Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T19:22:03.011Z Has data issue: false hasContentIssue false

23 - Paradoxical effects of drugs on cognitive function: the neuropsychopharmacology of the dopamine and other neurotransmitter systems

Published online by Cambridge University Press:  05 December 2011

Roshan Cools
Affiliation:
Radboud University
Esther Aarts
Affiliation:
Radboud University
Mitul A. Mehta
Affiliation:
Institute of Psychiatry
Narinder Kapur
Affiliation:
University College London
Alvaro Pascual-Leone
Affiliation:
Harvard Medical School
Vilayanur Ramachandran
Affiliation:
University of California, San Diego
Jonathan Cole
Affiliation:
University of Bournemouth
Sergio Della Sala
Affiliation:
University of Edinburgh
Tom Manly
Affiliation:
MRC Cognition and Brain Sciences Unit
Andrew Mayes
Affiliation:
University of Manchester
Oliver Sacks
Affiliation:
Columbia University Medical Center
Get access

Summary

Summary

Neurotransmitters are the means by which one neuron influences the action of another. Abnormalities in neurotransmitter function are implicated in a variety of neurological and neuropsychiatric disorders and drugs that influence the neurotransmitter systems are often used in treating the symptoms of such disorders. The effects of these drugs can be paradoxical. A small dose of a pharmacological agent might have entirely the opposite effect to a large dose, a drug may improve one ability whilst impairing another, a drug may have opposite effects in different populations or opposite effects in the same individual at different times. In this chapter, we illustrate these effects using clinical data and data from healthy volunteers in experimental studies. With one of the best studied neuromodulators – dopamine – as our focus, we introduce key principles that can help to explain these apparent paradoxes. First, the effect of a drug depends on baseline levels of the neurotransmitter already in the system. When baseline levels are low, a given pharmacological dose can increase function closer to an optimal level. When baseline levels are high, the same dose can over-stimulate the system and trigger compensatory mechanisms that reduce performance on a given task. Second, a drug could have quite different effects in different brain regions. Accordingly, a function that is predominantly influenced by one region may be enhanced, whilst another function, more dependent on another region, may be impaired. In the final section of the chapter, we turn to attention deficit hyperactivity disorder (ADHD).

Type
Chapter
Information
The Paradoxical Brain , pp. 397 - 417
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, M. T., Arcos-Burgos, M., & Muenke, M. (2004). Attention deficit/hyperactivity disorder (ADHD): complex phenotype, simple genotype?Genetics in Medicine, 6: 1–15.CrossRefGoogle ScholarPubMed
Akil, M., Kolachana, B. S., Rothmond, D. A., Hyde, T. M., Weinberger, D. R., Kleinman, J. E. (2003). Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. Journal of Neuroscience, 23: 2008–13.CrossRefGoogle ScholarPubMed
Alexander, G., DeLong, M., & Stuck, P. (1986). Parallel organisation of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9: 357–81.CrossRefGoogle ScholarPubMed
Altunç, U., Pittler, M. H., & Ernst, E. (2007). Homeopathy for childhood and adolescence ailments: systematic review of randomized clinical trials. Mayo Clinic Proceedings, 82: 69–75.CrossRefGoogle ScholarPubMed
,American Psychiatric Association. (1994). Diagnostic and Statistical Manual of Mental Disorders, 4th Edition. Washington, DC: American Psychiatric Association.Google Scholar
Arnsten, A. F. (1998). Catecholamine modulation of prefrontal cortical cognitive function. Trends in Cognitive Science, 2: 436–46.CrossRefGoogle ScholarPubMed
Aron, A., Dowson, J., Sahakian, B., & Robbins, T. (2003). Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biological Psychiatry, 54: 1465–8.CrossRefGoogle ScholarPubMed
Artigas, F. (1993). 5-HT and antidepressants: new views from microdialysis studies. Trends in Pharmacological Science, 14: 262.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1986). Working Memory. Oxford: Clarendon Press.Google ScholarPubMed
