Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-29T19:47:09.895Z Has data issue: false hasContentIssue false

5 - Oxidation of alloys

Published online by Cambridge University Press:  05 June 2012

Gerald H. Meier
Affiliation:
University of Pittsburgh
Frederick S. Pettit
Affiliation:
University of Pittsburgh
Get access

Summary

Introduction

Many of the factors described for the oxidation of pure metals also apply to the oxidation of alloys. However, alloy oxidation is generally much more complex as a result of some, or all, of the following.

  • The metals in the alloy will have different affinities for oxygen reflected by the different free energies of formation of the oxides.

  • Ternary and higher oxides may be formed.

  • A degree of solid solubility may exist between the oxides.

  • The various metal ions will have different mobilities in the oxide phases.

  • The various metals will have different diffusivities in the alloy.

  • Dissolution of oxygen into the alloy may result in sub-surface precipitation of oxides of one or more alloying elements (internal oxidation).

This chapter describes the major effects occurring in alloy oxidation and their relation to the above factors. No attempt has been made to provide a complete survey of the extensive literature on this subject, rather, examples which illustrate the important fundamentals are presented. This is done by first classifying the types of reactions which occur, and then describing additional factors which have significant influences on the oxidation process. Subsequent chapters will describe the oxidation of alloys in complex environments, such as those involving mixed gases, liquid deposits, and erosive conditions and the use of coatings for oxidation protection. Previous reviews of alloy oxidation include those by Kubaschewski and Hopkins, Hauffe, Benard, Pfeiffer and Thomas, Birchenall, Mrowec and Werber, Kofstad, and Beranger, Colson and Dabosi.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kubaschewski, O. and Hopkins, B. E., Oxidation of Metals and Alloys, London, Butterworth, 1962Google Scholar
Hauffe, K., Oxydation von Metallen und Metallegierungen, Berlin, Springer, 1957Google Scholar
Benard, J., Oxydation des Métaux, Paris, Gauthier-Villars, 1962Google Scholar
Pfeiffer, H. and Thomas, H., Zunderfeste Legierungen, Berlin, Springer, 1963CrossRefGoogle Scholar
Birchenall, C. E., Oxidation of alloys. In Oxidation of Metals and Alloys, ed. Douglass, D. L., Metals Park, Ohio, ASM, 1971, ch. 10Google Scholar
Mrowec, S. and Werber, T., Gas Corrosion of Metals, Washington, DC, National Bureau of Standards and National Science Foundation (translated from Polish), 1978Google Scholar
Kofstad, P., High Temperature Corrosion, London, Elsevier Applied Science, 1988Google Scholar
Beranger, G., Colson, J. C., and Dabosi, F., Corrosion des Materiaux à Haute Température, Les Ulis, les Éditions de Physique, 1987Google Scholar
Wagner, C., Ber.Bunsenges. Phys. Chem., 63 (1959), 772
Wagner, C., J. Electrochem. Soc., 99 (1956), 369CrossRef
Wagner, C., J. Electrochem. Soc., 103 (1956), 571CrossRef
Rickert, H., Z. Phys. Chem. NF 21 (1960), 432CrossRef
Rapp, R. A., Corrosion, 21 (1965), 382CrossRef
Swisher, J. H., Internal oxidation. In Oxidation of Metals and Alloys, ed. Douglass, D. L., Metals Park, Ohio, ASM, 1971, ch. 12Google Scholar
Meijering, J. L., Internal oxidation in alloys. In Advances in Materials Research, ed. Herman, H., New York, Wiley, 1971, Vol. 5, pp. 1–81Google Scholar
