Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T20:15:26.098Z Has data issue: false hasContentIssue false

6 - Sound wave driven winds

Published online by Cambridge University Press:  05 June 2012

Henny J. G. L. M. Lamers
Affiliation:
Universiteit Utrecht, The Netherlands
Joseph P. Cassinelli
Affiliation:
University of Wisconsin, Madison
Get access

Summary

In stars with a convection zone just below the photosphere, the convective motions might create acoustic waves which propagate outwards through the photosphere. These sound-waves produce an extra pressure, i.e. ‘wave pressure’ in the atmosphere. This pressure will depend on the density and on the amplitudes of the waves. The gradient of the wave pressure results in a force that can drive a stellar wind. If a stellar wind is driven by acoustic wave pressure it is called a ‘sound wave driven wind’.

In this chapter we will first explain the concept of wave pressure by studying the motion of a particle in the presence of an oscillating force. This simple case, first developed by Landau and Lifshitz (1959) shows that oscillations may result in a net force in the direction of the oscillations. In § 6.1 we discuss the motions of particles in an oscillatory field, such as in a sound wave, and we show that this produces a ‘wave pressure’. In § 6.2 we introduce the concepts of the ‘wave action density’ and the ‘acoustic wave luminosity’. These are useful concepts for describing sound wave driven winds. The pressure due to acoustic waves is described in § 6.3. Section (6.4) descibes sound wave driven wind assuming no dissipation of acoustic energy. This results in estimates of the both the mass loss rate and the wind velocity. In § 6.5 we discuss sound wave driven winds with dissipation of the acoustic energy.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×