Skip to main content Accessibility help
×
Home
  • Print publication year: 2012
  • Online publication date: December 2012

21 - Trigonometric parallaxes

from Part IV - From detected photons to the celestial sphere

Summary

Introduction

One consequence of observing from a moving platform is that all objects exhibit parallax. The measurement of parallax yields distance, a quantity useful in astrophysics. In particular, with distance we can determine the absolute magnitude of any object, a primary parameter in two of the most useful “maps” in astronomy: the Hertzsprung–Russell diagram (e.g. Perryman et al. 1997, Fig. 3), showing the relation between absolute magnitude (luminosity) and color (temperature); and the mass–luminosity relation (e.g. Henry 2004, Fig. 3), a tool for turning luminosity into mass, a stellar attribute which determines the past and future aging process for any star. Another example of the utility of absolute magnitudes is the Cepheid period–luminosity relation (PLR). The example used here to illustrate parallax determination had improving that relationship as its ultimate goal.

The technology used to generate parallaxes has proceeded from naked-eye measurements with mechanical micrometers (Bessel 1838), through hand measurements of photographic plates (Booth and Schlesinger 1922), through computer-controlled plate scanners (Auer and van Altena 1978), through computer-controlled CCD cameras (Henry et al. 2006, Harris et al. 2007), through the triumph of the Hipparcos astrometric satellite (Perryman et al. 1997), to space-borne optical interferometers (Benedict et al. 2007, 2009) and extremely long baseline radio interferometers (Reid et al. 2009). Each stage of this historical sequence is characterized by improvements in both the centering of the images of the target and reference stars and the mathematical challenge in distilling the final parallax from those centers.