Douglass, D. L., Oxid. Met., 44 (1995), 81CrossRef
Wood, S., Adamonis, D., Guha, A., Soffa, W. A., and Meier, G. H., Met. Trans., 6A (1975), 1793CrossRef
Megusar, J. and Meier, G. H., Met. Trans., 7A (1976), 1133CrossRef
Bohm, G. and Kahlweit, M., Acta met., 12 (1964), 641CrossRef
Bolsaitis, P. and Kahlweit, M., Acta met., 15, (1967), 765CrossRef
Wagner, C., Z. Elektrochem., 63 (1959), 772
Rapp, R. A., Acta met., 9 (1961), 730CrossRef
Wagner, C., Corr. Sci., 5 (1965), 751CrossRef
Pickering, H. R., J. Electrochem. Soc., 119 (1972), 64
Meier, G. H., Mater. Sci. Eng., A120 (1989), 1CrossRef
Stott, F. H., Wood, G. C., and Stringer, J., Oxid. Met., 44 (1995), 113CrossRef
Giggins, C. S. and Pettit, F. S., TAIME, 245 (1969), 2495
Birks, N. and Rickert, H., J. Inst. Met., 91 (1962–63), 308
Wood, G. C., Oxid. Met., 2 (1970), 11CrossRef
Wood, G. C., Wright, I. G., Hodgkiess, T., and Whittle, D. P., Werkst. Korr., 21 (1970), 900CrossRef
Wood, G. C. and Chattopadhyay, B., Corr. Sci., 10 (1970), 471CrossRef
Gesmundo, F. and Viani, F., Oxid. Met., 25 (1986), 269CrossRef
Wood, G. C. and Stott, F. H., Mater. Sci. Tech., 3 (1987), 519CrossRef
Pettit, F. S., Trans. Met. Soc. AIME, 239 (1967), 1296
Doychak, J., in Intermetallic Compounds, eds. Westbrook, J. H., Fleischer, R. L., New York, Wiley, 1994, p. 977Google Scholar
Schumann, E. and Rühle, M., Acta metall. mater., 42 (1994), 1481CrossRef
Rybicki, G. C. and Smialek, J. L., Oxid. Met., 31 (1989), 275CrossRef
Pint, B. A. and Hobbs, L. W., Oxid. Met., 41 (1994), 203CrossRef
Brumm, M. W. and Grabke, H. J., Corr. Sci., 33 (1992), 1677CrossRef
Pint, B. A., Treska, M., and Hobbs, L. W., Oxid. Met., 47 (1997), 1CrossRef
Giggins, C. S. and Pettit, F. S., J. Electrochem. Soc., 118 (1971), 1782CrossRef
Wallwork, G. R. and Hed, A. Z., Oxid. Met., 3 (1971), 171CrossRef
Kear, B. H., Pettit, F. S., Fornwalt, D. E., and Lemaire, L. P., Oxid. Met., 3 (1971), 557CrossRef
Wallwork, G. R., Rep. Prog. Phys., 39 (1976), 401CrossRef
C. S. Giggins and F. S., Pettit, Final Report to Aerospace Research Laboratories, Dayton, OH, Wright-Patterson AFB, contract NF33615–72-C-1702, 1976
Adachi, T. and Meier, G. H., Oxid. Met., 27 (1987), 347CrossRef
Rapp, R. A. and Colson, H., Trans. Met. Soc. AIME, 236 (1966), 1616
Rapp, R. A. and Goldberg, G., Trans. Met. Soc. AIME, 236 (1966), 1619
Wood, G. C., in Oxidation of Metals and Alloys, ed. Douglass, D. L., Metals Park, OH, ASM, 1971, ch. 11Google Scholar
Cox, M. G., McEnaney, B., and Scott, V. D., Phil. Mag., 26 (1972), 839CrossRef
Wagner, C., Corr. Sci., 10 (1969), 91CrossRef
Bastow, B. D., Whittle, D. P., and Wood, G. C., Corr. Sci., 16 (1976), 57CrossRef
Meier, G. H., Fundamentals of the oxidation of high temperature intermetallics. In Oxidation of High Temperature Intermetallics, eds. Grobstein, T. and Doychak, J., Warrendate, PA, TMS, 1989, p. 1Google Scholar
G. H. Meier, N. Birks, F. S. Pettit, R. A. Perkins, and H. J. Grabke, Environmental behavior of intermetallic materials. In Structural Intermetallics, 1993, p. 861
Meier, G. H., Mater. Corr., 47 (1996), 595
Brady, M. P., Pint, B. A., Tortorelli, P. F., Wright, I. G., and Hanrahan, R. J. Jr., High temperature oxidation and corrosion of intermetallics. In Materials Science and Technology: A Comprehensive Review, eds. Cahn, R. W., Haasen, P., and Kramer, E. J., Wiley–VCH Verlag, 2000, Vol. II, ch. 6Google Scholar
Svedberg, R., Oxides associated with the improved air oxidation performance of some niobium intermetallics and alloys. In Properties of High Temperature Alloys, eds. Foroulis, Z. A. and Pettit, F. S., New York, NY, The Electochemical Society, 1976, p. 331Google Scholar
