Skip to main content Accessibility help
  • Print publication year: 2012
  • Online publication date: November 2012

1 - Introduction



Pervasive architecture and functional patterns found in nature

The Greek terms dendri-, dendrites, dendritic are root word descriptors for branching or treelike structures. These terms describe some of the most pervasive architectural patterns observed on our planet [1]. Before the early 1980s [2–4] all dendritic architectures and networks were known only as naturally occurring structures/entities found either in the abiotic world (e.g. snow crystals, lightning patterns, erosion/tributary river network fractals) or in the biological realm. In biological systems, these dendritic patterns are found at length scales ranging from meters (trees), millimeters/centimeters (vascular/circulatory systems in plants and animals, Golgi domains (organelles), fungi), microns (neurons) to nanometers (IgM antibodies, amylopectins and proteoglycans) as illustrated in Figure 1.1. Certain randomly branched, dendritic architectures were hypothesized by Nobel Laureate P. Flory as early as the 1940s to describe theoretical polymer intermediates in crosslinking events [5]. However, it was not until the late 1970s that the first examples of such dendritic architecture were intentionally synthesized and rigorously characterized in a laboratory. These first dendritic structures were synthesized both as core-shell-type, small molecules, and macromolecules. The widely recognized terms – dendrimers/dendrons (i.e. dendri [branched] and mer [part of] – were first coined and introduced by Tomalia in 1983 [6] to describe these compositionally broad and diverse categories of precisely defined core-shell, dendritic structures. A typical dendrimer family derived from a core and surrounded by radial shells (i.e. generations) of covalently connected branched monomers is illustrated in Figure 1.1.

It was soon realized that these newly discovered dendritic structures could be synthesized with a very wide range of diverse elemental compositions (i.e. both organic and inorganic). Furthermore, it was found that they could be obtained with unprecedented mono-dispersity and extraordinary structure control as a function of (a) size, (b) shape, (c) surface chemistry, (d) flexibility/rigidity, (e) architecture, and (f) composition. Unlike traditional synthetic polymers, these synthetic macromolecules were routinely synthesized with structure control normally associated only with highly precise biological polymers such as proteins, DNA, and RNA.

Related content

Powered by UNSILO
Parker, S. P.McGraw-Hill Dictionary of Scientific and Technical TermsNew YorkMcGraw-Hill Book Company. 1989
Tomalia, D. A.Baker, H.Dewald, J.A new class of polymers: Starburst dendritic macromoleculesPolym. J. (Tokyo) 17 1985 117
Tomalia, D. A.Dewald, J. R.Hall, M. J.Martin, S. J.Smith, P. B.Preprints of the 1st SPSJ Int. Polym. Conf., Society of Polymer Science 1984 Kyoto, Japan
Tomalia, D. A.Fréchet, J. M. J.Discovery of dendrimers and dendritic polymers: a brief historical perspectiveJ. of Polym. Sci.: Part A: Polym. Chem 40 2002 2719
Flory, P. J.Molecular size distribution in three-dimensional polymers, IV:. Branched polymers containing A-R-Bf-1 type unitsJ. Am. Chem. Soc 74 1952 2718
Tomalia, D. A. 1983
Berzelius, J.J. Fortsch. Phys. Wissensch 11 1832 44
Buhleier, E.Wehner, W.Vögtle, F.Cascade – and nonskid-chain-like syntheses of molecular cavity topologiesSynthesis 405 1978 155
Morawetz, H.The Origin and Growth of a ScienceNew YorkJ. Wiley 1985
Odian, G.Principles of PolymerizationNew YorkWiley-Interscience 2004
Tomalia, D. A.Periodic patterns, relationships and categories of well-defined nanoscale building blocks Science Foundation Final Workshop Report 2008 1
