Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T07:31:34.462Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  05 November 2012

Donald A. Tomalia
Affiliation:
NanoSynthons, LLC
Jørn B. Christensen
Affiliation:
University of Copenhagen
Ulrik Boas
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

Background/historical

Pervasive architecture and functional patterns found in nature

The Greek terms dendri-, dendrites, dendritic are root word descriptors for branching or treelike structures. These terms describe some of the most pervasive architectural patterns observed on our planet [1]. Before the early 1980s [2–4] all dendritic architectures and networks were known only as naturally occurring structures/entities found either in the abiotic world (e.g. snow crystals, lightning patterns, erosion/tributary river network fractals) or in the biological realm. In biological systems, these dendritic patterns are found at length scales ranging from meters (trees), millimeters/centimeters (vascular/circulatory systems in plants and animals, Golgi domains (organelles), fungi), microns (neurons) to nanometers (IgM antibodies, amylopectins and proteoglycans) as illustrated in Figure 1.1. Certain randomly branched, dendritic architectures were hypothesized by Nobel Laureate P. Flory as early as the 1940s to describe theoretical polymer intermediates in crosslinking events [5]. However, it was not until the late 1970s that the first examples of such dendritic architecture were intentionally synthesized and rigorously characterized in a laboratory. These first dendritic structures were synthesized both as core-shell-type, small molecules, and macromolecules. The widely recognized terms – dendrimers/dendrons (i.e. dendri [branched] and mer [part of] – were first coined and introduced by Tomalia in 1983 [6] to describe these compositionally broad and diverse categories of precisely defined core-shell, dendritic structures. A typical dendrimer family derived from a core and surrounded by radial shells (i.e. generations) of covalently connected branched monomers is illustrated in Figure 1.1.

It was soon realized that these newly discovered dendritic structures could be synthesized with a very wide range of diverse elemental compositions (i.e. both organic and inorganic). Furthermore, it was found that they could be obtained with unprecedented mono-dispersity and extraordinary structure control as a function of (a) size, (b) shape, (c) surface chemistry, (d) flexibility/rigidity, (e) architecture, and (f) composition. Unlike traditional synthetic polymers, these synthetic macromolecules were routinely synthesized with structure control normally associated only with highly precise biological polymers such as proteins, DNA, and RNA.

Type
Chapter
Information
Dendrimers, Dendrons, and Dendritic Polymers
Discovery, Applications, and the Future
, pp. 1 - 24
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Parker, S. P.McGraw-Hill Dictionary of Scientific and Technical TermsNew YorkMcGraw-Hill Book Company. 1989
Tomalia, D. A.Baker, H.Dewald, J.A new class of polymers: Starburst dendritic macromoleculesPolym. J. (Tokyo) 17 1985 117CrossRefGoogle Scholar
Tomalia, D. A.Dewald, J. R.Hall, M. J.Martin, S. J.Smith, P. B.Preprints of the 1st SPSJ Int. Polym. Conf., Society of Polymer Science 1984 Kyoto, Japan
Tomalia, D. A.Fréchet, J. M. J.Discovery of dendrimers and dendritic polymers: a brief historical perspectiveJ. of Polym. Sci.: Part A: Polym. Chem 40 2002 2719CrossRefGoogle Scholar
