Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T07:31:36.416Z Has data issue: false hasContentIssue false

8 - A quantized building block concept leading to a new nano-periodic system

Published online by Cambridge University Press:  05 November 2012

Donald A. Tomalia
Affiliation:
NanoSynthons, LLC
Jørn B. Christensen
Affiliation:
University of Copenhagen
Ulrik Boas
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

Introduction

The role of traditional chemistry as a scientific discipline and its impact on society and the human condition has been immeasurable. The central paradigm for this science is quite simply based on quantized atom building blocks and their discrete electron activity leading to bonding and assembly of these units. The ability to use intrinsic elemental periodic property patterns (i.e. the Mendeleev Periodic Table) for predicting physico-chemical properties, defining risk/benefit boundaries, and designing new molecular structures has rested solidly on the existence of a systematic scientific framework (i.e. central dogma) for the discipline. This systematic framework has not only served to unify and define traditional small molecule chemistry, but has also evolved into a platform of understanding for many related activities in physics, engineering, biology, and medicine. Although opinions may vary concerning the order of importance and content of such a framework, a general consensus usually includes the major discoveries and events set out in Table 8.1 [1–3].

First principles and central dogma for traditional chemistry

Building on A. Lavoisier’s reactive atom hypothesis and J. Proust’s proposal that atoms possess well-defined masses relative to each other, it was possible for J. Dalton to propose his atom/molecular theory, which is described in a simplified form below [3]. These statements are a modern paraphrase of Dalton’s revolutionary publication, A New System of Chemical Philosophy (1808), that launched traditional chemistry as it is recognized today.

Type
Chapter
Information
Dendrimers, Dendrons, and Dendritic Polymers
Discovery, Applications, and the Future
, pp. 293 - 377
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Heilbronner, E.Dunitz, J. D.Reflections on SymmetryNew YorkVCH Publishers, Inc. 1993Google Scholar
Pullman, B.The Atom in the History of Human ThoughtNew YorkOxford University Press 1998Google Scholar
Zumdahl, S. S.Zumdahl, S. A.ChemistryBostonHoughton Mifflin Company 2007Google Scholar
Scerri, E. R.The Periodic Table: A Very Short IntroductionNew YorkOxford University Press, Inc. 2011CrossRefGoogle Scholar
Strathern, P.s DreamNew YorkThe Berkley Publishing Group 2000Google Scholar
Tomalia, D. A.Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistryProg. Polym. Sci 30 2005 294CrossRefGoogle Scholar
Tomalia, D. A.In quest of a systematic framework for unifying and defining nanoscienceJ. Nanopart. Res 11 2009 1251CrossRefGoogle ScholarPubMed
Tomalia, D. A.Fréchet, J. M.Introduction to dendrimers and dendritic polymersProg. Polym. Sci 30 2005 217CrossRefGoogle Scholar
Tomalia, D. A.Naylor, A. M.W. A. Goddard III, Starburst dendrimers: molecular level control of size, shape, surface chemistry, topology and flexibility from atoms to macroscopic matterAngew. Chem. Int. Ed. Engl 29 1990 138CrossRefGoogle Scholar
Tomalia, D. A.Dendrons/dendrimer: quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesisSoft Matter 6 2010 456CrossRefGoogle Scholar
Graulich, N.Hopf, H.Schreiner, P. R.Heuristic thinking makes a chemist smartChem. Soc. Rev 39 2010 1503CrossRefGoogle ScholarPubMed