Grabke, H. J. and Meier, G. H., Oxid. Met., 44 (1995), 147CrossRef
Berztiss, D. A., Cerchiara, R. R., Gulbransen, E. A., Pettit, F. S., and Meier, G. H., Mater. Sci. Eng., A155 (1992), 165CrossRef
Douglass, D. L., Exfoliation and the mechanical behavior of scales. In Oxidation of Metals and Alloys, ed. Douglass, D. L., Metals Park, OH, ASM, 1971Google Scholar
Stringer, J., Corr. Sci., 10 (1970), 513CrossRef
Hancock, P. and Hurst, R. C., The mechanical properties and breakdown of surface oxide films at elevated temperatures. In Advances in Corrosion Science and Technology, eds. Staehle, R. W. and Fontana, M. G., New York, NY, Plenum Press, 1974, p. 1Google Scholar
Stott, F. H. and Atkinson, A., Mater. High Temp., 12 (1994), 195CrossRef
Evans, H. E., Int. Mater. Rev., 40 (1995), 1CrossRef
Pilling, N. B. and Bedworth, R. E., J. Inst. Met., 29 (1923), 529
Pieraggi, B. and Rapp, R. A., Acta met., 36 (1988), 1281CrossRef
Robertson, J. and Manning, M. J., Mater. Sci. Tech., 4 (1988), 1064CrossRef
Guruswamy, G., Park, S. M., Hirth, J. P., and Rapp, R. A., Oxid. Met., 26 (1986), 77CrossRef
Douglass, D. L., Zhu, B., and Gesmundo, F., Oxid. Met., 38 (1992), 365CrossRef
Jaenicke, W. and Leistikow, S., Z. Phys. Chem., 15 (1958), 175CrossRef
Jaenicke, W., Leistikow, S., and Stadler, A., J. Electrochem. Soc., 111 (1964), 1031CrossRef
Horibe, S. and Nakayama, T., Corr. Sci., 15 (1975), 589CrossRef
Giggins, C. S. and Pettit, F. S., Trans. Met. Soc. AIME, 245 (1969), 2509
Rhines, F. N. and Wolf, J. S., Met. Trans., 1 (1970), 1701CrossRef
Speight, M. V. and Harris, J. E., Acta met., 26 (1978), 1043CrossRef
Atkinson, A., Corr. Sci., 22 (1982), 347CrossRef
Prescott, R. and Graham, M. J., Oxid. Met., 38 (1992), 233CrossRef
Caplan, D. and Sproule, G. I., Oxid. Met., 9 (1975), 459CrossRef
Lillerud, K. P. and Kofstad, P., J. Electrochem. Soc., 127 (1980), 2397CrossRef
Golightly, F. A., Stott, F. H., and Wood, G. C., J. Electrochem. Soc., 126 (1979), 1035CrossRef
Timoshenko, S. P., J. Opt. Soc. Amer., 11 (1925), 233CrossRef
Tien, J. K. and Davidson, J. M., Oxide spallation mechanisms. In Stress Effects and the Oxidation of Metals, ed. Cathcart, J. V., New York, AIME, 1975, p. 200Google Scholar
Noyan, I. C. and Cohen, J. B., Residual Stresses, Berlin, Springer-Verlag, 1987CrossRefGoogle Scholar
Sarioglu, C., Blachere, J. R., Pettit, F. S., and Meier, G. H., Room temperature and in-situ high temperature strain (or stress) measurements by XRD techniques. Microscopy of Oxidation 3, eds., Newcomb, S. B. and Little, J. A., London, The Institute of Materials. 1997, p. 41Google Scholar
Hou, P. Y. and Stringer, J., Acta metall. mater., 39 (1991), 841CrossRef
Stout, J. H., Shores, D. A., Goedjen, J. G., and Armacanqui, M. E., Mater. Sci. Eng., A120 (1989), 193CrossRef
Barnes, J. J., Goedjen, J. G., and Shores, D. A., Oxid. Met., 32 (1989), 449CrossRef
Goedjen, J. G., Stout, J. H., Guo, Q., and Shores, D. A., Mater. Sci. Eng., A177 (1994), 15
Zhang, Y., Zhu, D., and Shores, D. A., Acta metall. mater., 43 (1995), 4015CrossRef
Gardiner, D. J., Developments in Raman spectroscopy and applications to oxidation studies. In Microscopy of Oxidation 2, eds. Newcomb, S. B. and Bennett, M. J., London, Institute of Materials, 1993, p. 36Google Scholar
Lipkin, M. and Clarke, D. R., J. Appl. Phys., 77 (1995), 1855CrossRef
Evans, U. R., An Introduction to Metallic Corrosion, London, Edward Arnold, 1948, p. 194Google Scholar
