Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-24T08:32:49.930Z Has data issue: false hasContentIssue false

10 - Genetics and cellular drug resistance in acute leukemia

from Section 2 - Cell biology and pathobiology

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Childhood Leukemias , pp. 257 - 275
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pieters, R, Carroll, WL. Biology and treatment of acute lymphoblastic leukemia. Pediatr Clin North Am 2008;55:1–20.CrossRefGoogle ScholarPubMed
Absalon, MJ, Smith, FO. Treatment strategies for pediatric acute myeloid leukemia. Expert Opin Pharmacother 2009;10:57–79.CrossRefGoogle ScholarPubMed
Bosanquet, AG. Correlations between therapeutic response of leukaemias and in-vitro drug-sensitivity assay. Lancet 1991;337:711–714.CrossRefGoogle ScholarPubMed
Hongo, T, Yajima, S, Sakurai, M, et al. In vitro drug sensitivity testing can predict induction failure and early relapse of childhood acute lymphoblastic leukemia. Blood 1997;89:2959–2965.Google ScholarPubMed
Pieters, R, Huismans, DR, Loonen, AH, et al. Relation of cellular drug resistance to long-term clinical outcome in childhood acute lymphoblastic leukaemia. Lancet 1991;338:399–403.CrossRefGoogle ScholarPubMed
Kaspers, GJL, Veerman, AJP, Pieters, R, et al. In vitro cellular drug resistance and prognosis in newly diagnosed childhood acute lymphoblastic leukemia. Blood 1997;90:2723–2729.Google ScholarPubMed
Kaspers, GJL, Pieters, R, van Zantwijk, CH, et al. In vitro drug sensitivity of normal peripheral blood lymphocytes and childhood leukaemic cells from bone marrow and peripheral blood. Br J Cancer 1991;64:469–474.CrossRefGoogle ScholarPubMed
Schmiegelow, K, Nyvold, C, Seyfarth, J, et al. Post-induction residual leukemia in childhood acute lymphoblastic leukemia quantified by PCR correlates with in vitro prednisolone resistance. Leukemia 2001;15:1066–1071.CrossRefGoogle ScholarPubMed
Frost, BM, Nygren, P, Gustafsson, G, et al. Increased in vitro cellular drug resistance is related to poor outcome in high-risk childhood acute lymphoblastic leukaemia. Br J Haematol 2003;122:376–385.CrossRefGoogle ScholarPubMed
Lonnerholm, G, Thorn, I, Sundstrom, C, et al. In vitro cellular drug sensitivity at diagnosis is correlated to minimal residual disease at end of induction therapy in childhood acute lymphoblastic leukemia. Leuk Res 2009;33:46–53.CrossRefGoogle ScholarPubMed
den Boer, ML, Harms, DO, Pieters, R, et al. Patient stratification based on prednisolone–vincristine–asparaginase resistance profiles in children with acute lymphoblastic leukemia. J Clin Oncol 2003;21:3262–3268.CrossRefGoogle ScholarPubMed
Kaspers, GJL, Pieters, R, van Zantwijk, CH, et al. Prednisolone resistance in childhood acute lymphoblastic leukemia: vitro-vivo correlations and cross-resistance to other drugs. Blood 1998;92:259–266.Google ScholarPubMed
Asselin, BL, Kreissman, S, Coppola, DJ, et al. Prognostic significance of early response to a single dose of asparaginase in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 1999;21:6–12.CrossRefGoogle ScholarPubMed
Appel, IM, Kazemier, KM, Boos, J, et al. Pharmacokinetic, pharmacodynamic and intracellular effects of PEG-asparaginase in newly diagnosed childhood acute lymphoblastic leukemia: results from a single agent window study. Leukemia 2008;22:1665–1679.CrossRefGoogle ScholarPubMed
Klumper, E, Pieters, R, Veerman, AJP, et al. In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood 1995;86:3861–3868.Google ScholarPubMed
Rots, MG, Pieters, R, Peters, GJ, et al. Methotrexate resistance in relapsed childhood acute lymphoblastic leukaemia. Br J Haematol 2000;109:629–634.CrossRefGoogle ScholarPubMed
Yamada, S, Hongo, T, Okada, S, et al. Clinical relevance of in vitro chemoresistance in childhood acute myeloid leukemia. Leukemia 2001;15:1892–1897.CrossRefGoogle ScholarPubMed
Zwaan, CM, Kaspers, GJ, Pieters, R, et al. Cellular drug resistance in childhood acute myeloid leukemia is related to chromosomal abnormalities. Blood 2002;100:3352–3360.CrossRefGoogle ScholarPubMed
Klumper, E, Ossenkoppele, GJ, Pieters, R, et al. In vitro resistance to cytosine arabinoside, not to daunorubicin, is associated with the risk of relapse in de novo acute myeloid leukaemia. Br J Haematol 1996;93:903–910.CrossRefGoogle Scholar