Tomalia, D. A.In quest of a systematic framework for unifying and defining nanoscienceJ. Nanopart. Res 11 2009 1251
Staudinger, H.From Organic Chemistry to MacromoleculesNew YorkWiley-Interscience 1970
Staudinger, H.Die Chemie der hochmolekularen organischen Stoffe im Sinne der Kekuleschen StrukturlehreBer. Deut. Chem. Ges. 59 1926 3019
Davies, R. E.Freyd, P. J.C167H336 is the smallest alkane with more realizable isomers than the observed universe has “particles”J. Chem. Education 66 1989
Tomalia, D. A.Dendrimer moleculesSci. Am 272 1995 42
Wolfram, S.A New Kind of ScienceChampaign, ILWolfram Media Inc. 2002
Flory, P. J.Principles of Polymer ChemistryIthaca, NYCornell University Press 1953
Roovers, J.Advances in Polymer Science, Branched Polymers IIBerlinSpringer-Verlag 2000
Dusek, K.Duskova-Smrckova, M.Formation, structure and properties and the crosslinked state relative to precursor architectureDendrimers and Dendritic Polymers 2001 111
Dusek, K.The role of precursor architecture in polymer network structureTrends Polym. Sci. 5 1997 268
Tomalia, D. A.Hedstrand, D. M.Wilson, L. R.Dendritic polymersEncyl. of Polym. Sci. & Eng. 1990 46
Tomalia, D. A.Uppuluri, S.Swanson, D. R.Li, J.Dendrimers as reactive modules for the synthesis of new structure controlled, higher complexity megamersPure Appl. Chem 72 2000 2343
Fréchet, J. M. J.Tomalia, D. A.Dendrimers and Other Dendritic PolymersChichesterWiley 2001
Gunatillake, P. A.Odian, G.Tomalia, D. A.Thermal polymerization of a 2-(carboxyalkyl)-2-oxazolineMacromolecules 21 1988 1556
Kim, Y. H.Webster, O. W.Polym. Prepr. 29 1988 310
Kim, Y. H.Webster, O. W.Water-soluble hyperbranched polyphenylene: A unimolecular micelleJ. Am. Chem. Soc 112 1990 4592
Emrick, T.Chang, H. T.Fréchet, J. M. J.The preparation of hyberbranched aromatic and aliphatic polyether epoxies by chloride-catalyzed proton transfer polymerization from ABn and A2 + B3 monomersJ. Poly. Sci. A 38 2000 4850
Emrick, T.Fréchet, J. M. J.Self-assembly of dendritic structuresCurrent Opinion in Colloid and Interface Science 4 1999 15
Bharati, P.Moore, J. S.Solid-supported hyperbranched polymerization: evidence for self-limited growthJ. Am. Chem. Soc 119 1997 3391
Muzafarov, A. M.Rebrov, E. A.Gorbatsevich, O. B.Degradable dendritic polymers–A template for functional pores and nanocavitiesMacromol. Symp 102 1996 35
Miravet, J. F.Fréchet, J. M. J.New hyperbranched poly(siloxysilanes): Variation of the branching pattern and end-functionalizationMacromolecules 31 1998 3461
Chu, F.Hawker, C. J.A versatile synthesis of isomeric hyperbranched polyetherketonesPolym. Bull 30 1993 265
Hawker, C. J.Lee, R.Fréchet, J. M. J.One-step synthesis of hyperbranched dendritic polyestersJ. Am. Chem. Soc 113 1991 4583
Uhrich, K. E.Hawker, C. J.Fréchet, J. M. J.Turner, S. R.One-pot synthesis of hyperbranched polyethersMacromolecules 25 1992 4583
Liu, M.Vladimirov, N.Fréchet, J. M. J.A new approach to hyperbranched polymers by ring-opening polymerization of an AB monomer: 4-(-2-hydroxyethyl)-e-caprolactoneMacromolecules 32 1999 6881
Fréchet, J. M. J.Henmi, M.Gitsov, I.Self-condensing vinyl polymerization: An approach to dendritic materialsScience 269 1995 1080
Hawker, C. J.Farrington, P. J.Mackay, M. E.Wooley, K. L.Fréchet, J. M. J.Molecular ball bearings: The unusual melt viscosity behavior of dendritic macromoleculesJ Am. Chem. Soc 117 1995 4409
Sunder, A.Heinemann, J.Frey, H.Controlling the growth of polymer trees: concepts and perspectives for hyperbranched polymersChem. Eur. J 6 2000 2499
Gong, C.Miravet, J.Fréchet, J. M. J.Intramolecular cyclization in the polymerization of ABx monomers: approaches to the control of molecular weight and polydispersity in hyperbranched poly(siloxysilane)J. Polym. Sci. A 37 1999 3193