Blier, P., & Montigny, C. (1999). Serotonin and drug-induced therapeutic responses in major depression, obsessive-compulsive and panic disorders. Neuropsychopharmacology, 21: 91S–98S.CrossRefGoogle ScholarPubMed
Bond, R. A. (2001). Is paradoxical pharmacology a strategy worth pursuing?Trends in Pharmacological Science, 22: 273–6.CrossRefGoogle ScholarPubMed
Burghardt, N., Sullivan, G., McEwen, B., Gorman, J., & LeDoux, J. E. (2004). The selective serotonin reuptake inhibitor citalopram increases fear after acute treatment but reduces fear with chronic treatment: a comparison with tianeptine. Biological Psychiatry, 55: 1171–8.CrossRefGoogle ScholarPubMed
Calabrese, E. J. (2008). Converging concepts: adaptive response, preconditioning, and the Yerkes–Dodson Law are manifestations of hormesis. Ageing Research Reviews, 7: 8–20.CrossRefGoogle ScholarPubMed
Castellanos, F. X., Elia, J., Kruesi, M. J., et al. (1994). Cerebrospinal fluid monoamine metabolites in boys with attention-deficit hyperactivity disorder. Psychiatry Research, 52: 305–16.CrossRefGoogle ScholarPubMed
Castellanos, F. X., Elia, J., Kruesi, M. J., et al. (1996). Cerebrospinal fluid homovanillic acid predicts behavioral response to stimulants in 45 boys with attention deficit/hyperactivity disorder. Neuropsychopharmacology, 14: 125–37.CrossRefGoogle ScholarPubMed
Cheon, K. A., Ryu, Y. H., Kim, J. W., & Cho, D. Y. (2005). The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. European Neuropsychopharmacology, 15: 95–101.CrossRefGoogle Scholar
Clatworthy, P. L., Lewis, S. J., Brichard, L., et al. (2009). Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. Journal of Neuroscience, 29: 4690–6.CrossRefGoogle ScholarPubMed
Colzato, L. S., Waszak, F., Nieuwenhuis, S., Posthuma, D., & Hommel, B. (2010). The flexible mind is associated with the catechol-O-methyltransferase (COMT) Val158Met polymorphism: evidence for a role of dopamine in the control of task-switching. Neuropsychologia, 48: 2764–8.CrossRefGoogle ScholarPubMed
Cools, R., Barker, R. A., Sahakian, B. J., & Robbins, T. W. (2001). Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. Cerebral Cortex, 11: 1136–43.CrossRefGoogle ScholarPubMed
Cools, R., Barker, R. A., Sahakian, B. J., & Robbins, T. W. (2003). L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease. Neuropsychologia, 41: 1431–41.CrossRefGoogle ScholarPubMed
Cools, R., Frank, M., Gibbs, S., Miyakawa, A., Jagust, W., & D'Esposito, M. (2009). Striatal dopamine synthesis capacity predicts dopaminergic drug effects on flexible outcome learning. Journal of Neuroscience, 29: 1538–43.CrossRefGoogle Scholar
Cools, R., Gibbs, S., Miyakawa, A., Jagust, W., & D'Esposito, M. (2008). Working memory capacity predicts dopamine synthesis capacity in the human striatum. Journal of Neuroscience, 28: 1208–12.CrossRefGoogle ScholarPubMed
Cools, R., Lewis, S., Clark, L., Barker, R., & Robbins, T. W. (2007b). L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease. Neuropsychopharmacology, 32: 180–9.CrossRefGoogle ScholarPubMed
Cools, R., Sheridan, M., Jacobs, E., & D'Esposito, M. (2007a). Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. Journal of Neuroscience, 27: 5506–14.CrossRefGoogle ScholarPubMed
Cooper, J., Bloom, F., & Roth, R. (2003). The Biochemical Basis of Neuropharmacology, 8th Edition. Oxford: Oxford University Press.Google Scholar
Cramer, S. C. (2008a). Repairing the human brain after stroke. II. Restorative therapies. Annals of Neurology, 63: 549–60.CrossRefGoogle ScholarPubMed
Cramer, S. C. (2008b). Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Annals of Neurology, 63: 272–87.CrossRefGoogle ScholarPubMed
Crofts, H. S., Dalley, J. W., Denderen, J. C., Everitt, B. J., Robbins, T. W., & Roberts, A. C. (2001). Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set. Cerebral Cortex, 11: 1015–26.CrossRefGoogle ScholarPubMed
DeVito, E. E., Blackwell, A. D., Clark, L., et al. (2009). Methylphenidate improves response inhibition but not reflection-impulsivity in children with attention deficit hyperactivity disorder (ADHD). Psychopharmacology (Berlin), 202: 531–9.CrossRefGoogle Scholar
Diamond, A., Briand, L., Fossella, J., & Gehlbach, L. (2004). Genetic and neurochemical modulation of prefrontal cognitive functions in children. Archives of General Psychiatry, 161: 125–32.Google ScholarPubMed