Tomalia, D. A.Starburst/cascade dendrimers: fundamental building blocks for a new nanoscopic chemistry setAdv. Mater 6 1994 529CrossRefGoogle Scholar
Tomalia, D. A.Durst, H. D.Weber, E.W.Supramolecular Chemistry I – Directed Synthesis and Molecular RecognitionBerlin/HeidelbergSpringer Verlag 1993Google Scholar
Bohr, N.Nobel Laureate Lecture 1922
Tomalia, D. A.Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistryAldrichimica Acta 37 2004 39Google Scholar
Tomalia, D. A.Starburst/cascade dendrimers: fundamental building blocks for a new nanoscopic chemistry setAldrichimica Acta 26 1993 91Google Scholar
Kallos, G. J.Tomalia, D. A.Hedstrand, D. M.Lewis, S.Zhou, J.Molecular weight determination of a polyamidoamine starburst polymer by electrospray ionization mass spectrometryRapid. Commun. Mass. Spectrom 5 1991 383CrossRefGoogle Scholar
Schwartz, B. L.Rockwood, A. L.Smith, R. D.Tomalia, D. A.Spindler, R.Detection of high molecular weight starburst dendrimers by electrospray ionization mass spectrometryRapid. Commun. Mass. Spectrom 9 1995 1552CrossRefGoogle Scholar
Tolic, L. P.Anderson, G. A.Smith, R. D.Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric characterization of high molecular mass starburst dendrimersInt. J. Mass. Spect. Ion Proc 165/166 1997 405CrossRefGoogle Scholar
Dvornic, P. R.Tomalia, D. A.Genealogically directed syntheses (polymerizations): direct evidence by electrospray mass spectroscopyMacromol. Symp 98 1995 403CrossRefGoogle Scholar
Hummelen, J. C.Van Dongen, J. L. J.E. W. Meijer, Electrospray mass spectrometry of poly(propylene imine) dendrimers – the issue of dendritic purity of polydispersityChem. Eur. J 3 1997 1489CrossRefGoogle Scholar
Ruiz, J.Lafuente, G.Marcen, S.Construction of giant dendrimers using a tripodal building blockJ. Am. Chem. Soc 125 2003 7250CrossRefGoogle ScholarPubMed
Higuchi, M.Shiki, S.Ariga, K.Yamamoto, K.First synthesis of phenylazomethine dendrimer ligands and structural studiesJ. Am. Chem. Soc 123 2001 4414CrossRefGoogle ScholarPubMed
Tomalia, D. A.Brothers Ii, H. M.Piehler, L. T.Durst, H. D.Swanson, D. R.Partial shell-filled core-shell tecto(dendrimers): a strategy to surface differentiated nano-clefts and cuspsProc. Natl. Acad. Sci. USA 99 2002 5081CrossRefGoogle ScholarPubMed
Uppuluri, S.Piehler, L. T.Li, J.Core-shell tecto(dendrimers): I. Synthesis and characterization of saturated shell modelsAdv. Mater 12 2000 7963.0.CO;2-1>CrossRefGoogle Scholar
Kojima, C.Tsumura, S.Harada, A.Kono, K.A collagen-mimic dendrimer capable of controlled releaseJ. Am. Chem. Soc 131 2009 6052CrossRefGoogle ScholarPubMed
Hahn, U.Cardinali, F.Nierengarten, J.-F.Supramolecular chemistry for the self-assembly of fullerene-rich dendrimersNew. J. Chem 31 2007 1128CrossRefGoogle Scholar
Jensen, A. W.Maru, B. S.Zhang, X.Preparation of fullerene-shell dendrimer-core nanoconjugatesNanoLetters 5 2005 1171CrossRefGoogle ScholarPubMed
Hedden, R. C.Bauer, B. J.Structure and dimensions of PAMAM/PEG dendrimer-star polymersMacromolecules 36 2003 1829CrossRefGoogle Scholar
Weaver, J. H.The World of PhysicsNew YorkSimon & Schuster 1987Google Scholar
Atkins, P. W.Quanta: A Handbook of ConceptsOxfordOxford University Press 1991Google Scholar
Mansfield, M. L.Rakesh, L.Tomalia, D. A.The random parking of spheres on spheresJ. Chem. Phys 105 1996 3245CrossRefGoogle Scholar
Schmid, G.NanoparticlesWeinheimWiley-VCH 2004Google ScholarPubMed
