Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-01T00:16:30.763Z Has data issue: false hasContentIssue false

21 - Trigonometric parallaxes

from Part IV - From detected photons to the celestial sphere

Published online by Cambridge University Press:  05 December 2012

G. Fritz Benedict
Affiliation:
University of Texas Austin
Barbara E. McArthur
Affiliation:
University of Texas Austin
William F. van Altena
Affiliation:
Yale University, Connecticut
Get access

Summary

Introduction

One consequence of observing from a moving platform is that all objects exhibit parallax. The measurement of parallax yields distance, a quantity useful in astrophysics. In particular, with distance we can determine the absolute magnitude of any object, a primary parameter in two of the most useful “maps” in astronomy: the Hertzsprung–Russell diagram (e.g. Perryman et al. 1997, Fig. 3), showing the relation between absolute magnitude (luminosity) and color (temperature); and the mass–luminosity relation (e.g. Henry 2004, Fig. 3), a tool for turning luminosity into mass, a stellar attribute which determines the past and future aging process for any star. Another example of the utility of absolute magnitudes is the Cepheid period–luminosity relation (PLR). The example used here to illustrate parallax determination had improving that relationship as its ultimate goal.

The technology used to generate parallaxes has proceeded from naked-eye measurements with mechanical micrometers (Bessel 1838), through hand measurements of photographic plates (Booth and Schlesinger 1922), through computer-controlled plate scanners (Auer and van Altena 1978), through computer-controlled CCD cameras (Henry et al. 2006, Harris et al. 2007), through the triumph of the Hipparcos astrometric satellite (Perryman et al. 1997), to space-borne optical interferometers (Benedict et al. 2007, 2009) and extremely long baseline radio interferometers (Reid et al. 2009). Each stage of this historical sequence is characterized by improvements in both the centering of the images of the target and reference stars and the mathematical challenge in distilling the final parallax from those centers.