Egan, M. F., Goldberg, T. E., Kolachana, B. S., et al. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the USA, 98: 6917–22.CrossRefGoogle ScholarPubMed
Engert, V., & Pruessner, J. C. (2008). Dopaminergic and noradrenergic contributions to functionality in ADHD: the role of methylphenidate. Current Neuropharmacology, 6: 322–8.CrossRefGoogle ScholarPubMed
Evenden, J. (1999). Varieties of impulsivity. Psychopharmacology, 146: 348–61.CrossRefGoogle ScholarPubMed
Frank, M. J., & O'Reilly, R. C. (2006). A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behavioral Neuroscience, 120: 497–517.CrossRefGoogle ScholarPubMed
Gibbs, S. E., & D'Esposito, M. (2005). A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory. Psychopharmacology (Berlin), 180: 644–53.CrossRefGoogle ScholarPubMed
Gotham, A. M., Brown, R. G., & Marsden, C. D. (1988). ‘Frontal’ cognitive function in patients with Parkinson's disease ‘on’ and ‘off’ levodopa. Brain, 111: 299–321.CrossRefGoogle ScholarPubMed
Grace, A. (2000). The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction, 95: S119–28.CrossRefGoogle ScholarPubMed
Grace, A. (2001). Psychostimulant actions on dopamine and limbic system function: relevance to the pathophysiology and treatment of ADHD. In: Solanto, M., Arnsten, A., & Castellanos, F. (Eds.). Stimulant Drugs and ADHD. Basic and Clinical Neuroscience. Oxford: Oxford University Press, pp. 134–57.Google Scholar
Granon, S., Passetti, F., Thomas, K. L., Dalley, J. W., Everitt, B. J., & Robbins, T. (2000). Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. Journal of Neuroscience, 20: 1208–15.CrossRefGoogle ScholarPubMed
Harmer, C. J., Bhagwagar, Z., Perrett, D. I., Vollm, B. A., Cowen, P. J., & Goodwin, G. M. (2003). Acute SSRI administration affects the processing of social cues in healthy volunteers. Neuropsychopharmacology, 28: 148–52.CrossRefGoogle ScholarPubMed
Hesse, S., Ballaschke, O., Barthel, H., & Sabri, O. (2009). Dopamine transporter imaging in adult patients with attention-deficit/hyperactivity disorder. Psychiatry Research, 171: 120–8.CrossRefGoogle ScholarPubMed
Joober, R., Grizenko, N., Sengupta, S., et al. (2007). Dopamine transporter 3'UTR VNTR genotype and ADHD: a pharmaco-behavioural genetic study with methylphenidate. Neuropsychopharmacology, 32: 1370–6.CrossRefGoogle ScholarPubMed
Kereszturi, E., Tarnok, Z., Bognar, E., et al. (2008). Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B: 1431–5.CrossRefGoogle ScholarPubMed
Khan, S. A., & Faraone, S. V. (2007). The genetics of ADHD: a literature review of 2005. Current Psychiatry Reports, 8: 393–7.CrossRefGoogle Scholar
Kimberg, D. Y., D'Esposito, M., & Farah, M. J. (1997). Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport, 8: 3581–5.CrossRefGoogle ScholarPubMed
Kirley, A., Lowe, N., Hawi, Z., et al. (2003). Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 121B: 50–4.CrossRefGoogle Scholar
Kish, S. J., Shannak, K., & Hornykiewicz, O. (1988). Uneven patterns of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. New England Journal of Medicine, 318: 876–80.CrossRefGoogle Scholar
Koelega, H. S. (1993). Stimulant drugs and vigilance performance: a review. Psychopharmacology, 111: 1–16.CrossRefGoogle ScholarPubMed
Krugel, L. K., Biele, G., Mohr, P. N., Li, S. C., & Heekeren, H. R. (2009). Genetic variation in dopaminergic neuromodulation influences the ability to rapidly and flexibly adapt decisions. Proceedings of the National Academy of Sciences of the USA, 106: 17,951–6.CrossRefGoogle ScholarPubMed
Langley, K., Turic, D., Peirce, T. R., et al. (2005). No support for association between the dopamine transporter (DAT1) gene and ADHD. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 139B: 7–10.CrossRefGoogle ScholarPubMed
Lott, D. C., Kim, S. J., Cook, E. H., & Wit, H. (2005). Dopamine transporter gene associated with diminished subjective response to amphetamine. Neuropsychopharmacology, 30: 602–09.CrossRefGoogle ScholarPubMed
Mattay, V., Goldberg, T., Fera, F., et al. (2003). Catechol O-methyltransferase Val158-met genotype and individual variation in the brain response to amphetamine. Proceedings of the National Academy of Sciences USA, 100: 6186–91.CrossRefGoogle ScholarPubMed