Voit, B. I.Lederer, A.Hyperbranched and highly branched polymer architectures – synthetic strategies and major characterization aspectsChemical Reviews 109 2009 5924
Zhou, Y.Yan, D.Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: progress, characteristics and perspectivesChem. Commun 2009 1172
Ambade, A. V.Chen, Y.Thayumanavan, S.Controlled functional group presentations in dendrimers as a tool to probe the hyperbranched architectureNew J. Chem 31 2007 1052
Petersson, B.Hyperbranched polymers: unique design tools for multi-property control in resin and coatingsPigment & Resin Tech. 25 1996 4
Tanis, I.Tragoudaras, D.Karatasos, K.Anastasiadis, S. H.Molelcular dynamics simulations of hyperbranched poly(ester amide):statics, dynamics, and hydrogen bondingJ. Phys. Chem. B 113 2009 5356
Tomalia, D. A.Hedstrand, D. M.Ferrito, M. S.COMBBURST™ dendrimers – a new macromolecular architectureMacromolecules 24 1991 1435
Gauthier, M.Möller, M.Uniform highly branched polymers by anionic grafting: Arborescent graft polymersMacromolecules 24 1991 4548
Kee, R. A.Gauthier, M.Tomalia, D. A.Fréchet, J. M. J.Tomalia, D. A.Dendrimers and Other Dendritic PolymersWest SussexJohn Wiley & Sons 2001
Gauthier, M.Li, J.Dockendorff, J.Arborescent polystyrene-graft-poly(2-vinylpyridine) copolymers as unimolecular micelles. Synthesis from acetylated substratesMacromolecules 36 2003 2642
Six, J.-L.Gnanou, Y.From star-shaped to dendritic poly(ethylene oxide)s: Toward increasingly branched architectures by anionic polymerizationMacromol. Symp 95 1995 137
Taton, D.Cloutet, E.Gnanou, Y.Novel amphiphilic branched copolymers based on polystyrene and poly(ethylene oxide)Macromol. Chem. Phys 199 1998 2501
Taton, D.Feng, X.Gnanou, Y.Dendrimer-like polymers: a new class of structurally precise dendrimers with macromolecular generationsNew J. Chem 31 2007 1097
Trollsas, M.Hedrick, J. L.Dendrimer-like star polymersJ. Am. Chem. Soc 120 1998 4644
Trollsas, M.Hedrick, J. L.Hyperbranched poly(e-caprolactone) derived from intrinsically branched AB2 macromonomersMacromolecules 31 1998 4390
Roovers, J.Advances in Polymer Science, Branched Polymers IBerlinSpringer-Verlag 1999
Grubbs, R. B.Hawker, C. J.Dao, J.Fréchet, J. M. J.A tandem approach to graft and dendritic graft copolymers based on “living” free radical polymerizationsAngew. Chem. Int. Ed. Engl 36 1997 270
Guan, Z.Cotts, P. M.Mccord, E. F.Mclain, S. J.Chain walking: A new strategy to control polymer topologyScience 283 1999 2059
Commeyras, A.Collet, H.Souaid, E. 2006
Collet, H.Martin, M.Papillaud, A.Determination of dendrigraft poly-L-lysine diffusion coefficients by Taylor dispersion analysisBiomacromolecules 8 2007 3235
Ogawa, M.Regino, C. A. S.Marcelino, B.New nanosized biocompatible MR contrast agents based on lysine-dendri-graft macromoleculesBioconjugate Chem 21 2010 955
Tsogas, I.Theodossiou, T.Sideratou, Z.Interaction and transport of poly(L-lysine) dendrigrafts through liposomal and cellular membranes: The role of generation and surface functionalizationBiomacromolecules 8 2007 3263
Teertstra, S. J.Gauthier, M.Dendrigraft polymers: macromolecular engineering on a mesoscopic scaleProg. Polym. Sci 29 2004 277
Dockendorff, J.Gauthier, M.Mourran, A.Möller, M.Arborescent amphiphilic copolymers as templates for the preparation of gold nanoparticlesMacromolecules 41 2008 6621
Gauthier, M.Tomalia, D. A.Fréchet, J. M. J.Tomalia, D. A.Dendrimers and Other Dendritic PolymersChichesterWiley 2001
Perez, J.Bax, L.Willems, P. Escalanovan den Wildenberg, 2005
Rutt, J. S.Maebius, S. B.Dendrimer Patent Trends: The Explosion ContinuesFoley & Lardner LLP 2004
Freemantle, M.Blossoming dendrimersChem. Eng. News 77 1999 27
Halford, B.Dendrimers branch outChem. Eng. News 83 2005 30
Tomalia, D. A.A new complexityMaterials Today 6 2003 72