Flory, P. J.Molecular size distribution in three-dimensional polymers, IV:. Branched polymers containing A-R-Bf-1 type unitsJ. Am. Chem. Soc 74 1952 2718CrossRefGoogle Scholar
Tomalia, D. A. 1983
Berzelius, J.J. Fortsch. Phys. Wissensch 11 1832 44
Buhleier, E.Wehner, W.Vögtle, F.Cascade – and nonskid-chain-like syntheses of molecular cavity topologiesSynthesis 405 1978 155CrossRefGoogle Scholar
Morawetz, H.The Origin and Growth of a ScienceNew YorkJ. Wiley 1985Google Scholar
Odian, G.Principles of PolymerizationNew YorkWiley-Interscience 2004CrossRefGoogle Scholar
Tomalia, D. A.Periodic patterns, relationships and categories of well-defined nanoscale building blockshttp://www.nsf.gov/crssprgm/nano/GC_Charact08_Tomalia_nsf9_29_08.pdfNational Science Foundation Final Workshop Report 2008 1Google Scholar
Tomalia, D. A.In quest of a systematic framework for unifying and defining nanoscienceJ. Nanopart. Res 11 2009 1251CrossRefGoogle ScholarPubMed
Staudinger, H.From Organic Chemistry to MacromoleculesNew YorkWiley-Interscience 1970Google Scholar
Staudinger, H.Die Chemie der hochmolekularen organischen Stoffe im Sinne der Kekuleschen StrukturlehreBer. Deut. Chem. Ges. 59 1926 3019CrossRefGoogle Scholar
Davies, R. E.Freyd, P. J.C167H336 is the smallest alkane with more realizable isomers than the observed universe has “particles”J. Chem. Education 66 1989CrossRefGoogle Scholar
Tomalia, D. A.Dendrimer moleculesSci. Am 272 1995 42CrossRefGoogle Scholar
Wolfram, S.A New Kind of ScienceChampaign, ILWolfram Media Inc. 2002Google Scholar
Flory, P. J.Principles of Polymer ChemistryIthaca, NYCornell University Press 1953Google Scholar
Roovers, J.Advances in Polymer Science, Branched Polymers IIBerlinSpringer-Verlag 2000
Dusek, K.Duskova-Smrckova, M.Formation, structure and properties and the crosslinked state relative to precursor architectureDendrimers and Dendritic Polymers 2001 111Google Scholar
Dusek, K.The role of precursor architecture in polymer network structureTrends Polym. Sci. 5 1997 268Google Scholar
Tomalia, D. A.Hedstrand, D. M.Wilson, L. R.Dendritic polymersEncyl. of Polym. Sci. & Eng. 1990 46Google Scholar
Tomalia, D. A.Uppuluri, S.Swanson, D. R.Li, J.Dendrimers as reactive modules for the synthesis of new structure controlled, higher complexity megamersPure Appl. Chem 72 2000 2343CrossRefGoogle Scholar
Fréchet, J. M. J.Tomalia, D. A.Dendrimers and Other Dendritic PolymersChichesterWiley 2001CrossRefGoogle Scholar
Gunatillake, P. A.Odian, G.Tomalia, D. A.Thermal polymerization of a 2-(carboxyalkyl)-2-oxazolineMacromolecules 21 1988 1556CrossRefGoogle Scholar
Kim, Y. H.Webster, O. W.Polym. Prepr. 29 1988 310
Kim, Y. H.Webster, O. W.Water-soluble hyperbranched polyphenylene: A unimolecular micelleJ. Am. Chem. Soc 112 1990 4592CrossRefGoogle Scholar
Emrick, T.Chang, H. T.Fréchet, J. M. J.The preparation of hyberbranched aromatic and aliphatic polyether epoxies by chloride-catalyzed proton transfer polymerization from ABn and A2 + B3 monomersJ. Poly. Sci. A 38 2000 48503.0.CO;2-G>CrossRefGoogle Scholar
Emrick, T.Fréchet, J. M. J.Self-assembly of dendritic structuresCurrent Opinion in Colloid and Interface Science 4 1999 15CrossRefGoogle Scholar
Bharati, P.Moore, J. S.Solid-supported hyperbranched polymerization: evidence for self-limited growthJ. Am. Chem. Soc 119 1997 3391CrossRefGoogle Scholar
Muzafarov, A. M.Rebrov, E. A.Gorbatsevich, O. B.Degradable dendritic polymers–A template for functional pores and nanocavitiesMacromol. Symp 102 1996 35CrossRefGoogle Scholar