Mehta, M., Owen, A. M., Sahakian, B. J., Mavaddat, N., Pickard, J. D., & Robbins, T. W. (2000). Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. Journal of Neuroscience, 20: RC65.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Kohn, P. D., Kolachana, B., et al. (2005). Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nature Neuroscience, 8: 594–6.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Miletich, R. S., Kohn, P. D., et al. (2002). Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nature Neuroscience, 5: 267–71.CrossRefGoogle Scholar
Mick, E., Biederman, J., Spencer, T., Faraone, S. V., & Sklar, P. (2006). Absence of association with DAT1 polymorphism and response to methylphenidate in a sample of adults with ADHD. American Journal of Medical Genetics. Part B Neuropsychiatric Genetics, 141B: 890–4.CrossRefGoogle Scholar
Mier, D., Kirsch, P., & Meyer-Lindenberg, A. (2010). Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Molecular Psychiatry, 15: 918–27.CrossRefGoogle ScholarPubMed
Nigg, J., & Casey, B. (2005). An integrative theory of attention-deficit/hyperactivity disorder based on the cognitive and affective neurosciences. Developmental Psychopathology, 17: 785–806.CrossRefGoogle ScholarPubMed
Nolan, K., Bilder, R., Lachman, H., & Volavka, K. (2004). Catechol O-Methyltransferase Val158Met polymorphism in schizophrenia: differential effects of Val and Met alleles on cognitive stability and flexibility. American Journal of Psychiatry, 161: 359–61.CrossRefGoogle ScholarPubMed
Phillips, A., Ahn, S., & Floresco, S. (2004). Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. Journal of Neuroscience, 14: 547–53.CrossRefGoogle Scholar
Pizzolato, G., Soncrant, T. T., & Rapoport, S. I. (1985). Time-course and regional distribution of the metabolic effects of bromocriptine in the rat brain. Brain Research, 341: 303–12.CrossRefGoogle ScholarPubMed
Pycock, C. J., Kerwin, R. W., & Carter, C. J. (1980). Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature, 286: 74–7.CrossRefGoogle ScholarPubMed
Rader, R., McCauley, L., & Callen, E. C. (2009). Current strategies in the diagnosis and treatment of childhood attention-deficit/hyperactivity disorder. American Family Physician, 79: 657–65.Google ScholarPubMed
Rapoport, J., Buchsbaum, M., Weingartner, H., Zahn, T., Ludlow, C., & Mikkelsen, E. (1980). Dextroamphetamine. Its cognitive and behavioral effects in normal and hyperactive boys and normal men. Archives of General Psychiatry, 37: 933–43.CrossRefGoogle ScholarPubMed
Robbins, T. (2007). Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society B: Biological Sciences, 362: 917–32.CrossRefGoogle ScholarPubMed
Robbins, T. W. (2002). ADHD and addiction. Nature Medicine, 8: 24–5.CrossRefGoogle ScholarPubMed
Robbins, T. W., & Everitt, B. J. (1987). Psychopharmacological studies of arousal and attention. In: Stahl, S., Iversen, S., & Goodman, E. (Eds.). Cognitive Neurochemistry. Oxford: Oxford University Press.Google Scholar
Robbins, T. W., & Sahakian, B. J. (1979). ‘Paradoxical’ effects of psychomotor stimulant drugs in hyperactive children from the standpoint fo behavioural pharmacology. Neuropharmacology, 18: 931–50.CrossRefGoogle Scholar
Roberts, A. C., Salvia, M. A., Wilkinson, L. S., et al. (1994). 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin card sort test: possible interactions with subcortical dopamine. Journal of Neuroscience, 14: 2531–44.CrossRefGoogle ScholarPubMed
Roman, T., Szobot, C., Martins, S., Biederman, J., Rohde, L. A., & Hutz, M. H. (2002). Dopamine transporter gene and response to methylphenidate in attention-deficit/hyperactivity disorder. Pharmacogenetics, 12: 497–9.CrossRefGoogle ScholarPubMed
Rosa-Neto, P., Lou, H. C., Cumming, P., et al. (2005). Methylphenidate-evoked changes in striatal dopamine correlate with inattention and impulsivity in adolescents with attention deficit hyperactivity disorder. Neuroimage, 25: 868–76.CrossRefGoogle ScholarPubMed
Sciutto, M. J., Nolfi, C. J., & Bluhm, C. (2004). Effects of child gender and symptom type on referrals for ADHD by elementary school teachers. Journal of Emotional and Behavioural Disorders, 12: 247–53.CrossRefGoogle Scholar
Seeman, P., & Madras, B. (2002). Methylphenidate elevates resting dopamine which lowers the impulse-triggered release of dopamine: a hypothesis. Behavior and Brain Research, 130: 79–83.CrossRefGoogle ScholarPubMed