Schmid, G.Meyer-Zaika, W.Pugin, R.Naked Au 55 clusters: dramatic effect of a thiol-terminated dendrimerChem. Eur. J. 6 2000 16933.3.CO;2-B>CrossRefGoogle Scholar
Li, J.Tomalia, D. A.Fréchet, J.M.J.Tomalia, DADendrimers and Other Dendritic PolymersChichesterWiley 2001Google Scholar
Tomalia, D. A.Uppuluri, S.Swanson, D. R.Li, J.Dendrimers as reactive modules for the synthesis of new structure controlled, higher complexity – megamersPure Appl. Chem 72 2000 2343CrossRefGoogle Scholar
Tomalia, D. A.Wang, Z.-G.Tirrell, M.Experimental self-assembly: the many facets fo self-assemblyCurr. Opin. in Colloid. & Interface Sci 4 1999 3CrossRefGoogle Scholar
Tomalia, D. A.http://www.nsf.gov/crssprgm/nano/GC_Charact08_Tomalia_nsf9_29_08.pdf 2008
Park, S. Y.Lytton-Jean, A. K. R.Lee, B.DNA-programmable nanoparticle crystallizationNature 451 2008 553CrossRefGoogle ScholarPubMed
Thomas, P. J.Kulkarni, G. U.Rao, C. N. R.Magic nuclearity giant clusters of metal nanocrystals formed by mesoscale self-assemblyJ. Phys. Chem. B 105 2001 2515CrossRefGoogle Scholar
Schmid, G.Clusters and colloids: bridges between molecular and condensed materialEndeavour 14 1990 172CrossRefGoogle Scholar
Rao, C. N. R.Chemical Approaches to the Synthesis of Inorganic MaterialsNew DelhiWiley Eastern 1994Google Scholar
Vargaftik, M. N.Moiseev, I. I.Kochubey, D. I.Zamaraev, K. I.Giant palladium clusters: synthesis and characterizationFaraday Discussions 92 1991 13CrossRefGoogle Scholar
Teranishi, T.Hori, H.Miyake, M.ESR study on palladium nanoparticlesJ. Phys. Chem B101 1997 5774CrossRefGoogle Scholar
Schmid, G.Harms, M.Malm, J.-O.Ligand-stabilized giant palladium clusters:promising candidates in heterogeneous catalysisJ. Am. Chem. Soc 115 1993 2046CrossRefGoogle Scholar
Wilcoxon, J. P.Martin, J. E.Provencio, P.Size distribution of gold nanoclusters studied by liquid chromatographyLangmuir 16 2000 9912CrossRefGoogle Scholar
Tomalia, D. A.Baker, H.Dewald, J.A new class of polymers: Starburst dendritic macromoleculesPolym. J. (Tokyo) 17 1985 117CrossRefGoogle Scholar
Jackson, J. L.Chanzy, H. D.Booy, F. P.Visualization of dendrimer molecules by transmission electron microscopy (TEM): staining methods and cryo-TEM of vitrified solutionsMacromolecules 31 1998 6259CrossRefGoogle Scholar
Tomalia, D. A.Baker, H.Dewald, J.Dendritic macromolecules: synthesis of starburst dendrimersMacromolecules 19 1986 2466CrossRefGoogle Scholar
Rosen, B. M.Wilson, C. J.Wilson, D. A.Dendron-mediated self-assembly, disassembly, and self-organization of complex systemsChem. Rev 109 2009 6275CrossRefGoogle ScholarPubMed
Satoh, N.Nakashima, T.Kamikura, K.Yamamoto, K.Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal asssembly on dendrimer templatesNature Nanotechnology 3 2008 106CrossRefGoogle Scholar
Yamamoto, K.Imaoka, T.Chun, W.-J.Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactionsNature Chemistry 1 2009 397CrossRefGoogle ScholarPubMed
Zimmerman, S. C.Zeng, F.Reichert, E. C.Kolotuchin, S. V.Self-assembling dendrimersScience 271 1996 1095CrossRefGoogle ScholarPubMed
Zimmerman, S. C.Lawless, L. J.Supramolecular chemistry of dendrimersTopics in Current ChemistryBerlinSpringer-Verlag 2001 95CrossRefGoogle Scholar
Percec, V.Wilson, D. A.Leowanawat, P.Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architecturesScience 328 2010 1009CrossRefGoogle ScholarPubMed
Zeng, F.Zimmerman, S. C.Dendrimers in supramolecular chemistry: From molecular recognition to self-assemblyChem. Rev 97 1997 1681CrossRefGoogle ScholarPubMed
Carlmark, A.Hawker, C.Hult, A.Malkoch, M.New methodologies in the construction of dendritic materialsChem. Soc. Rev 38 2009 352CrossRefGoogle ScholarPubMed