Miravet, J. F.Fréchet, J. M. J.New hyperbranched poly(siloxysilanes): Variation of the branching pattern and end-functionalizationMacromolecules 31 1998 3461CrossRefGoogle Scholar
Chu, F.Hawker, C. J.A versatile synthesis of isomeric hyperbranched polyetherketonesPolym. Bull 30 1993 265CrossRefGoogle Scholar
Hawker, C. J.Lee, R.Fréchet, J. M. J.One-step synthesis of hyperbranched dendritic polyestersJ. Am. Chem. Soc 113 1991 4583CrossRefGoogle Scholar
Uhrich, K. E.Hawker, C. J.Fréchet, J. M. J.Turner, S. R.One-pot synthesis of hyperbranched polyethersMacromolecules 25 1992 4583CrossRefGoogle Scholar
Liu, M.Vladimirov, N.Fréchet, J. M. J.A new approach to hyperbranched polymers by ring-opening polymerization of an AB monomer: 4-(-2-hydroxyethyl)-e-caprolactoneMacromolecules 32 1999 6881CrossRefGoogle Scholar
Fréchet, J. M. J.Henmi, M.Gitsov, I.Self-condensing vinyl polymerization: An approach to dendritic materialsScience 269 1995 1080CrossRefGoogle ScholarPubMed
Hawker, C. J.Farrington, P. J.Mackay, M. E.Wooley, K. L.Fréchet, J. M. J.Molecular ball bearings: The unusual melt viscosity behavior of dendritic macromoleculesJ Am. Chem. Soc 117 1995 4409CrossRefGoogle Scholar
Sunder, A.Heinemann, J.Frey, H.Controlling the growth of polymer trees: concepts and perspectives for hyperbranched polymersChem. Eur. J 6 2000 24993.0.CO;2-M>CrossRefGoogle ScholarPubMed
Gong, C.Miravet, J.Fréchet, J. M. J.Intramolecular cyclization in the polymerization of ABx monomers: approaches to the control of molecular weight and polydispersity in hyperbranched poly(siloxysilane)J. Polym. Sci. A 37 1999 31933.0.CO;2-R>CrossRefGoogle Scholar
Voit, B. I.Lederer, A.Hyperbranched and highly branched polymer architectures – synthetic strategies and major characterization aspectsChemical Reviews 109 2009 5924CrossRefGoogle ScholarPubMed
Zhou, Y.Yan, D.Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: progress, characteristics and perspectivesChem. Commun 2009 1172CrossRefGoogle Scholar
Ambade, A. V.Chen, Y.Thayumanavan, S.Controlled functional group presentations in dendrimers as a tool to probe the hyperbranched architectureNew J. Chem 31 2007 1052CrossRefGoogle Scholar
Petersson, B.Hyperbranched polymers: unique design tools for multi-property control in resin and coatingsPigment & Resin Tech. 25 1996 4CrossRefGoogle Scholar
Tanis, I.Tragoudaras, D.Karatasos, K.Anastasiadis, S. H.Molelcular dynamics simulations of hyperbranched poly(ester amide):statics, dynamics, and hydrogen bondingJ. Phys. Chem. B 113 2009 5356CrossRefGoogle Scholar
Tomalia, D. A.Hedstrand, D. M.Ferrito, M. S.COMBBURST™ dendrimers – a new macromolecular architectureMacromolecules 24 1991 1435CrossRefGoogle Scholar
Gauthier, M.Möller, M.Uniform highly branched polymers by anionic grafting: Arborescent graft polymersMacromolecules 24 1991 4548CrossRefGoogle Scholar
Kee, R. A.Gauthier, M.Tomalia, D. A.Fréchet, J. M. J.Tomalia, D. A.Dendrimers and Other Dendritic PolymersWest SussexJohn Wiley & Sons 2001Google Scholar
Gauthier, M.Li, J.Dockendorff, J.Arborescent polystyrene-graft-poly(2-vinylpyridine) copolymers as unimolecular micelles. Synthesis from acetylated substratesMacromolecules 36 2003 2642CrossRefGoogle Scholar
Six, J.-L.Gnanou, Y.From star-shaped to dendritic poly(ethylene oxide)s: Toward increasingly branched architectures by anionic polymerizationMacromol. Symp 95 1995 137CrossRefGoogle Scholar
