Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-04T07:58:26.084Z Has data issue: false hasContentIssue false

6 - Oxidation in oxidants other than oxygen

Published online by Cambridge University Press:  05 June 2012

Gerald H. Meier
Affiliation:
University of Pittsburgh
Frederick S. Pettit
Affiliation:
University of Pittsburgh
Get access

Summary

Introduction

Most metals are thermodynamically unstable with respect to many of their compounds, particularly metal halides and sulphides, in addition to oxides. This is reflected in the extensive processing that is required to extract metals from their various ores. This chapter is concerned with the corrosion reactions by which metals return to their stable oxidized state, by reaction with sulphur, carbon, nitrogen, and the halogens. Often the corrosive gases encountered in practice contain oxygen, as well as one of these components. This problem of ‘mixed-oxidant corrosion’ will be addressed in the next chapter.

Reactions with sulphur

Metals react readily with sulphur, by mechanisms that parallel those involved in reactions with oxygen. The sulphides of iron and nickel show metallic conduction, i.e., they have high electrical conductivities, which decrease with increasing temperature and are nearly independent of sulphur partial pressure and stoichiometry (H. J. Grabke, personal communication). The departure from stoichiometry in sulphides is generally greater than in the case of oxides, diffusion is faster in sulphides, which are also more plastic than the corresponding oxides and generally have lower melting points. In particular, low-melting metal-sulphide eutectics are common.