Ma, Y.Kolotuchin, S. V.Zimmerman, S. C.Supramolecular polymer chemistry: self-assembling dendrimers using the DDA-AAD (GC-like) hydrogen bonding motifJ. Am. Chem. Soc 124 2002 13757CrossRefGoogle ScholarPubMed
Majoral, J.-P.Caminade, A.-M.Dendrimers containing heteroatoms (Si, P, B, Ge, or Bi)Chem. Rev 99 1999 845CrossRefGoogle Scholar
Antoni, P.Hed, Y.Nordberg, A.Bifunctional dendrimers: from robust synthesis and accelerated one-pot postfunctionalization strategy to potential applicationsAngew. Chem. Int. Ed 48 2009 2126CrossRefGoogle ScholarPubMed
Esfand, R.Tomalia, D. A.Fréchet, J.M.J.Tomalia, D.A.Dendrimers and Other Dendritic PolymersChichesterWiley 2001Google Scholar
Fréchet, J. M. J.Tomalia, D. A.Dendrimers and Other Dendritic PolymersChichesterWiley 2001CrossRefGoogle Scholar
Van Genderen, M. H. P.Mak, M. H. A.Berg, D. B.-V. D.Meijer, E. W.Fréchet, J.M.J.Tomalia, D.A.Dendrimers and Other Dendritic PolymersChichesterWiley 2001Google Scholar
Tomalia, D. A.Henderson, S. A.Diallo, M. S.Goddard, W.A.Brenner, D.W.Lyshevski, S.E.Iafrate, G.J.Handbook of Nanoscience, Engineering and TechnologyBoca Raton, FLCRC Press 2007Google Scholar
Yin, R.Zhu, Y.Tomalia, D. A.Architectural copolymers: rod-shaped, cylindrical dendrimersJ. Am. Chem. Soc 120 1998 2678CrossRefGoogle Scholar
Scerri, E. R.The Periodic TableNew YorkOxford University Press 2007Google Scholar
Moors, R.Vogtle, F.Dendrimere polyamineChem. Ber 126 1993 2133CrossRefGoogle Scholar
Fréchet, J. M. J.Functional polymers and dendrimers: reactivity, molecular architectures, and interfacial energyScience 263 1994 1710CrossRefGoogle Scholar
Newkome, G. R.Moorfield, C. N.Vögtle, F.Dendritic MoleculesWeinheimVCH 1996CrossRefGoogle Scholar
Hawker, C. J.Fréchet, J. M. J.Preparation of polymers with controlled molecular architecture. a new convergent approach to dendritic macromoleculesJ. Am. Chem. Soc 112 1990 7638CrossRefGoogle Scholar
Brothers II, H. M.Piehler, L. T.Tomalia, D. A.Slab-gel and capillary electrophoretic characterization of polyamidoamine dendrimersJ. Chromatogr. A 814 1998 233CrossRefGoogle Scholar
Cason, C. A.Oehrle, S. A.Fabre, T. A.Improved methodology for monitoring poly(amidoamine) dendrimers surface transformations and product quality by ultra performance liquid chromatographyJ. Nanomaterials 2008 2008CrossRefGoogle Scholar
Sharma, A.Desai, A.Ali, R.Tomalia, D. A.Polyacrylamide gel electrophoresis separation and detection of polyamidoamine dendrimers possessing various cores and terminal groupsJ. Chromatogr. A 1081 2005 238CrossRefGoogle ScholarPubMed
Swanson, D. R.Huang, B.Abdelbady, H. G.Tomalia, D. A.Unique steric and geometry induced stoichiometries observed in the divergent synthesis of poly(ester-acrylate) (PEA) dendrimersNew. J. Chemistry 31 2007 1368CrossRefGoogle Scholar
Singh, P.Terminal groups in starburst dendrimers: activation and reactions with proteinsBioconjugate Chem 9 1998 54CrossRefGoogle ScholarPubMed
Singh, P.Fréchet, J.M.J.Tomalia, D.A.Dendrimers and Dendritic PolymersChichesterWiley 2001Google Scholar
Tomalia, D. A.Huang, B.Swanson, D. R.Brothers II, H. M.Klimash, J. W.Structure control within poly(amidoamine) dendrimers: size, shape and regio-chemical mimicry of globular proteinsTetrahedron 59 2003 3799CrossRefGoogle Scholar
Rosen, B. M.Wilson, D. A.Wilson, C. J.Predicting the structure of supramolecular dendrimers via the analysis of libraries of AB3 and constitutional isomeric AB2 biphenylpropyl ether self-assembling dendronsJ. Am. Chem. Soc 131 2009 17500CrossRefGoogle ScholarPubMed