Styczynski, J, Wysocki, M. Ex vivo drug resistance in childhood acute myeloid leukemia on relapse is not higher than at first diagnosis. Pediatr Blood Cancer 2004;42:195–199.CrossRefGoogle Scholar
Klumper, E, Pieters, R, Kaspers, GJL, et al. In vitro chemosensitivity assessed with the MTT assay in childhood acute non-lymphoblastic leukemia. Leukemia 1995;9:1864–1869.Google ScholarPubMed
Zwaan, CM, Kaspers, GJL, Pieters, R, et al. Cellular drug resistance profiles in childhood acute myeloid leukemia: differences between FAB types and comparison with acute lymphoblastic leukemia. Blood 2000;96:2879–2886.Google ScholarPubMed
Rots, MG, Pieters, R, Jansen, G, et al. A possible role for methotrexate in the treatment of childhood acute myeloid leukaemia, in particular for acute monocytic leukaemia. Eur J Cancer 2001;37:492–498.CrossRefGoogle ScholarPubMed
Ramakers-van Woerden, NL, Pieters, R, Rots, MG, et al. Infants with acute lymphoblastic leukemia: no evidence for high methotrexate resistance. Leukemia 2002;16:949–951.CrossRefGoogle ScholarPubMed
Ramakers-van Woerden, NL, Beverloo, HB, Veerman, AJ, et al. In vitro drug-resistance profile in infant acute lymphoblastic leukemia in relation to age, MLL rearrangements and immunophenotype. Leukemia 2004;18:521–529.CrossRefGoogle ScholarPubMed
Ramakers-van Woerden, NL, Pieters, R, Loonen, AH, et al. TEL/AML1 gene fusion is related to in vitro drug sensitivity for l-asparaginase in childhood acute lymphoblastic leukemia. Blood 2000;96:1094–1099.Google ScholarPubMed
Kager, L, Cheok, M, Yang, W, et al. Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. J Clin Invest 2005;115:110–117.CrossRefGoogle ScholarPubMed
Kaspers, GJL, Smets, LA, Pieters, R, et al. Favorable prognosis of hyperdiploid common acute lymphoblastic leukemia may be explained by sensitivity to antimetabolites and other drugs: results of an in vitro study. Blood 1995;85:751–756.Google ScholarPubMed
Ramakers-van Woerden, NL, Pieters, R, Hoelzer, D, et al. In vitro drug resistance profile of Philadelphia positive acute lymphoblastic leukemia is heterogeneous and related to age: a report of the Dutch and German Leukemia Study Groups. Med Pediatr Oncol 2002;38:379–386.CrossRefGoogle ScholarPubMed
Pieters, R, den Boer, ML, Durian, M, et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia: implications for treatment of infants. Leukemia 1998;12:1344–1348.CrossRefGoogle ScholarPubMed
Rots, MG, Pieters, R, Kaspers, GJ, et al. Differential methotrexate resistance in childhood T- versus common/preB-acute lymphoblastic leukemia can be measured by an in situ thymidylate synthase inhibition assay, but not by the MTT assay. Blood 1999;93:1067–1074.Google Scholar
Zwaan, CM, Kaspers, GJ, Pieters, R, et al. Different drug sensitivity profiles of acute myeloid and lymphoblastic leukemia and normal peripheral blood mononuclear cells in children with and without Down syndrome. Blood 2002;99:245–251.CrossRefGoogle ScholarPubMed
Pieters, R, Schrappe, M, De Lorenzo, P, et al. A treatment protocol for infants younger than one year of age with acute lymphoblastic leukemia (Interfant-99): an observational study and multicentre randomised trial. Lancet 2007;370:240–250.CrossRefGoogle Scholar
Kamps, WA, , van der Pal-deBruin, KM, Veerman, AJ, et al. Long-term results of Dutch Childhood Oncology Group studies for children with acute lymphoblastic leukemia from 1984 to 2004. Leukemia 2010;24:309–319.CrossRefGoogle ScholarPubMed
Raimondi, SC, Chang, MN, Ravindranath, Y, et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative Pediatric Oncology Group study: POG 8821. Blood 1999;94:3707–3716.Google Scholar
Jansen, MW, Corral, L, van der Velden, VH, et al. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 2007;21:633–641.CrossRefGoogle ScholarPubMed
Balgobind, BV, Raimondi, SC, Harbott, J, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 2009;114:2489–2496.CrossRefGoogle ScholarPubMed
Kosaka, Y, Koh, K, Kinukawa, N, et al. Infant acute lymphoblastic leukemia with MLL gene rearrangements: outcome following intensive chemotherapy and hematopoietic stem cell transplantation. Blood 2004;104:3527–3534.CrossRefGoogle ScholarPubMed
