.-F., Scotto, S., and Laine, R. M. (1994a) Ceram. Eng. Sci. Proc., 15, 152.CrossRef
Zhang, Z.-F., Scotto, S., and Laine, R. M. (1994b) in Covalent Ceramics II: Non-oxides, Pittsburgh, MRS, PA, p. 207.Google Scholar
Brinker, C. J. and Scherer, G. (1990) The Sol-Gel Science, New York, Academic Press.Google Scholar
Jones, R. W. (1989) Fundamental Principles of Sol-Gel Technology, London, The Institute of Metals.Google Scholar
Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. (1976) Introduction to Ceramics, edn., New York, John Wiley.Google Scholar
Watt, W. and Perov, B. V. (eds.) (1985) Strong Fibres, Amsterdam, North-Holland.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Ceramic fibers
  • Krishan Chawla, University of Alabama, Birmingham
  • Book: Fibrous Materials
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139342520.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Ceramic fibers
  • Krishan Chawla, University of Alabama, Birmingham
  • Book: Fibrous Materials
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139342520.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Ceramic fibers
  • Krishan Chawla, University of Alabama, Birmingham
  • Book: Fibrous Materials
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139342520.009
Available formats
×