Tomalia, D. A.Dendrons/dendrimers: the convergence of quantized dendritic building blocks/architectures for applications in nanotechnologyChemistry Today 23 2005 52
Tomalia, D. A.Fréchet, J. M.Introduction to dendrimers and dendritic polymersProg. Polym. Sci 30 2005 217
Majoral, J.-P.State of the art developments in the chemistry and properties of dendrimers and hyperbranched polymersNew. J. Chem 31 2007 1039
Vohs, J. K.Fahlman, B. D.Advances in the controlled growth of nanoclusters using dendritic architectureNew J. Chem 31 2007
Hahn, U.Cardinali, F.Nierengarten, J.-F.Supramolecular chemistry for the self-assembly of fullerene-rich dendrimersNew J. Chem 31 2007 1128
Deschenaux, R.Donnio, B.Guillon, D.Liquid-crystalline fullerodendrimersNew J. Chem 31 2007 1064
Swanson, D. R.Huang, B.Abdelbady, H. G.Tomalia, D. A.Unique steric and geometry induced stoichiometries observed in the divergent synthesis of poly(ester-acrylate) (PEA) dendrimersNew J. Chem. 31 2007 1368
Voit, B.The potential of cycloaddition reactions in the synthesis of dendritic polymersNew J. Chem 31 2007 1139
Kehat, T.Goren, K.Portnoy, M.Dendrons on insoluble supports: synthesis and applicationsNew J. Chem 31 2007 1218
Crampton, H.Hollink, E.Perez, L. M.Simanek, E. E.A divergent route towards single-chemical entity triazine dendrimers with opportunities for structural diversityNew J. Chem 31 2007 1283
Nlate, S.Plault, L.Astruc, D.Peripheral functionalisation of dendrimers with polyoxotungstate complexes assembled by ionic bonding and their use as oxidation catalysts: Influence of the tether lengthNew J. Chem 31 2007 1264
Hwang, S.-H.Shreiner, C. D.Moorfield, C. N.Newkome, G. R.Recent progress and applications for metallodendrimersNew J. Chem 31 2007 1192
Bauer, R. E.Clark, C. G.Mullen, K.Precision host-guest chemistry of polyphenylene dendrimersNew J. Chem 31 2007 1275
Clark, C. G.Wenzel, R. J.Andreitchenko, E. V.Solvophobically-driven 3-D self-assembly of “exploded” - type polyphenylene dendrimersNew J. Chem 31 2007 1300
Giansante, C.Ceroni, P.Balzani, V.Photophysical, photochemical, and electrochemical properties of dendrimers with dimethoxybenzil coreNew J. Chem 31 2007 1250
Mongin, O.Pla-Quintana, A.Terenziani, F.Organic nanodots for multiphotonics: synthesis and photophysical studiesNew J. Chem 31 2007 1354
Perry, R.Amir, R. J.Shabat, D.Substituent-dependent disassembly of self-immolative dendrimersNew J. Chem 31 2007 1307
Kevwitch, R. M.Mcgrath, D. V.Synthesis and degradation of photolabile dendrimer based on -nitrobenzyl ether photolabile coresNew J. Chem. 2007 2007 1332
Langereis, S.Dirksen, A.Hackeng, T. M.Van Gendersen, M. H. P.Meijer, E. W.Dendrimers and magnetic resonance imagingNew J. Chem 31 2007 1152
Andres, R.De Jesus, E.Flores, J. C.Catalysts based on palladium dendrimersNew J. Chem 31 2007 1161
Knecht, M. R.Crooks, R. M.Magnetic properties of dendrimer-encapsulated iron nanoparticles containing an average of 55 and 147 atomsNew J. Chem 31 2007 1349
Rudick, J. G.Percec, V.Helical chirality in dendronized polyarylacetylenesNew J. Chem 31 2007 1083
Nishiyama, N.Jang, W.-D.Kataoka, K.Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene deliveryNew J. Chem 31 2007 1074
Van De Coevering, R.Bruijnincx, P. C. A.Lutz, M.Ionic core-shell dendrimers with a polycationic core: structural aspects and host–guest binding propertiesNew J. Chem 31 2007 1337
Tomalia, D. A.Dendrons/dendrimer: quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesisSoft Matter 6 2010 456
Tomalia, D. A. 2005
Olson, E. S.Jiang, T.Aguilera, T. A.Proc. Nat. Acad. Sci. 107 2010 4311
Nguyen, Q. T.Olson, E. S.Aguilera, T. A.Proc. Nat. Acad. Sci. 107 2010 4317
Tomalia, D. A.New J. Chem. 36 2012 264
Zhang, A.Schulter, A. D.Campagna, SCeroni, PPuntoriero, FDesigning DendrimersHoboken, NJJohn Wiley & Sons, Inc. 2012