Kubasiak, L. A.Tomalia, D. A.Amiji, M.M.Polymeric Gene Delivery Principles and ApplicationsBoca RatonCRC Press 2005Google Scholar
Boas, U.Christensen, J. B.Heegaard, P. M. H.Dendrimers in Medicine and BiotechnologyCambridge UKThe Royal Society of Chemistry 2006Google Scholar
Zhang, C.Tomalia, D. A.Fréchet, J.M.J.Tomalia, D.A.Dendrimers and Other Dendritic PolymersChichesterWiley 2001Google Scholar
Sharma, A.Rao, M.Miller, R.Desai, A.Fluorometric assay for detection and quantization of polyamidoamine dendrimersAnalytical Biochemistry 344 2005 70CrossRefGoogle Scholar
Schluter, A.-D.Rabe, P. J.Dendronized polymers: synthesis, characterization, assembly at interfaces and manipulationAngew. Chem. Int. Ed 39 2000 8653.0.CO;2-E>CrossRefGoogle ScholarPubMed
Rudick, J. G.Percec, V.Induced helical backbone conformations of self-oganizable dendronized polymersAccts. Chem. Res 41 2008 1641CrossRefGoogle ScholarPubMed
Percec, V.Won, B. C.Peterca, M.Heiney, P. A.Expanding the structural diversity of self-assembling dendrons and supramolecular dendrimers via complex building blocksJ. Am. Chem. Soc 129 2007 11265CrossRefGoogle ScholarPubMed
Percec, V.Cho, W.-D.Ungar, G.Yeardley, D. J. P.Increasing the diameter of cylindrical and spherical supramolecular dendrimers by decreasing the solid angle of their monodendrons via periphery functionalizationJ. Am. Chem. Soc 122 2000 10273CrossRefGoogle Scholar
Percec, V.Peterca, M.Dulcey, A. E.Hollow spherical supramolecular dendrimersJ. Am. Chem. Soc 130 2008 13079CrossRefGoogle ScholarPubMed
Kaucher, M. S.Peterca, M.Dulcey, A. E.Selective transport of water mediated by porous dendritic dipeptidesJ. Am. Chem. Soc 129 2007 11698CrossRefGoogle ScholarPubMed
Sano, K.-I.Ajima, K.Iwahori, K.Endowing a ferritin-like cage protein with high affinity and selectivity for certain inorganic materialsSmall 1 2005 826CrossRefGoogle ScholarPubMed
Klug, A.From macromolecules to biological assemblies (Nobel lecture)Angew. Chem. Int. Ed 22 1983 565CrossRefGoogle Scholar
Klug, A.The tobacco mosaic virus particle: structure and assemblyPhil. Trans. R. Soc. Lond. B 354 1999 531CrossRefGoogle Scholar
Barnyard, S. H.Stammers, D. K.Harrison, P. M.Electron density map of apoferritin at 2.8-Å resolutionNature 271 1978 282CrossRefGoogle Scholar
Qvist, J.Davidovic, M.Hamelberg, D.Halle, B.A dry ligand-binding cavity in a solvated proteinPNAS 105 2008 6296CrossRefGoogle Scholar
Naylor, A. M.Goddard, W. A.Keifer, G. E.Tomalia, D. A.Starburst dendrimers 5: Molecular shape controlJ. Am. Chem. Soc 111 1989 2339CrossRefGoogle Scholar
Jansen, J. F. G. A.De Brabander-Van Den Berg, E. M. M.Meijer, E. W.Encapsulation of guest molecules into a dendritic boxScience 266 1994 1226CrossRefGoogle ScholarPubMed
Lothian-Tomalia, M. K.Hedstrand, D. M.Tomalia, D. A.A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly(thioether) dendrimers. Amplified, genealogical directed synthesis leading to the de Gennes dense packed stateTetrahedron 53 1997 15495CrossRefGoogle Scholar
Tomalia, D. A.Fréchet, J. M. J.Fréchet, J.M.J.Tomalia, D.A.Dendrimers and Other Dendritic PolymersChichesterWiley 2001Google Scholar
Aoi, K.Itoh, K.Okada, M.Globular carbohydrate macromolecule “sugar balls”. 1. Synthesis of novel sugar-persubstituted poly(amido amine) dendrimersMacromolecules 28 1995 5391CrossRefGoogle Scholar
Aoi, K.Tsutsumiuchi, K.Yamamoto, A.Okada, M.Globular carbohydrate macromolecule “sugar balls” 3. “Radial-growth polymerization” of sugar-substituted alpha-amino acid N-carboxyanhydrides (glycoNCAs) with a dendritic initiatorTetrahedron 53 1997 15415CrossRefGoogle Scholar