Evans, H. E. and Lobb, R. C., Corr. Sci., 24 (1984), 209CrossRef
Whittle, D. P. and Stringer, J., Phil. Trans. Roy. Soc. Lond., A295 (1980), 309CrossRef
Stringer, J., Met. Rev., 11 (1966), 113CrossRef
Tien, J. K. and Pettit, F. S., Met. Trans., 3 (1972), 1587CrossRef
Felten, E. J., J. Electrochem. Soc., 108 (1961), 490CrossRef
Pfeiffer, H., Werks. Korr., 8 (1957), 574CrossRef
McDonald, J. E. and Eberhardt, J. G., Trans. TMS-AIME, 233 (1965), 512
Antill, J. E. and Peakall, K. A., J. Iron Steel Inst., 205 (1967), 1136
Funkenbusch, A. W., Smeggil, J. G., and Bornstein, N. S., Met. Trans., 16A (1985), 1164CrossRef
Smeggil, J. G., Funkenbusch, A. W., and Bornstein, N. S., Met. Trans., 17A (1986), 923CrossRef
B. K. Tubbs and J. L., Smialek, Effect of sulphur removal on scale adhesion to PWA 1480. In Corrosion and Particle Erosion at High Temperatures, eds. V. Srinivasan and K. Vedula, Warrendate, PA, TMS, 1989, p. 459
R. V. McVay, P. Williams, G. H. Meier, F. S. Pettit, and J. L. Smialek, Oxidation of low sulphur single crystal nickel-base superalloys. In Superalloys 1992, eds. S. D. Antolovich, R. W. Stusrud, R. A. MacKay, D. L. Anton, T. Khan, R. D. Kissinger, and D. L. Klarstrom, Warrendale, PA, TMS, 1992, p. 807
Stasik, M. C., Pettit, F. S., Meier, G. H., Ashary, A., and Smialek, J. L., Scripta met. mater., 31 (1994), 1645CrossRef
Grabke, H. J., Wiener, D., and Viefhaus, H., Appl. Surf. Sci., 47 (1991), 243CrossRef
Hou, P. Y. and Stringer, J., Oxid. Met., 38 (1992), 323CrossRef
Grabke, H. J., Kurbatov, G., and Schmutzler, H. J., Oxid. Met., 43 (1995), 97CrossRef
Hou, P. Y. and Stringer, J., Mater. Sci. Eng., A202 (1995), 1CrossRef
Rapp, R. A. and Pieraggi, B., J. Electrochem. Soc., 140 (1993), 2844
Ecer, G. M. and Meier, G. H., Oxid. Met., 13 (1979), 159CrossRef
L. B. Pfeil, UK Pat. No. 459848, 1937
Ecer, G. M., Singh, R. B., and Meier, G. H., Oxid. Met., 18 (1982), 53CrossRef
Pettit, F. S. and Meier, G. H., The effects of refractory elements on the high temperature oxidation and hot corrosion properties of superalloys. In Refractory Alloying Elements in Superalloys, eds. Tien, J. K and Reichman, S., Metals Park, OH, ASM, 1984, p. 165Google Scholar
Leslie, W. C. and Fontana, M. G., Trans. ASM, 41 (1949), 1213
Brenner, S. S., J. Electrochem. Soc., 102 (1955), 7CrossRef
Brenner, S. S., J. Electrochem. Soc., 102 (1955), 16CrossRef
Rathenau, G. W. and Meijering, J. L., Metallurgia, 42 (1950), 167
Peters, K. R., Whittle, D. P., and Stringer, J., Corr. Sci., 16 (1976), 791CrossRef
Belousov, V. V. and Bokshtein, B. S., Oxid. Met., 50 (1998), 389CrossRef
El-Dashan, M. E., Whittle, D. P., and Stringer, J., Corr. Sci., 16 (1976), 83CrossRef
El-Dashan, M. E., Whittle, D. P., and Stringer, J., Corr. Sci., 16 (1976), 77CrossRef
Goebel, J. A., Pettit, F. S., and Goward, G. W., Met. Trans., 4 (1973), 261CrossRef
Caplan, D., Sproule, G. I., Hussey, R. J., and Graham, M. J., Oxid. Met., 12 (1968), 67CrossRef
Boggs, W. E. and Kachik, R. H., J. Electrochem. Soc., 116 (1969), 424CrossRef
Sachs, K. and Tuck, C. W., ISI Publication 111, London, The Iron and Steel Institute, 1968, p. 1
Birks, N. and Jackson, W., J. Iron Steel Inst., 208 (1970), 81
Baud, J., Ferrier, A., Manenc, J., and Bénard, J., Oxid. Met., 9 (1975), 1CrossRef
N. Birks and A. Nicholson, ISI Publication 123, London, The Iron and Steel Institute, 1970, p. 219
Wells, C., Trans. Met. Soc. AIME, 188 (1950), 553
N. Birks, ISI Publication 133, London, The Iron and Steel Institute, 1970, p. 1

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×