Skip to main content Accessibility help
×
Home
  • Print publication year: 2011
  • Online publication date: December 2011

23 - Paradoxical effects of drugs on cognitive function: the neuropsychopharmacology of the dopamine and other neurotransmitter systems

Summary

Summary

Neurotransmitters are the means by which one neuron influences the action of another. Abnormalities in neurotransmitter function are implicated in a variety of neurological and neuropsychiatric disorders and drugs that influence the neurotransmitter systems are often used in treating the symptoms of such disorders. The effects of these drugs can be paradoxical. A small dose of a pharmacological agent might have entirely the opposite effect to a large dose, a drug may improve one ability whilst impairing another, a drug may have opposite effects in different populations or opposite effects in the same individual at different times. In this chapter, we illustrate these effects using clinical data and data from healthy volunteers in experimental studies. With one of the best studied neuromodulators – dopamine – as our focus, we introduce key principles that can help to explain these apparent paradoxes. First, the effect of a drug depends on baseline levels of the neurotransmitter already in the system. When baseline levels are low, a given pharmacological dose can increase function closer to an optimal level. When baseline levels are high, the same dose can over-stimulate the system and trigger compensatory mechanisms that reduce performance on a given task. Second, a drug could have quite different effects in different brain regions. Accordingly, a function that is predominantly influenced by one region may be enhanced, whilst another function, more dependent on another region, may be impaired. In the final section of the chapter, we turn to attention deficit hyperactivity disorder (ADHD).

References
Acosta, M. T., Arcos-Burgos, M., & Muenke, M. (2004). Attention deficit/hyperactivity disorder (ADHD): complex phenotype, simple genotype?Genetics in Medicine, 6: 1–15.
Akil, M., Kolachana, B. S., Rothmond, D. A., Hyde, T. M., Weinberger, D. R., Kleinman, J. E. (2003). Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. Journal of Neuroscience, 23: 2008–13.
Alexander, G., DeLong, M., & Stuck, P. (1986). Parallel organisation of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9: 357–81.
Altunç, U., Pittler, M. H., & Ernst, E. (2007). Homeopathy for childhood and adolescence ailments: systematic review of randomized clinical trials. Mayo Clinic Proceedings, 82: 69–75.
,American Psychiatric Association. (1994). Diagnostic and Statistical Manual of Mental Disorders, 4th Edition. Washington, DC: American Psychiatric Association.
Arnsten, A. F. (1998). Catecholamine modulation of prefrontal cortical cognitive function. Trends in Cognitive Science, 2: 436–46.
Aron, A., Dowson, J., Sahakian, B., & Robbins, T. (2003). Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biological Psychiatry, 54: 1465–8.
Artigas, F. (1993). 5-HT and antidepressants: new views from microdialysis studies. Trends in Pharmacological Science, 14: 262.
Baddeley, A. D. (1986). Working Memory. Oxford: Clarendon Press.
Blier, P., & Montigny, C. (1999). Serotonin and drug-induced therapeutic responses in major depression, obsessive-compulsive and panic disorders. Neuropsychopharmacology, 21: 91S–98S.
Bond, R. A. (2001). Is paradoxical pharmacology a strategy worth pursuing?Trends in Pharmacological Science, 22: 273–6.
Burghardt, N., Sullivan, G., McEwen, B., Gorman, J., & LeDoux, J. E. (2004). The selective serotonin reuptake inhibitor citalopram increases fear after acute treatment but reduces fear with chronic treatment: a comparison with tianeptine. Biological Psychiatry, 55: 1171–8.
Calabrese, E. J. (2008). Converging concepts: adaptive response, preconditioning, and the Yerkes–Dodson Law are manifestations of hormesis. Ageing Research Reviews, 7: 8–20.
Castellanos, F. X., Elia, J., Kruesi, M. J., et al. (1994). Cerebrospinal fluid monoamine metabolites in boys with attention-deficit hyperactivity disorder. Psychiatry Research, 52: 305–16.
Castellanos, F. X., Elia, J., Kruesi, M. J., et al. (1996). Cerebrospinal fluid homovanillic acid predicts behavioral response to stimulants in 45 boys with attention deficit/hyperactivity disorder. Neuropsychopharmacology, 14: 125–37.
Cheon, K. A., Ryu, Y. H., Kim, J. W., & Cho, D. Y. (2005). The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. European Neuropsychopharmacology, 15: 95–101.
Clatworthy, P. L., Lewis, S. J., Brichard, L., et al. (2009). Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. Journal of Neuroscience, 29: 4690–6.
Colzato, L. S., Waszak, F., Nieuwenhuis, S., Posthuma, D., & Hommel, B. (2010). The flexible mind is associated with the catechol-O-methyltransferase (COMT) Val158Met polymorphism: evidence for a role of dopamine in the control of task-switching. Neuropsychologia, 48: 2764–8.
