Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T01:40:00.765Z Has data issue: false hasContentIssue false

12 - Winds colliding with the interstellar medium

Published online by Cambridge University Press:  05 June 2012

Henny J. G. L. M. Lamers
Affiliation:
Universiteit Utrecht, The Netherlands
Joseph P. Cassinelli
Affiliation:
University of Wisconsin, Madison
Get access

Summary

Stars interact with the surrounding interstellar medium (ISM), both through their ionizing radiation and through the mass, momentum, and energy that is transferred by way of their winds. The extreme ultraviolet radiation from hot stars leads to ionized nebulae or H II regions around young stars. In the case of low mass stars about to become white dwarfs, the radiation leads to the ionization of planetary nebulae.

The mass loss in stellar winds leads to a recycling of matter back to the interstellar medium, and because of the nuclear processing that occurs in the interiors of stars, the matter which is returned is often chemically enriched. In the cases of late type giants and carbon rich Wolf-Rayet stars, dust grains are produced in the winds, so the outflows may carry grain enriched material into the interstellar medium. These grains could play a role in the next generation of star formation. There are also dynamical effects associated with wind-interstellar medium interactions. The collisions of the winds with their surroundings produce ‘wind bubbles’, and the momentum transfer helps to maintain the random velocities of interstellar clouds that otherwise would be damped out by the dissipative effects of cloud collisions.

The winds of ‘massive stars’ tend to have the greatest effect on the ISM, because their mass loss rates are large, and the massive stars that are hot also have winds that are very fast and carry large momentum fluxes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×