Skip to main content Accessibility help
  • Print publication year: 1999
  • Online publication date: June 2012

6 - Sound wave driven winds


In stars with a convection zone just below the photosphere, the convective motions might create acoustic waves which propagate outwards through the photosphere. These sound-waves produce an extra pressure, i.e. ‘wave pressure’ in the atmosphere. This pressure will depend on the density and on the amplitudes of the waves. The gradient of the wave pressure results in a force that can drive a stellar wind. If a stellar wind is driven by acoustic wave pressure it is called a ‘sound wave driven wind’.

In this chapter we will first explain the concept of wave pressure by studying the motion of a particle in the presence of an oscillating force. This simple case, first developed by Landau and Lifshitz (1959) shows that oscillations may result in a net force in the direction of the oscillations. In § 6.1 we discuss the motions of particles in an oscillatory field, such as in a sound wave, and we show that this produces a ‘wave pressure’. In § 6.2 we introduce the concepts of the ‘wave action density’ and the ‘acoustic wave luminosity’. These are useful concepts for describing sound wave driven winds. The pressure due to acoustic waves is described in § 6.3. Section (6.4) descibes sound wave driven wind assuming no dissipation of acoustic energy. This results in estimates of the both the mass loss rate and the wind velocity. In § 6.5 we discuss sound wave driven winds with dissipation of the acoustic energy.