Compared with oxidation, the sulphidation of a metal proceeds more rapidly and can be studied at lower temperatures and over shorter times. Sulphide scales tend to be quite plastic but their adherence is not good because most grow by outward cation diffusion and form voids at the scale–metal interface.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rau, H., J. Phys. Chem. Solids, 37 (1976), 425CrossRef
Rickert, H., Z. Phy. Chem. NF, 23 (1960), 355CrossRef
Mrowec, S. and Rickert, H., Z. Phy. Chem. NF, 28 (1961), 422CrossRef
Mrowec, S. and Rickert, H., Z. Phy. Chem. NF, 36 (1963), 22
Wagner, C. Z., Phys. Chem. B, 21 (1933), 25
Mrowec, S. and Werber, T., Gas Corrosion of Metals, Springfield, VA, National Technical Information Service, 1978, p. 383Google Scholar
Mrowec, S. and Przybylski, K., High Temp. Mater., 6 (1984), 1CrossRef
Young, D. J., Rev. High Temp. Mater., 4 (1980), 229
Lai, G. Y., High Temperature Corrosion of Engineering Alloys, Materials Park, OH, ASM International, 1990Google Scholar
Wegge, S. and Grabke, H. J., Werkst. u. Korr., 43 (1992), 437CrossRef
Worrell, W. L. and Kaplan, H., in Heterogenous Kinetics at Elevated Temperatures, eds. Worrell, W. L. and Belton, G. R., New York, Plenum Press, 1970, p. 113Google Scholar
Strafford, K. N., The sulfidation of metals and alloys, Metallurgical Review No. 138, Met. Mater., 3 (1969), 409Google Scholar
Mrowec, S., Oxid. Met., 44 (1995), 177CrossRef
Fueki, Y., Oguri, Y., and Mukaibo, T., Bull. Chem. Soc. Jpn., 41 (1968), 569CrossRef
Mrowec, S. and Przybylski, K., High Temp. Mater. Process, 6 (1984), 1CrossRef
Mrowec, S., Bull. Acad. Polon. Sci., 15 (1967), 517
Hancock, P., First International Conference on Metallic Corrosion, London, Butterworth, 1962, p. 193Google Scholar
Wagner, C., Pittsburgh International Conference on Surface Reactions, Pittsburgh, PA, Corrosion Publishing Company, 1948, p. 77Google Scholar
Wagner, C., Atom Movements, Cleveland, OH, ASM, 1951, p. 153Google Scholar
Condit, R., Kinetics of High Temperature Processes, ed. Kingery, W. D., New York, John Wiley, 1959, p. 97Google Scholar
Bruckman, A., Corr. Sci., 7 (1967), 51CrossRef
Cagnet, M. and Moreau, J., Acta. Met., 7 (1959), 427CrossRef
Meussner, R. A. and Birchenall, C. E., Corrosion, 13 (1957), 677CrossRef
Mrowec, S., Z. Phys. Chem. NF, 29 (1961), 47CrossRef
Kofstad, P., Anderson, P. B., and Krudtaa, O. J., J. Less Comm. Met., 3 (1961), 89CrossRef
Rosenqvist, T., J. Iron Steel Inst., 179 (1954), 37
Grosser, W., Meder, D., Auer, W., and Kaesche, H., Werkst. u. Korr., 43 (1992), 145CrossRef
Chen, M. F. and Douglass, D. L., Oxid. Met., 32 (1989), 185CrossRef
Carter, R. V., Douglass, D. L., and Gesmundo, F., Oxid. Met., 31 (1989), 341CrossRef
Gleeson, B., Douglass, D. L., and Gesmundo, F., Oxid. Met., 31 (1989), 209CrossRef
Chen, M. F., Douglass, D. L., and Gesmundo, F., Oxid. Met., 31 (1989), 237CrossRef
Wang, G., Carter, R. V., and Douglass, D. L., Oxid. Met., 32 (1989), 273CrossRef
Gleeson, B., Douglass, D. L., and Gesmundo, F., Oxid. Met., 33 (1990), 425CrossRef
Wang, G., Douglass, D. L., and Gesmundo, F., Oxid. Met., 35 (1991), 279CrossRef
Wang, G., Douglass, D. L., and Gesmundo, F., Oxid Met., 35 (1991), 349CrossRef
Marshall, C. L., Tin, New York, Reinhold, 1949Google Scholar
P. L. Daniel and R. A. Rapp, Advances in Corrosion Science and Technology, eds. Fontana, M. G. and Staehle, R. W., New York, Plenum Press, 1980CrossRefGoogle Scholar
Ilschner-Gensch, C. and Wagner, C., J. Electrochem. Soc., 105 (1958), 198CrossRef
Kuiry, S. C., Roy, S. K., and Bose, S. K., Oxid. Met., 46 (1996), 399CrossRef
Tedmon, C. S., J. Electrochem Soc., 113 (1966), 766CrossRef
Maloney, M. J. and McNallen, M. J., Met. Trans. B, 16 (1983), 751CrossRef
Oh, J. M., McNallen, M. J., Lai, G. Y., and Rothman, M. F., Met. Trans. A, 17 (1986), 1087CrossRef
Metals Handbook, 10th edn, Metals Park, OH, ASM International, 1991, vol. 4, p. 542
Crank, J., Mathematics of Diffusion, Oxford, UK, Oxford University Press, 1956Google Scholar
Grabke, H-. J., Härt.-Tech. Mitt., 45 (1990), 110
Schnaas, A. and Grabke, H.-J., Oxid. Met., 12 (1979), 387CrossRef
R. F. Hochmann, Catastrophic deterioration of high-temperature alloys in carbonaceous atmospheres. In Properties of High-Temperature Alloys, eds. Foroulis, A. and Pettit, F. S., Princeton, NJ, Electrochemical Society, 1977, p. 715Google Scholar
Grabke, H. J., Corrosion, 51 (1995), 711CrossRef
Meier, G. H., Perkins, R. A., and Coons, W. C., Oxid. Met., 17 (1982), 235CrossRef
Grabke, H. J., Corrosion, 56 (2000), 801CrossRef
Grabke, H. J., Krajak, R., and Paz, J. C. Nava, Corrosion Sci., 35 (1998), 1141CrossRef
Grabke, H. J., Mater. Corr., 49 (1998), 3033.0.CO;2-P>CrossRef
Grabke, H. J., Müller-Lorenz, E. M., Eltester, B., Lucas, M., and Monceau, D., Steel Res., 68 (1997), 179CrossRef
Grabke, H. J., Müller-Lorenz, E. M., and Strauss, S., Oxid. Met., 50 (1998), 241CrossRef
Inokuti, Y., Trans. Iron Steel Inst. Jpn., 15 (1975), 314, 324
Grabke, H. J. and Müller-Lorenz, E. M., Steel Res., 66 (1995), 252CrossRef
Schneider, A., Viefhaus, H., Inden, G., Grabke, H. J., and Müller-Lorenz, E. M., Mater. Corr., 49 (1998), 3303.0.CO;2-1>CrossRef
Pettit, F. S., Goebel, J. A., and Goward, G. W., Corr. Sci., 9 (1969), 903CrossRef
Perkins, R. A., Alloying of chromium to resist nitridation, NASA Report NASA-Cr-72892, July, 1971Google Scholar
Giggins, C. S. and Pettit, F. S., Oxid. Met., 14 (1980), 363CrossRef
Aydin, I., Bühler, H. E., and Rahmel, A., Werkst. u. Korr., 31 (1980), 675CrossRef
Jäkel, U. and Schwenk, W., Werkst. u. Korr., 22 (1971), 1CrossRef
Grabke, H-. J., Strauss, S., and Vogel, D., Mater. Corr., 54 (2003), 895CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×