Cools, R., Barker, R. A., Sahakian, B. J., & Robbins, T. W. (2001). Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. Cerebral Cortex, 11: 1136–43.
Cools, R., Barker, R. A., Sahakian, B. J., & Robbins, T. W. (2003). L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease. Neuropsychologia, 41: 1431–41.
Cools, R., Frank, M., Gibbs, S., Miyakawa, A., Jagust, W., & D'Esposito, M. (2009). Striatal dopamine synthesis capacity predicts dopaminergic drug effects on flexible outcome learning. Journal of Neuroscience, 29: 1538–43.
Cools, R., Gibbs, S., Miyakawa, A., Jagust, W., & D'Esposito, M. (2008). Working memory capacity predicts dopamine synthesis capacity in the human striatum. Journal of Neuroscience, 28: 1208–12.
Cools, R., Lewis, S., Clark, L., Barker, R., & Robbins, T. W. (2007b). L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease. Neuropsychopharmacology, 32: 180–9.
Cools, R., Sheridan, M., Jacobs, E., & D'Esposito, M. (2007a). Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. Journal of Neuroscience, 27: 5506–14.
Cooper, J., Bloom, F., & Roth, R. (2003). The Biochemical Basis of Neuropharmacology, 8th Edition. Oxford: Oxford University Press.
Cramer, S. C. (2008a). Repairing the human brain after stroke. II. Restorative therapies. Annals of Neurology, 63: 549–60.
Cramer, S. C. (2008b). Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Annals of Neurology, 63: 272–87.
Crofts, H. S., Dalley, J. W., Denderen, J. C., Everitt, B. J., Robbins, T. W., & Roberts, A. C. (2001). Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set. Cerebral Cortex, 11: 1015–26.
DeVito, E. E., Blackwell, A. D., Clark, L., et al. (2009). Methylphenidate improves response inhibition but not reflection-impulsivity in children with attention deficit hyperactivity disorder (ADHD). Psychopharmacology (Berlin), 202: 531–9.
Diamond, A., Briand, L., Fossella, J., & Gehlbach, L. (2004). Genetic and neurochemical modulation of prefrontal cognitive functions in children. Archives of General Psychiatry, 161: 125–32.
Egan, M. F., Goldberg, T. E., Kolachana, B. S., et al. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the USA, 98: 6917–22.
Engert, V., & Pruessner, J. C. (2008). Dopaminergic and noradrenergic contributions to functionality in ADHD: the role of methylphenidate. Current Neuropharmacology, 6: 322–8.
Evenden, J. (1999). Varieties of impulsivity. Psychopharmacology, 146: 348–61.
Frank, M. J., & O'Reilly, R. C. (2006). A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behavioral Neuroscience, 120: 497–517.
Gibbs, S. E., & D'Esposito, M. (2005). A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory. Psychopharmacology (Berlin), 180: 644–53.
Gotham, A. M., Brown, R. G., & Marsden, C. D. (1988). ‘Frontal’ cognitive function in patients with Parkinson's disease ‘on’ and ‘off’ levodopa. Brain, 111: 299–321.
Grace, A. (2000). The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction, 95: S119–28.
Grace, A. (2001). Psychostimulant actions on dopamine and limbic system function: relevance to the pathophysiology and treatment of ADHD. In: Solanto, M., Arnsten, A., & Castellanos, F. (Eds.). Stimulant Drugs and ADHD. Basic and Clinical Neuroscience. Oxford: Oxford University Press, pp. 134–57.
Granon, S., Passetti, F., Thomas, K. L., Dalley, J. W., Everitt, B. J., & Robbins, T. (2000). Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. Journal of Neuroscience, 20: 1208–15.
Harmer, C. J., Bhagwagar, Z., Perrett, D. I., Vollm, B. A., Cowen, P. J., & Goodwin, G. M. (2003). Acute SSRI administration affects the processing of social cues in healthy volunteers. Neuropsychopharmacology, 28: 148–52.
Hesse, S., Ballaschke, O., Barthel, H., & Sabri, O. (2009). Dopamine transporter imaging in adult patients with attention-deficit/hyperactivity disorder. Psychiatry Research, 171: 120–8.
Joober, R., Grizenko, N., Sengupta, S., et al. (2007). Dopamine transporter 3'UTR VNTR genotype and ADHD: a pharmaco-behavioural genetic study with methylphenidate. Neuropsychopharmacology, 32: 1370–6.
Kereszturi, E., Tarnok, Z., Bognar, E., et al. (2008). Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B: 1431–5.
Khan, S. A., & Faraone, S. V. (2007). The genetics of ADHD: a literature review of 2005. Current Psychiatry Reports, 8: 393–7.