Sánchez-Sancho, F.Pérez-Inestrosa, E.Suau, R.Dendrimers as carrier protein mimetics for IgE antibody recognition: synthesis and characterization of densely penicilloylated dendrimersBioconjugate Chem 13 2002 647CrossRefGoogle ScholarPubMed
Wiener, E. C.Brechbiel, M. W.Brothers II, H. M.Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agentsMagnetic Resonance in Medicine 31 1994 1CrossRefGoogle ScholarPubMed
Andra, W.Nowak, H.Magnetism in Medicine: A HandbookBerlinWiley-VCH 2006CrossRefGoogle Scholar
Lauffer, R. B.Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and designChem. Rev 87 1987 901CrossRefGoogle Scholar
Imaoka, T.Tanaka, R.Arimoto, S.Probing stepwise complexation in phenylazomethine dendrimers by a metallo-porphyrin coreJ. Am. Chem. Soc 127 2005 13896CrossRefGoogle ScholarPubMed
Meifsner, P. C.Chemische Aequivalenten-oder AtomenlehreWiem, Germany 1834Google Scholar
Schmid, G.Metal clusters and cluster metalsPolyhedron 7 1988 2321CrossRefGoogle Scholar
Schmid, G.Large clusters and colloids. Metals in the embryonic stateChem. Rev 92 1992 1709CrossRefGoogle Scholar
Ornelas, C.Ruiz, J.Belin, C.Astruc, D.Giant dendritic molecular electrochrome batteries with ferrocenyl and pentamethylferrocencyl terminiJ. Am. Chem. Soc 131 2009 590CrossRefGoogle ScholarPubMed
Ritter, S. K.Bryson, R.Blair, T. K.Dendrimersomes debut in chemical year in review 2010Chemical & Engineering News 15 (2010)
Betley, T. A.Hessler, J. A.Mecke, A.Tapping mode atomic force microscopy investigation of poly(amidoamine) core-shell tecto(dendrimers) using carbon nanoprobesLangmuir 18 2002 3127CrossRefGoogle Scholar
Uppuluri, S.Swanson, D. R.Brothers II, H. M.Tecto(dendrimer) core-shell molecules: macromolecular tectonics for the systematic synthesis of larger controlled structure moleculesPolym. Mater. Sci. & Eng. (ACS) 80 1999 55Google Scholar
Hedden, R. C.Bauer, B. J.Smith, A. P.Grohn, F.Amis, E.Templating of inorganic nanoparticles by PAMAM/PEG dendrimer – star polymersPolymer 43 2002 5473CrossRefGoogle Scholar
Boisselier, E.Diallo, A. K.Salmon, L.Encapsulation and stabilization of gold nanoparticles with “click” polyethyleneglycol dendrimersJ. Am. Chem. Soc 132 2010 2729CrossRefGoogle ScholarPubMed
Luo, D.Haverstick, K.Belcheva, N.Han, E.Saltzman, W. M.Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high efficiency DNA deliveryMacromolecules 35 2002 3456CrossRefGoogle Scholar
Kojima, C.Toi, Y.Kono, K.Preparation of poly(ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapyBioconjugate Chem 18 2007 663CrossRefGoogle ScholarPubMed
Jain, K.Kesharwani, P.Gupta, U.Jain, N. K.Dendrimer toxicity: Let’s meet the challengeInternational Journal of Pharmaceutics 394 2010 122CrossRefGoogle ScholarPubMed
Suehiro, T.Kojima, C.Tsumura, S.Harada, A.Kono, K.Higher order structure of short collagen model peptides attached to dendrimers and linear polymersBiopolymers 93 2010 640CrossRefGoogle ScholarPubMed
Daniel, M.-C.Ruiz, J.Astruc, D.Supramolecular H-bonded assemblies of redox-active metallodendrimers and postive and unusual dendritic effects on the recognition of H2PO4J. Am. Chem. Soc 125 2003 1150CrossRefGoogle Scholar
Daniel, M.-C.Ruiz, J.Nlate, S.Blais, J.-C.Astruc, D.Nanoscopic assemblies between supramolecular redox active metallodendrons and gold nanoparticles: synthesis, characterization and selective recognition of H2PO4 – HSO4, and adenosine-5′-triphosphate (ATP2-) anionsJ. Am. Chem. Soc 125 2003 2617CrossRefGoogle ScholarPubMed