Taton, D.Cloutet, E.Gnanou, Y.Novel amphiphilic branched copolymers based on polystyrene and poly(ethylene oxide)Macromol. Chem. Phys 199 1998 25013.0.CO;2-F>CrossRefGoogle Scholar
Taton, D.Feng, X.Gnanou, Y.Dendrimer-like polymers: a new class of structurally precise dendrimers with macromolecular generationsNew J. Chem 31 2007 1097CrossRefGoogle Scholar
Trollsas, M.Hedrick, J. L.Dendrimer-like star polymersJ. Am. Chem. Soc 120 1998 4644CrossRefGoogle Scholar
Trollsas, M.Hedrick, J. L.Hyperbranched poly(e-caprolactone) derived from intrinsically branched AB2 macromonomersMacromolecules 31 1998 4390CrossRefGoogle Scholar
Roovers, J.Advances in Polymer Science, Branched Polymers IBerlinSpringer-Verlag 1999
Grubbs, R. B.Hawker, C. J.Dao, J.Fréchet, J. M. J.A tandem approach to graft and dendritic graft copolymers based on “living” free radical polymerizationsAngew. Chem. Int. Ed. Engl 36 1997 270CrossRefGoogle Scholar
Guan, Z.Cotts, P. M.Mccord, E. F.Mclain, S. J.Chain walking: A new strategy to control polymer topologyScience 283 1999 2059CrossRefGoogle ScholarPubMed
Commeyras, A.Collet, H.Souaid, E. 2006
Collet, H.Martin, M.Papillaud, A.Determination of dendrigraft poly-L-lysine diffusion coefficients by Taylor dispersion analysisBiomacromolecules 8 2007 3235Google Scholar
Ogawa, M.Regino, C. A. S.Marcelino, B.New nanosized biocompatible MR contrast agents based on lysine-dendri-graft macromoleculesBioconjugate Chem 21 2010 955CrossRefGoogle ScholarPubMed
Tsogas, I.Theodossiou, T.Sideratou, Z.Interaction and transport of poly(L-lysine) dendrigrafts through liposomal and cellular membranes: The role of generation and surface functionalizationBiomacromolecules 8 2007 3263CrossRefGoogle ScholarPubMed
Teertstra, S. J.Gauthier, M.Dendrigraft polymers: macromolecular engineering on a mesoscopic scaleProg. Polym. Sci 29 2004 277CrossRefGoogle Scholar
Dockendorff, J.Gauthier, M.Mourran, A.Möller, M.Arborescent amphiphilic copolymers as templates for the preparation of gold nanoparticlesMacromolecules 41 2008 6621CrossRefGoogle Scholar
Gauthier, M.Tomalia, D. A.Fréchet, J. M. J.Tomalia, D. A.Dendrimers and Other Dendritic PolymersChichesterWiley 2001Google Scholar
Perez, J.Bax, L.Willems, P. Escalanovan den Wildenberg, http://www.phantomsnet.net/files/NRM_Dendrimers_final.pdf 2005
Rutt, J. S.Maebius, S. B.Dendrimer Patent Trends: The Explosion ContinuesFoley & Lardner LLP 2004Google Scholar
Freemantle, M.Blossoming dendrimersChem. Eng. News 77 1999 27Google Scholar
Halford, B.Dendrimers branch outChem. Eng. News 83 2005 30Google Scholar
Tomalia, D. A.A new complexityMaterials Today 6 2003 72Google Scholar
Tomalia, D. A.Dendrons/dendrimers: the convergence of quantized dendritic building blocks/architectures for applications in nanotechnologyChemistry Today 23 2005 52Google Scholar
Tomalia, D. A.Fréchet, J. M.Introduction to dendrimers and dendritic polymersProg. Polym. Sci 30 2005 217CrossRefGoogle Scholar
Majoral, J.-P.State of the art developments in the chemistry and properties of dendrimers and hyperbranched polymersNew. J. Chem 31 2007 1039Google Scholar
Vohs, J. K.Fahlman, B. D.Advances in the controlled growth of nanoclusters using dendritic architectureNew J. Chem 31 2007CrossRefGoogle Scholar
Hahn, U.Cardinali, F.Nierengarten, J.-F.Supramolecular chemistry for the self-assembly of fullerene-rich dendrimersNew J. Chem 31 2007 1128CrossRefGoogle Scholar
Deschenaux, R.Donnio, B.Guillon, D.Liquid-crystalline fullerodendrimersNew J. Chem 31 2007 1064CrossRefGoogle Scholar