Shetty, T., & Chase, T. N. (1976). Central monoamines and hyperkinase of childhood. Neurology, 26: 1000–02.CrossRefGoogle ScholarPubMed
Stahl, S. (2008). Stahl's Essential Psychopharmacology. Neuroscientific Basis and Clinical Applications, 3rd Edition. Cambridge: Cambridge University Press.Google Scholar
Stein, M. A., Waldman, I. D., Sarampote, C. S., et al. (2005). Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology, 30: 1374–82.CrossRefGoogle ScholarPubMed
Swainson, R., Rogers, R. D., Sahakian, B. J., Summers, B. A., Polkey, C. E., & Robbins, T. W. (2000). Probabilistic learning and reversal deficits in patients with Parkinson's disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia, 38: 596–612.CrossRefGoogle ScholarPubMed
Tannock, R., Schachar, R. J., Carr, R. P., Chajczyk, D., & Logan, G. D. (1989). Effects of methylphenidate on inhibitory control in hyperactive children. Journal of Abnormal Child Psychology, 17: 473–91.CrossRefGoogle ScholarPubMed
Teicher, M., Polcari, A., Anderson, C., Anderson, S., Lowen, S., & Navalta, C. (2003). Rate dependency revisited: understanding the effects of methylphenidate in children with attention hyperactivity disorder. Journal of Child and Adolescent Psychopharmacology, 13: 41–51.CrossRefGoogle ScholarPubMed
Torstenson, R., Hartvig, P., Langstrom, B., Bastami, S., Antoni, G., & Tedroff, J. (1998). Effect of apomorphine infusion on dopamine synthesis rate relates to dopaminergic tone. Neuropharmacology, 37: 989–95.CrossRefGoogle ScholarPubMed
Vaidya, D., Austin, G., Kirkorian, G., et al. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic study. Proceedings of the National Academy of Sciences, 95: 14,494–9.CrossRefGoogle Scholar
Meulen, E. M., Bakker, S. C., Pauls, D. L., et al. (2005). High sibling correlation on methylphenidate response but no association with DAT1–10R homozygosity in Dutch sibpairs with ADHD. Journal of Child Psychology and Psychiatry, 46: 1074–80.CrossRefGoogle ScholarPubMed
Vijayraghavan, S., Wang, M., Birnbaum, S., Williams, G., & Arnsten, A. (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nature Neuroscience, 10: 176–84.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Kollins, S. H., et al. (2009). Evaluating dopamine reward pathway in ADHD: clinical implications. Journal of the American Medical Association, 302: 1084–91.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Newcorn, J., et al. (2007a). Brain dopamine transporter levels in treatment and drug naive adults with ADHD. Neuroimage, 34: 1182–90.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Newcorn, J., et al. (2007b). Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 64: 932–40.CrossRefGoogle ScholarPubMed
Williams, G. V., & Goldman-Rakic, P. S. (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376: 572–5.CrossRefGoogle ScholarPubMed
Winsberg, B. G., & Comings, D. E. (1999). Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. Journal of the American Academy of Child and Adolescent Psychiatry, 38: 1474–7.CrossRefGoogle ScholarPubMed
Yerkes, R. M., & Dodson, J. D. (1908). The relation of the strength of stimulus to the rapidity of habit formation. Journal of Comparative Neurology and Psychology, 18: 459–82.CrossRefGoogle Scholar
Yun, A. J., Doux, J., Daniel, S., et al. (2007). Brewing controversies: Darwinian perspective on the adaptive and maladaptive effects of caffeine and ethanol as dietary autonomic modulators. Medical Hypotheses, 68: 31–6.CrossRefGoogle ScholarPubMed
Yun, A. J., Lee, P., Bazarm, K., et al. (2005). Paradoxical strategy for treating chronic diseases where therapeutic effect is derived from compensatory response rather than drug effect. Medical Hypotheses, 64: 1050–9.CrossRefGoogle ScholarPubMed
Zahrt, J., Taylor, J. R., Mathew, R. G., & Arnsten, A. F. (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. Journal of Neurosciecnce, 17: 8528–35.CrossRefGoogle ScholarPubMed
Zeni, C. P., Guimaraes, A. P., Polanczyk, G. V., et al. (2007). No significant association between response to methylphenidate and genes of the dopaminergic and serotonergic systems in a sample of Brazilian children with attention-deficit/hyperactivity disorder. American Journal of Medical Genetics. Part B Neuropsychiatric Genetics, 144B: 391–4.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×