Type
Chapter
Information
Astrometry for Astrophysics
Methods, Models, and Applications
, pp. 309 - 322
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J., Bedin, L. R., Piotto, G., Yadav, R. S., and Bellini, A. (2006). Ground-based CCD astrometry with wide field imagers. I. Observations just a few years apart allow decontamination of field objects from members in two globular clusters. A&A, 454, 1029.Google Scholar
Auer, L. H. and van Altena, W. F. (1978). Digital image centering. II. AJ, 83, 531.CrossRefGoogle Scholar
Barnes, T.G., Jefferys, W.H., Berger, J.O., et al. (2003). A Bayesian analysis of the Cepheid distance scale. ApJ, 592, 539.Google Scholar
Benedict, G. F., McArthur, B. E., Chappell, D.W., et al. (1999). Interferometric astrometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope Fine Guidance Sensor 3: Detection limits for substellar companions. AJ, 118, 1086.CrossRefGoogle Scholar
Benedict, G. F., McArthur, B. E., Franz, O. G., et al. (2000). Interferometric astrometry of the detached white dwarf-M dwarf binary Feige 24 using HST Fine Guidance Sensor 3: white dwarf radius and component mass estimates. AJ, 119, 2382.CrossRefGoogle Scholar
Benedict, G. F., McArthur, B. E., Fredrick, L.W., et al. (2002a). Astrometry with the Hubble Space Telescope: a parallax of the fundamental distance calibrator RR Lyrae. AJ, 123, 473.CrossRefGoogle Scholar
Benedict, G. F., McArthur, B. E., Fredrick, L. W., et al. (2002b). Astrometry with the Hubble Space Telescope: a parallax of the fundamental distance calibrator δ Cephei. AJ, 124, 1695.CrossRefGoogle Scholar
Benedict, G. F., McArthur, B. E., Fredrick, L.W., et al. (2003). Astrometry with the Hubble Space Telescope: a parallax of the central star of the planetary nebula NGC 6853. AJ, 126, 2549.CrossRefGoogle Scholar
Benedict, G. F., McArthur, B. E., Feast, M. W., et al. (2007). Hubble Space Telescope Fine Guidance Sensor parallaxes of Galactic Cepheid variable stars: period–luminosity relations. AJ, 133, 1810.CrossRefGoogle Scholar
Benedict, G. F., McArthur, B. E., Nopiwotzki, R., et al. (2009). Astrometry with the Hubble Space Telescope: trigonometric parallaxes of planetary nebula nuclei NGC 6853, NGC 7293, Abell 31, and DeHt 5. AJ, 138, 1969.CrossRefGoogle Scholar
Bertin, E. and Tissier, G. (2007). VOTables in TERAPIX Software. Astronomical Data Analysis Software and Systems XVI, 376, 507.Google Scholar
Bessel, F. W. (1838). On the parallax of 61 Cygni. MNRAS, 4, 152.Google Scholar
Bessell, M. S. and Brett, J. M. (1988). JHKLM photometry – standard systems, passbands, and intrinsic colors. PASP, 100, 1134.CrossRefGoogle Scholar
Booth, M. and Schlesinger, F. (1922). The parallaxes of fifty-seven stars. AJ, 34, 31.Google Scholar
Cox, A. N., ed. (2000). Allen's Astrophysical Quantities, 4th edn. New York, NY: AIP Press, Springer.
Fouqué, P., Arriagada, P., Storm, J., et al. (2007). A new calibration of Galactic Cepheid period–luminosity relations from B to K bands, and a comparison to LMC relations. A&A, 476, 73.Google Scholar
Gizis, J. E., Jao, W.-C., Subasavage, J. P., and Henry, T. J. (2007). The trigonometric parallax of the brown dwarf planetary system 2MASSW J1207334-393254. ApJ, 669, L45.Google Scholar
Gould, A. and Morgan, C.W. (2003). Transit target selection using reduced proper motions. ApJ, 585, 1056.Google Scholar
Hanson, R. B. (1979). A practical method to improve luminosity calibrations from trigonometric parallaxes. MNRAS, 186, 875.CrossRefGoogle Scholar
Harris, H. C., Dahn, C. C., Canzian, B., et al. (2007). Trigonometric parallaxes of central stars of planetary nebulae. AJ, 133, 631.CrossRefGoogle Scholar
Harrison, T. E., McNamara, B. J., Szkody, P., et al. (1999). Hubble Space Telescope Fine Guidance Sensor Astrometric parallaxes for three dwarf novae: SS Aurigae, SS Cygni, and U Geminorum. ApJ, 515, L93.Google Scholar
Henry, T. J. (2004). The mass–luminosity relation from end to end. ASP Conf. Ser., 318, 159.Google Scholar
Henry, T. J., Jao, W.-C., Subasavage, J. P., et al. (2006). The solar neighborhood. XVII. Parallax results from the CTIOPI 0.9 m Program: 20 new members of the RECONS 10 parsec sample. AJ, 132, 2360.CrossRefGoogle Scholar
Jao, W.-C., Henry, T. J., Subasavage, J. P., et al. (2005). The solar neighborhood. XIII. Parallax results from the CTIOPI 0.9 Meter Program: stars with μ ≥ 1.0″yr−1. AJ, 129, 1954.CrossRefGoogle Scholar