Swanson, D. R.Huang, B.Abdelbady, H. G.Tomalia, D. A.Unique steric and geometry induced stoichiometries observed in the divergent synthesis of poly(ester-acrylate) (PEA) dendrimersNew J. Chem. 31 2007 1368CrossRefGoogle Scholar
Voit, B.The potential of cycloaddition reactions in the synthesis of dendritic polymersNew J. Chem 31 2007 1139CrossRefGoogle Scholar
Kehat, T.Goren, K.Portnoy, M.Dendrons on insoluble supports: synthesis and applicationsNew J. Chem 31 2007 1218CrossRefGoogle Scholar
Crampton, H.Hollink, E.Perez, L. M.Simanek, E. E.A divergent route towards single-chemical entity triazine dendrimers with opportunities for structural diversityNew J. Chem 31 2007 1283CrossRefGoogle ScholarPubMed
Nlate, S.Plault, L.Astruc, D.Peripheral functionalisation of dendrimers with polyoxotungstate complexes assembled by ionic bonding and their use as oxidation catalysts: Influence of the tether lengthNew J. Chem 31 2007 1264CrossRefGoogle Scholar
Hwang, S.-H.Shreiner, C. D.Moorfield, C. N.Newkome, G. R.Recent progress and applications for metallodendrimersNew J. Chem 31 2007 1192CrossRefGoogle Scholar
Bauer, R. E.Clark, C. G.Mullen, K.Precision host-guest chemistry of polyphenylene dendrimersNew J. Chem 31 2007 1275CrossRefGoogle Scholar
Clark, C. G.Wenzel, R. J.Andreitchenko, E. V.Solvophobically-driven 3-D self-assembly of “exploded” - type polyphenylene dendrimersNew J. Chem 31 2007 1300CrossRefGoogle Scholar
Giansante, C.Ceroni, P.Balzani, V.Photophysical, photochemical, and electrochemical properties of dendrimers with dimethoxybenzil coreNew J. Chem 31 2007 1250CrossRefGoogle Scholar
Mongin, O.Pla-Quintana, A.Terenziani, F.Organic nanodots for multiphotonics: synthesis and photophysical studiesNew J. Chem 31 2007 1354CrossRefGoogle Scholar
Perry, R.Amir, R. J.Shabat, D.Substituent-dependent disassembly of self-immolative dendrimersNew J. Chem 31 2007 1307CrossRefGoogle Scholar
Kevwitch, R. M.Mcgrath, D. V.Synthesis and degradation of photolabile dendrimer based on -nitrobenzyl ether photolabile coresNew J. Chem. 2007 2007 1332CrossRefGoogle Scholar
Langereis, S.Dirksen, A.Hackeng, T. M.Van Gendersen, M. H. P.Meijer, E. W.Dendrimers and magnetic resonance imagingNew J. Chem 31 2007 1152CrossRefGoogle Scholar
Andres, R.De Jesus, E.Flores, J. C.Catalysts based on palladium dendrimersNew J. Chem 31 2007 1161CrossRefGoogle Scholar
Knecht, M. R.Crooks, R. M.Magnetic properties of dendrimer-encapsulated iron nanoparticles containing an average of 55 and 147 atomsNew J. Chem 31 2007 1349CrossRefGoogle Scholar
Rudick, J. G.Percec, V.Helical chirality in dendronized polyarylacetylenesNew J. Chem 31 2007 1083CrossRefGoogle Scholar
Nishiyama, N.Jang, W.-D.Kataoka, K.Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene deliveryNew J. Chem 31 2007 1074CrossRefGoogle Scholar
Van De Coevering, R.Bruijnincx, P. C. A.Lutz, M.Ionic core-shell dendrimers with a polycationic core: structural aspects and host–guest binding propertiesNew J. Chem 31 2007 1337CrossRefGoogle Scholar
Tomalia, D. A.Dendrons/dendrimer: quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesisSoft Matter 6 2010 456CrossRefGoogle Scholar
Tomalia, D. A. 2005
Olson, E. S.Jiang, T.Aguilera, T. A.Proc. Nat. Acad. Sci. 107 2010 4311
Nguyen, Q. T.Olson, E. S.Aguilera, T. A.Proc. Nat. Acad. Sci. 107 2010 4317
Tomalia, D. A.New J. Chem. 36 2012 264
Zhang, A.Schulter, A. D.Campagna, SCeroni, PPuntoriero, FDesigning DendrimersHoboken, NJJohn Wiley & Sons, Inc. 2012

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×