Kimberg, D. Y., D'Esposito, M., & Farah, M. J. (1997). Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport, 8: 3581–5.
Kirley, A., Lowe, N., Hawi, Z., et al. (2003). Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 121B: 50–4.
Kish, S. J., Shannak, K., & Hornykiewicz, O. (1988). Uneven patterns of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. New England Journal of Medicine, 318: 876–80.
Koelega, H. S. (1993). Stimulant drugs and vigilance performance: a review. Psychopharmacology, 111: 1–16.
Krugel, L. K., Biele, G., Mohr, P. N., Li, S. C., & Heekeren, H. R. (2009). Genetic variation in dopaminergic neuromodulation influences the ability to rapidly and flexibly adapt decisions. Proceedings of the National Academy of Sciences of the USA, 106: 17,951–6.
Langley, K., Turic, D., Peirce, T. R., et al. (2005). No support for association between the dopamine transporter (DAT1) gene and ADHD. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 139B: 7–10.
Lott, D. C., Kim, S. J., Cook, E. H., & Wit, H. (2005). Dopamine transporter gene associated with diminished subjective response to amphetamine. Neuropsychopharmacology, 30: 602–09.
Mattay, V., Goldberg, T., Fera, F., et al. (2003). Catechol O-methyltransferase Val158-met genotype and individual variation in the brain response to amphetamine. Proceedings of the National Academy of Sciences USA, 100: 6186–91.
Mehta, M., Owen, A. M., Sahakian, B. J., Mavaddat, N., Pickard, J. D., & Robbins, T. W. (2000). Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. Journal of Neuroscience, 20: RC65.
Meyer-Lindenberg, A., Kohn, P. D., Kolachana, B., et al. (2005). Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nature Neuroscience, 8: 594–6.
Meyer-Lindenberg, A., Miletich, R. S., Kohn, P. D., et al. (2002). Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nature Neuroscience, 5: 267–71.
Mick, E., Biederman, J., Spencer, T., Faraone, S. V., & Sklar, P. (2006). Absence of association with DAT1 polymorphism and response to methylphenidate in a sample of adults with ADHD. American Journal of Medical Genetics. Part B Neuropsychiatric Genetics, 141B: 890–4.
Mier, D., Kirsch, P., & Meyer-Lindenberg, A. (2010). Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Molecular Psychiatry, 15: 918–27.
Nigg, J., & Casey, B. (2005). An integrative theory of attention-deficit/hyperactivity disorder based on the cognitive and affective neurosciences. Developmental Psychopathology, 17: 785–806.
Nolan, K., Bilder, R., Lachman, H., & Volavka, K. (2004). Catechol O-Methyltransferase Val158Met polymorphism in schizophrenia: differential effects of Val and Met alleles on cognitive stability and flexibility. American Journal of Psychiatry, 161: 359–61.
Phillips, A., Ahn, S., & Floresco, S. (2004). Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. Journal of Neuroscience, 14: 547–53.
Pizzolato, G., Soncrant, T. T., & Rapoport, S. I. (1985). Time-course and regional distribution of the metabolic effects of bromocriptine in the rat brain. Brain Research, 341: 303–12.
Pycock, C. J., Kerwin, R. W., & Carter, C. J. (1980). Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature, 286: 74–7.
Rader, R., McCauley, L., & Callen, E. C. (2009). Current strategies in the diagnosis and treatment of childhood attention-deficit/hyperactivity disorder. American Family Physician, 79: 657–65.
Rapoport, J., Buchsbaum, M., Weingartner, H., Zahn, T., Ludlow, C., & Mikkelsen, E. (1980). Dextroamphetamine. Its cognitive and behavioral effects in normal and hyperactive boys and normal men. Archives of General Psychiatry, 37: 933–43.
Robbins, T. (2007). Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society B: Biological Sciences, 362: 917–32.
Robbins, T. W. (2002). ADHD and addiction. Nature Medicine, 8: 24–5.
Robbins, T. W., & Everitt, B. J. (1987). Psychopharmacological studies of arousal and attention. In: Stahl, S., Iversen, S., & Goodman, E. (Eds.). Cognitive Neurochemistry. Oxford: Oxford University Press.
Robbins, T. W., & Sahakian, B. J. (1979). ‘Paradoxical’ effects of psychomotor stimulant drugs in hyperactive children from the standpoint fo behavioural pharmacology. Neuropharmacology, 18: 931–50.
Roberts, A. C., Salvia, M. A., Wilkinson, L. S., et al. (1994). 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin card sort test: possible interactions with subcortical dopamine. Journal of Neuroscience, 14: 2531–44.
Roman, T., Szobot, C., Martins, S., Biederman, J., Rohde, L. A., & Hutz, M. H. (2002). Dopamine transporter gene and response to methylphenidate in attention-deficit/hyperactivity disorder. Pharmacogenetics, 12: 497–9.