Related content

Powered by UNSILO
References
Anderson, J., Bedin, L. R., Piotto, G., Yadav, R. S., and Bellini, A. (2006). Ground-based CCD astrometry with wide field imagers. I. Observations just a few years apart allow decontamination of field objects from members in two globular clusters. A&A, 454, 1029.
Auer, L. H. and van Altena, W. F. (1978). Digital image centering. II. AJ, 83, 531.
Barnes, T.G., Jefferys, W.H., Berger, J.O., et al. (2003). A Bayesian analysis of the Cepheid distance scale. ApJ, 592, 539.
Benedict, G. F., McArthur, B. E., Chappell, D.W., et al. (1999). Interferometric astrometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope Fine Guidance Sensor 3: Detection limits for substellar companions. AJ, 118, 1086.
Benedict, G. F., McArthur, B. E., Franz, O. G., et al. (2000). Interferometric astrometry of the detached white dwarf-M dwarf binary Feige 24 using HST Fine Guidance Sensor 3: white dwarf radius and component mass estimates. AJ, 119, 2382.
Benedict, G. F., McArthur, B. E., Fredrick, L.W., et al. (2002a). Astrometry with the Hubble Space Telescope: a parallax of the fundamental distance calibrator RR Lyrae. AJ, 123, 473.
Benedict, G. F., McArthur, B. E., Fredrick, L. W., et al. (2002b). Astrometry with the Hubble Space Telescope: a parallax of the fundamental distance calibrator δ Cephei. AJ, 124, 1695.
Benedict, G. F., McArthur, B. E., Fredrick, L.W., et al. (2003). Astrometry with the Hubble Space Telescope: a parallax of the central star of the planetary nebula NGC 6853. AJ, 126, 2549.
Benedict, G. F., McArthur, B. E., Feast, M. W., et al. (2007). Hubble Space Telescope Fine Guidance Sensor parallaxes of Galactic Cepheid variable stars: period–luminosity relations. AJ, 133, 1810.
Benedict, G. F., McArthur, B. E., Nopiwotzki, R., et al. (2009). Astrometry with the Hubble Space Telescope: trigonometric parallaxes of planetary nebula nuclei NGC 6853, NGC 7293, Abell 31, and DeHt 5. AJ, 138, 1969.
Bertin, E. and Tissier, G. (2007). VOTables in TERAPIX Software. Astronomical Data Analysis Software and Systems XVI, 376, 507.
Bessel, F. W. (1838). On the parallax of 61 Cygni. MNRAS, 4, 152.
Bessell, M. S. and Brett, J. M. (1988). JHKLM photometry – standard systems, passbands, and intrinsic colors. PASP, 100, 1134.
Booth, M. and Schlesinger, F. (1922). The parallaxes of fifty-seven stars. AJ, 34, 31.
Cox, A. N., ed. (2000). Allen's Astrophysical Quantities, 4th edn. New York, NY: AIP Press, Springer.
Fouqué, P., Arriagada, P., Storm, J., et al. (2007). A new calibration of Galactic Cepheid period–luminosity relations from B to K bands, and a comparison to LMC relations. A&A, 476, 73.
Gizis, J. E., Jao, W.-C., Subasavage, J. P., and Henry, T. J. (2007). The trigonometric parallax of the brown dwarf planetary system 2MASSW J1207334-393254. ApJ, 669, L45.
Gould, A. and Morgan, C.W. (2003). Transit target selection using reduced proper motions. ApJ, 585, 1056.
Hanson, R. B. (1979). A practical method to improve luminosity calibrations from trigonometric parallaxes. MNRAS, 186, 875.
Harris, H. C., Dahn, C. C., Canzian, B., et al. (2007). Trigonometric parallaxes of central stars of planetary nebulae. AJ, 133, 631.
Harrison, T. E., McNamara, B. J., Szkody, P., et al. (1999). Hubble Space Telescope Fine Guidance Sensor Astrometric parallaxes for three dwarf novae: SS Aurigae, SS Cygni, and U Geminorum. ApJ, 515, L93.
Henry, T. J. (2004). The mass–luminosity relation from end to end. ASP Conf. Ser., 318, 159.
Henry, T. J., Jao, W.-C., Subasavage, J. P., et al. (2006). The solar neighborhood. XVII. Parallax results from the CTIOPI 0.9 m Program: 20 new members of the RECONS 10 parsec sample. AJ, 132, 2360.
Jao, W.-C., Henry, T. J., Subasavage, J. P., et al. (2005). The solar neighborhood. XIII. Parallax results from the CTIOPI 0.9 Meter Program: stars with μ ≥ 1.0″yr−1. AJ, 129, 1954.
Jefferys, W., Fitzpatrick, J., and McArthur, B. (1988). GaussFit – a system for least squares and robust estimation. Celest. Mech., 41, 39.
Leavitt, H. S. and Pickering, E. C. (1912). Periods of 25 variable stars in the Small Magellanic Cloud. Harvard College Observatory Circular, 173, 1.
Lutz, T. E. and Kelker, D. H. (1973). On the use of trigonometric parallaxes for the calibration of luminosity systems: theory. PASP, 85, 573.
Magnier, E. A., Liu, M., Monet, D. G., and Chambers, K. C. (2008). The extended solar neighborhood: precision astrometry from the Pan-STARRS 1 3π survey. Proc. IAU Symp., 248, 553.
Majewski, S. R., Ostheimer, J. C., Kunkel, W. E., and Patterson, R. J. (2000). Exploring halo substructure with giant stars. I. Survey description and calibration of the photometric search technique. AJ, 120, 2550.
McArthur, B. E., Benedict, G. F., Lee, J., et al. (1999). Astrometry with Hubble Space Telescope Fine Guidance Sensor 3: the parallax of the cataclysmic variable RW Triangulum. ApJ, 520, L59.
McArthur, B. E., Benedict, G. F., Lee, J., et al. (2001). Interferometric astrometry with Hubble Space Telescope Fine Guidance Sensor 3: the parallax of the cataclysmic variable TV Columbae. ApJ, 560, 907.
McArthur, B., Benedict, G. F., Jefferys, W. H., and Nelan, E. (2002). The optical field angle distortion calibration of HST Fine Guidance Sensors 1R and 3. In The 2002 HST Calibration Workshop, Proceedings of a Workshop held at the Space Telescope Science Institute, Baltimore, Maryland, October 17 and 18, 2002, ed. S., Arribas, A., Koekemoer, and B., Whitmore. Baltimore, MD: Space Telescope Science Institute, p. 373.
McArthur, B., Benedict, G. F., Harrison, T. E., and van Altena, W. F. (2011). Astrometry with the Hubble Space Telescope: trigonometric parallaxes of selected hyads. AJ, 141, 172.
Mignard, F. (2005). The Gaia mission: science highlights. ASP Conf. Ser., 338, 15.
Murray, C. A. (1983). Vectorial Astrometry. Bristol: Adam Hilgar.
Nelan, E. P. (2011). Fine Guidance Sensor Instrument Handbook, version 19.0. Baltimore, MD: Space Telescope Science Institute.
Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. (1997). The HIPPARCOS Catalogue. A&A, 323, L49.
Reid, M. J., Menten, K. M., Brunthaler, A., et al. (2009). Trigonometric parallaxes of massive star-forming regions. I. S 252 & G232.6 + 1.0.ApJ, 693, 397.
Roeser, S., Demleitner, M., and Schibach, E. (2010). The PPMXL Catalog of Positions and Proper Motions on the ICRS. Combining USNO-B1.0 and the Two Micron All Sky Survey (2MASS). AJ, 139, 2440.
Savage, B. D. and Mathis, J. S. (1979). Observed properties of interstellar dust. ARA&A, 17, 73.
Schlegel, D. J., Finkbeiner, D. P., and Davis, M. (1998). Maps of dust infrared emission for use in estimation of reddening and cosmicmicrowave background radiation foregrounds. ApJ, 500, 525.
Soderblom, D. R., Nelan, E., Benedict, G. F., et al. (2005). Confirmation of errors in Hipparcos parallaxes from Hubble Space Telescope Fine Guidance Sensor astrometry of the Pleiades. AJ, 129, 1616.
Standish, E. M. Jr., (1990). The observational basis for JPL's DE 200, the planetary ephemerides of the Astronomical Almanac. A&A, 233, 252.
Stetson, P. B. (1987). DAOPHOT – a computer program for crowded-field stellar photometry. PASP, 99, 191.
van Altena, W. F. and Monnier, R. C. (1968). Astrometric accuracy and the flatness of glass filters. AJ, 73, 649.
van Altena, W. F., Lee, J. T., and Hoffleit, E. D. (1995). Yale Parallax Catalog, 4th edn. New Haven, CT: Yale University Observatory (YPC95).
van Leeuwen, F. (2007). Validation of the new Hipparcos reduction. A&A, 474, 653.
Yong, D. and Lambert, D. L. (2003). Finding cool subdwarfs using a V – J reduced proper-motion diagram: stellar parameters for 91 candidates. PASP, 115, 796.
Zacharias, N., Urban, S. E., Zacharias, M. I., et al. (2004). The Second US Naval Observatory CCD Astrograph Catalog (UCAC2). AJ, 127, 3043.