Jefferys, W., Fitzpatrick, J., and McArthur, B. (1988). GaussFit – a system for least squares and robust estimation. Celest. Mech., 41, 39.
Leavitt, H. S. and Pickering, E. C. (1912). Periods of 25 variable stars in the Small Magellanic Cloud. Harvard College Observatory Circular, 173, 1.Google Scholar
Lutz, T. E. and Kelker, D. H. (1973). On the use of trigonometric parallaxes for the calibration of luminosity systems: theory. PASP, 85, 573.CrossRefGoogle Scholar
Magnier, E. A., Liu, M., Monet, D. G., and Chambers, K. C. (2008). The extended solar neighborhood: precision astrometry from the Pan-STARRS 1 3π survey. Proc. IAU Symp., 248, 553.Google Scholar
Majewski, S. R., Ostheimer, J. C., Kunkel, W. E., and Patterson, R. J. (2000). Exploring halo substructure with giant stars. I. Survey description and calibration of the photometric search technique. AJ, 120, 2550.CrossRefGoogle Scholar
McArthur, B. E., Benedict, G. F., Lee, J., et al. (1999). Astrometry with Hubble Space Telescope Fine Guidance Sensor 3: the parallax of the cataclysmic variable RW Triangulum. ApJ, 520, L59.Google Scholar
McArthur, B. E., Benedict, G. F., Lee, J., et al. (2001). Interferometric astrometry with Hubble Space Telescope Fine Guidance Sensor 3: the parallax of the cataclysmic variable TV Columbae. ApJ, 560, 907.Google Scholar
McArthur, B., Benedict, G. F., Jefferys, W. H., and Nelan, E. (2002). The optical field angle distortion calibration of HST Fine Guidance Sensors 1R and 3. In The 2002 HST Calibration Workshop, Proceedings of a Workshop held at the Space Telescope Science Institute, Baltimore, Maryland, October 17 and 18, 2002, ed. S., Arribas, A., Koekemoer, and B., Whitmore. Baltimore, MD: Space Telescope Science Institute, p. 373.Google Scholar
McArthur, B., Benedict, G. F., Harrison, T. E., and van Altena, W. F. (2011). Astrometry with the Hubble Space Telescope: trigonometric parallaxes of selected hyads. AJ, 141, 172.CrossRefGoogle Scholar
Mignard, F. (2005). The Gaia mission: science highlights. ASP Conf. Ser., 338, 15.Google Scholar
Murray, C. A. (1983). Vectorial Astrometry. Bristol: Adam Hilgar.Google Scholar
Nelan, E. P. (2011). Fine Guidance Sensor Instrument Handbook, version 19.0. Baltimore, MD: Space Telescope Science Institute.Google Scholar
Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. (1997). The HIPPARCOS Catalogue. A&A, 323, L49.Google Scholar
Reid, M. J., Menten, K. M., Brunthaler, A., et al. (2009). Trigonometric parallaxes of massive star-forming regions. I. S 252 & G232.6 + 1.0.ApJ, 693, 397.Google Scholar
Roeser, S., Demleitner, M., and Schibach, E. (2010). The PPMXL Catalog of Positions and Proper Motions on the ICRS. Combining USNO-B1.0 and the Two Micron All Sky Survey (2MASS). AJ, 139, 2440.CrossRefGoogle Scholar
Savage, B. D. and Mathis, J. S. (1979). Observed properties of interstellar dust. ARA&A, 17, 73.CrossRefGoogle Scholar
Schlegel, D. J., Finkbeiner, D. P., and Davis, M. (1998). Maps of dust infrared emission for use in estimation of reddening and cosmicmicrowave background radiation foregrounds. ApJ, 500, 525.Google Scholar
Soderblom, D. R., Nelan, E., Benedict, G. F., et al. (2005). Confirmation of errors in Hipparcos parallaxes from Hubble Space Telescope Fine Guidance Sensor astrometry of the Pleiades. AJ, 129, 1616.CrossRefGoogle Scholar
Standish, E. M. Jr., (1990). The observational basis for JPL's DE 200, the planetary ephemerides of the Astronomical Almanac. A&A, 233, 252.Google Scholar
Stetson, P. B. (1987). DAOPHOT – a computer program for crowded-field stellar photometry. PASP, 99, 191.CrossRefGoogle Scholar
van Altena, W. F. and Monnier, R. C. (1968). Astrometric accuracy and the flatness of glass filters. AJ, 73, 649.CrossRefGoogle Scholar
van Altena, W. F., Lee, J. T., and Hoffleit, E. D. (1995). Yale Parallax Catalog, 4th edn. New Haven, CT: Yale University Observatory (YPC95).Google Scholar
van Leeuwen, F. (2007). Validation of the new Hipparcos reduction. A&A, 474, 653.Google Scholar
Yong, D. and Lambert, D. L. (2003). Finding cool subdwarfs using a V – J reduced proper-motion diagram: stellar parameters for 91 candidates. PASP, 115, 796.CrossRefGoogle Scholar
Zacharias, N., Urban, S. E., Zacharias, M. I., et al. (2004). The Second US Naval Observatory CCD Astrograph Catalog (UCAC2). AJ, 127, 3043.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×