Daniel, M.-C.Ruiz, J.Nlate, S.Gold nanoparticles containing redox-active supramolecular dendrons that recognize H2PO4−Chem. Commun 2001 2000CrossRefGoogle ScholarPubMed
Tanis, I.Tragoudaras, D.Karatasos, K.Anastasiadis, S. H.Molelcular dynamics simulations of hyperbranched poly(ester amide):statics, dynamics, and hydrogen bondingJ. Phys. Chem. B 113 2009 5356CrossRefGoogle Scholar
Enoki, O.Katoh, H.Yamamoto, K.Synthesis and properties of a novel phenylazomethine dendrimer with a tetraphenylmethane coreOrganic Letters 8 2006 569CrossRefGoogle ScholarPubMed
Gopidas, K. R.Leheny, A. R.Caminati, G.Turro, N. J.Tomalia, D. A.Photophysical investigation of similarities between starburst dendrimer and anionic micellesJ. Am. Chem. Soc 113 1991 7335CrossRefGoogle Scholar
Jockusch, J.Ramirez, J.Sanghvi, K.Comparison of nitrogen core and ethylenediamine core Starburst dendrimers through photochemical and spectroscopic probesMacromolecules 32 1999 4419CrossRefGoogle Scholar
Ottaviani, M. F.Turro, N. J.Jockusch, S.Tomalia, D. A.Characterization of starburst dendrimers by EPR. 3. Aggregational processes of a positively charged nitroxide surfactantJ. Phys. Chem 100 1996 13675CrossRefGoogle Scholar
Turro, N. J.Barton, J. K.Tomalia, D. A.Molecular recognition and chemistry in restricted reaction spacesAcc. Chem. Res 24 1991 332CrossRefGoogle Scholar
Caminade, A.-M.Laurent, R.Majoral, J.-P.Characterization of dendrimersAdvanced Drug Delivery Reviews 57 2005 2130CrossRefGoogle ScholarPubMed
Imaoka, T.Tanaka, R.Yamamoto, K.Investigation of a molecular morphology effect on polyphenylazomethine dendrimers: physical properties and metal-assembling processesChem. Eur. J 12 2006 7328CrossRefGoogle ScholarPubMed
Albrecht, K.Yamamoto, K.Dendritic structure having a potential gradient: new synthesis and properties of carbazole dendrimersJ. Am. Chem. Soc 131 2009 2244CrossRefGoogle ScholarPubMed
Fox, M. E.Szoka, F. C.Fréchet, J. M. J.Soluble polymer carriers for the treatment of cancer: the importance of molecular architectureAcc. Chem. Res 42 2009 1141CrossRefGoogle ScholarPubMed
Tomalia, D. A.Reyna, L. A.S. Svenson, Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imagingBiochemical Society Transactions 35 2007 61CrossRefGoogle ScholarPubMed
Longmire, M.Choyke, P. L.Kobayashi, H.Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveatsNanomedicine 3 2008 703CrossRefGoogle ScholarPubMed
Gentleman, D. J.Chan, W. C. W.A systematic nomenclature for codifying engineered nanostructuresSmall 5 2009 426CrossRefGoogle ScholarPubMed
Ozin, G. A.Arsenault, A. C.Nanochemistry: A Chemical Approach to NanomaterialsCambridge, UKRoyal Society of Chemistry 2005Google Scholar
Goddard, W. A.Brenner, D. W.Lyshevski, S. E.Iafrate, G. J.Handbook of Nanoscience, Engineering and TechnologyBoca RatonCRC Press 2003
http://wwwwtecorg/nano2 2010
Percec, V.Heck, J.Lee, M.Ungar, G.Alvarez-Castillo, A.Poly{2-vinyloxyethyl 3,4,5-tris[4-(n-dodecanyloxy)benzyloxy]benzoate}: a self-assembled supramolecular polymer similar to tobacco mosaic virusJ. Mater. Chem 2 1992 1033CrossRefGoogle Scholar
Percec, V.Bioinspired supramolecular liquid crystalsPhil. Trans. R. Soc. A 364 2006 2709CrossRefGoogle ScholarPubMed
Klug, A.Tobacco mosiac virus particle structure and the initiation of disassemblyPhil. Trans. R. Soc. Lond. B 354 1999 531CrossRefGoogle Scholar
Percec, V.Johansson, G.Ungar, G.Zhou, J. P.Fluorophobic effect induces the self-assembly of semifluorinated tapered monodendrons containing crown ethers into supramolecular columnar dendrimers which exhibit a homeotropic hexagonal columnar liquid crystalline phaseJ. Am. Chem. Soc 118 1996 9855CrossRefGoogle Scholar