Rosa-Neto, P., Lou, H. C., Cumming, P., et al. (2005). Methylphenidate-evoked changes in striatal dopamine correlate with inattention and impulsivity in adolescents with attention deficit hyperactivity disorder. Neuroimage, 25: 868–76.
Sciutto, M. J., Nolfi, C. J., & Bluhm, C. (2004). Effects of child gender and symptom type on referrals for ADHD by elementary school teachers. Journal of Emotional and Behavioural Disorders, 12: 247–53.
Seeman, P., & Madras, B. (2002). Methylphenidate elevates resting dopamine which lowers the impulse-triggered release of dopamine: a hypothesis. Behavior and Brain Research, 130: 79–83.
Shetty, T., & Chase, T. N. (1976). Central monoamines and hyperkinase of childhood. Neurology, 26: 1000–02.
Stahl, S. (2008). Stahl's Essential Psychopharmacology. Neuroscientific Basis and Clinical Applications, 3rd Edition. Cambridge: Cambridge University Press.
Stein, M. A., Waldman, I. D., Sarampote, C. S., et al. (2005). Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology, 30: 1374–82.
Swainson, R., Rogers, R. D., Sahakian, B. J., Summers, B. A., Polkey, C. E., & Robbins, T. W. (2000). Probabilistic learning and reversal deficits in patients with Parkinson's disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia, 38: 596–612.
Tannock, R., Schachar, R. J., Carr, R. P., Chajczyk, D., & Logan, G. D. (1989). Effects of methylphenidate on inhibitory control in hyperactive children. Journal of Abnormal Child Psychology, 17: 473–91.
Teicher, M., Polcari, A., Anderson, C., Anderson, S., Lowen, S., & Navalta, C. (2003). Rate dependency revisited: understanding the effects of methylphenidate in children with attention hyperactivity disorder. Journal of Child and Adolescent Psychopharmacology, 13: 41–51.
Torstenson, R., Hartvig, P., Langstrom, B., Bastami, S., Antoni, G., & Tedroff, J. (1998). Effect of apomorphine infusion on dopamine synthesis rate relates to dopaminergic tone. Neuropharmacology, 37: 989–95.
Vaidya, D., Austin, G., Kirkorian, G., et al. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic study. Proceedings of the National Academy of Sciences, 95: 14,494–9.
Meulen, E. M., Bakker, S. C., Pauls, D. L., et al. (2005). High sibling correlation on methylphenidate response but no association with DAT1–10R homozygosity in Dutch sibpairs with ADHD. Journal of Child Psychology and Psychiatry, 46: 1074–80.
Vijayraghavan, S., Wang, M., Birnbaum, S., Williams, G., & Arnsten, A. (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nature Neuroscience, 10: 176–84.
Volkow, N. D., Wang, G. J., Kollins, S. H., et al. (2009). Evaluating dopamine reward pathway in ADHD: clinical implications. Journal of the American Medical Association, 302: 1084–91.
Volkow, N. D., Wang, G. J., Newcorn, J., et al. (2007a). Brain dopamine transporter levels in treatment and drug naive adults with ADHD. Neuroimage, 34: 1182–90.
Volkow, N. D., Wang, G. J., Newcorn, J., et al. (2007b). Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 64: 932–40.
Williams, G. V., & Goldman-Rakic, P. S. (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376: 572–5.
Winsberg, B. G., & Comings, D. E. (1999). Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. Journal of the American Academy of Child and Adolescent Psychiatry, 38: 1474–7.
Yerkes, R. M., & Dodson, J. D. (1908). The relation of the strength of stimulus to the rapidity of habit formation. Journal of Comparative Neurology and Psychology, 18: 459–82.
Yun, A. J., Doux, J., Daniel, S., et al. (2007). Brewing controversies: Darwinian perspective on the adaptive and maladaptive effects of caffeine and ethanol as dietary autonomic modulators. Medical Hypotheses, 68: 31–6.
Yun, A. J., Lee, P., Bazarm, K., et al. (2005). Paradoxical strategy for treating chronic diseases where therapeutic effect is derived from compensatory response rather than drug effect. Medical Hypotheses, 64: 1050–9.
Zahrt, J., Taylor, J. R., Mathew, R. G., & Arnsten, A. F. (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. Journal of Neurosciecnce, 17: 8528–35.
Zeni, C. P., Guimaraes, A. P., Polanczyk, G. V., et al. (2007). No significant association between response to methylphenidate and genes of the dopaminergic and serotonergic systems in a sample of Brazilian children with attention-deficit/hyperactivity disorder. American Journal of Medical Genetics. Part B Neuropsychiatric Genetics, 144B: 391–4.