Percec, V.Ahn, C.-H.Unger, G.Yeardly, D. J. P.Möller, M.Controlling polymer shape through the self-assembly of dendritic side-groupsNature 391 1998 161CrossRefGoogle Scholar
Percec, V.Ahn, C.-H.Cho, W.-D.Visualizable cylindrical macromolecules with controlled stiffness from backbones containing libraries of self-assembling dendritic side groupsJ. Am. Chem. Soc 120 1998 8619CrossRefGoogle Scholar
Percec, V.Cho, W.-D.Ungar, G.Yeardley, D. J. P.Synthesis and structural analysis of two constitutional isomeric libraries of AB2-based monodendrons and supramolecular dendrimersJ. Am. Chem. Soc 123 2001 1302CrossRefGoogle Scholar
Lockman, J. W.Paul, N. M.Parquette, J. R.The role of dynamically correlated conformational equilibria in the folding of macromolecular structures. A model for the design of folded dendrimersProg. Polym. Sci 30 2005 423CrossRefGoogle Scholar
Huang, B.Prantil, M. A.Gustafson, T. L.Parquette, J. R.The effect of global compaction on the local secondary structure of folded dendrimersJ. Am. Chem. Soc 125 2003 14518CrossRefGoogle ScholarPubMed
Butler, P. G.Klug, A.The assembly of a virusSci. Am 239 1978 62Google ScholarPubMed
Butler, P. G.The current picture of the structure and assembly of tobacco mosaic virusJ. Gen. Virol 65 1984 257CrossRefGoogle ScholarPubMed
Vögtle, F.Richardt, G.Werner, N.Rackstraw, A. J.Dendrimer Chemistry: Concepts, Syntheses, Properties, ApplicationsWeinheimWiley-VCH 2009CrossRefGoogle Scholar
Klabunde, K. J.Starke, J.Koper, O.Nanocrystals as stoichiometric reagents with unique surface chemistryJ. Phys. Chem. 100 1996 12142CrossRefGoogle Scholar
Chaudhuri, R. G.Paria, S.Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization and applicationsChem. Rev. 112 2012 2373CrossRefGoogle Scholar
Peterca, M.Percec, V.Leowanawat, P.Bertin, A.Predicting the size and properties of dendrimersomes from the lamellar structure of their amphiphilic Janus dendrimersJ. Am. Chem. Soc. 133 2011 20507CrossRefGoogle ScholarPubMed
Macfarlane, R. J.Lee, B. Y.Jones, M. R.Nanoparticle superlattice engineering with DNAScience 334 2011 204CrossRefGoogle ScholarPubMed
Qian, M.Reber, A.C.Ugrinov, A.Cluster-assembled materials: toward nanomaterials with precise control over propertiesACS Nano 4 2009 235CrossRefGoogle Scholar
Tomalia, D. A.Dendritic effects: dependency of dendritic nano-periodic property patterns on critical nanoscale design parametersNew J. Chem. 36 2012 264CrossRefGoogle Scholar
Castleman, A. W.Khanna, S. N.Sen, A.From designer clusters to synthetic crystalline nanoassembliesNano Letters 7 2007 2734CrossRefGoogle ScholarPubMed
Castleman, A. W.Khanna, S. N.Clusters, superatoms and building blocks of new materialsJ. Phys. Chem. C 113 2009 2664CrossRefGoogle Scholar
Reveles, J. U.Clayborne, P. A.Reber, A. C.Designer magnetic superatomsNature Chemistry 1 2009 310CrossRefGoogle ScholarPubMed
Pradhan, K.Reveles, J. U.Sen, A.Khanna, S. N.Enhanced magnetic moments of alkali metal coated Sc clusters: new magnetic superatomsJ. Chem. Phys. 132 2010CrossRefGoogle ScholarPubMed
Peppernick, S. J.Gunaratne, K. D. D.Castleman, A. W.Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterpartsProc. Nat. Acad. Sci. USA 107 2010 975CrossRefGoogle ScholarPubMed
Damasceno, P. F.Engel, M.Glotzer, S. C.Predictive self-assembly of polyhedra into complex structuresScience 337 2012CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×