Palle, J, Frost, BM, Forestier, E, et al. Cellular drug sensitivity in MLL-rearranged childhood acute leukaemia is correlated to partner genes and cell lineage. Br J Haematol 2005;129:189–198.CrossRefGoogle ScholarPubMed
Moricke, A, Zimmermann, M, Reiter, A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010;24:265–284.CrossRefGoogle Scholar
Stams, WA, Beverloo, HB, den Boer, ML, et al. Incidence of additional genetic changes in the TEL and AML1 genes in DCOG and COALL-treated t(12;21)-positive pediatric ALL, and their relation with drug sensitivity and clinical outcome. Leukemia 2006;20:410–416.CrossRefGoogle Scholar
Schultz, KR, Pullen, DJ, Sather, HN, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). Blood 2007;109:926–935.CrossRefGoogle Scholar
Pieters, R, Kaspers, GJL, van Wering, ER, et al. Cellular drug resistance profiles that might explain the prognostic value of immunophenotype and age in childhood acute lymphoblastic leukemia. Leukemia 1993;7:392–397.Google ScholarPubMed
Masson, E, Relling, MV, Synold, TW, et al. Accumulation of methotrexate polyglutamates in lymphoblasts is a determinant of antileukemic effects in vivo. A rationale for high-dose methotrexate. J Clin Invest 1996;97:73–80.CrossRefGoogle ScholarPubMed
van Grotel, M, Meijerink, JP, Beverloo, HB, et al. The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. Haematologica 2006;91:1212–1221.Google ScholarPubMed
Ramakers-van Woerden, NL, Pieters, R, Slater, RM, et al. In vitro drug resistance and prognostic impact of p16INK4A/P15INK4B deletions in childhood T-cell acute lymphoblastic leukaemia. Br J Haematol 2001;112:680–690.CrossRefGoogle ScholarPubMed
Yamada, S, Hongo, T, Okada, S, et al. Distinctive multidrug sensitivity and outcome of acute erythroblastic and megakaryoblastic leukemia in children with Down syndrome. Int J Hematol 2001;74:428–436.CrossRefGoogle ScholarPubMed
Cheok, MH, Yang, W, Pui, CH, et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet 2003;34:85–90.CrossRefGoogle ScholarPubMed
Holleman, A, Cheok, MH, den Boer, ML, et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 2004;351:533–542.CrossRefGoogle ScholarPubMed
Lugthart, S, Cheok, MH, den Boer, ML, et al. Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell 2005;7:375–386.CrossRefGoogle ScholarPubMed
Tissing, WJ, Meijerink, JP, den Boer, ML, et al. Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia 2003;17:17–25.CrossRefGoogle ScholarPubMed
Zelcer, N, Reid, G, Wielinga, P, et al. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem J 2003;371:361–367.CrossRefGoogle Scholar
Karssen, AM, Meijer, OC, van der Sandt, IC, et al. The role of the efflux transporter P-glycoprotein in brain penetration of prednisolone. J Endocrinol 2002;175:251–260.CrossRefGoogle ScholarPubMed
den Boer, ML, Pieters, R, Kazemier, KM, et al. Relationship between major vault protein/lung resistance protein, multidrug resistance-associated protein, P-glycoprotein expression, and drug resistance in childhood leukemia. Blood 1998;91:2092–2098.Google ScholarPubMed
Kearns, PR, Pieters, R, Rottier, MM, et al. Raised blast glutathione levels are associated with an increased risk of relapse in childhood acute lymphocytic leukemia. Blood 2001;97:393–398.CrossRefGoogle ScholarPubMed
den Boer, ML, Pieters, R, Kazemier, KM, et al. Different expression of glutathione S-transferase alpha, mu and pi in childhood acute lymphoblastic and myeloid leukaemia. Br J Haematol 1999;104:321–327.CrossRefGoogle ScholarPubMed
Kaspers, GJL, Pieters, R, Veerman, AJP. Glucocorticoid resistance in childhood leukemia. Int J Pediatr Hematol Oncol 1997;4:583–596.Google Scholar
Haarman, EG, Kaspers, GJ, Pieters, R, et al. In vitro glucocorticoid resistance in childhood leukemia correlates with receptor affinity determined at 37 degrees C, but not with affinity determined at room temperature. Leukemia 2002;16:1882–1884.CrossRefGoogle Scholar
Breslin, MB, Geng, CD, Vedeckis, WV. Multiple promoters exist in the human GR gene, one of which is activated by glucocorticoids. Mol Endocrinol 2001;15:1381–1395.CrossRefGoogle ScholarPubMed
Tissing, WJ, Meijerink, JP, Brinkhof, B, et al. Glucocorticoid-induced glucocorticoid-receptor expression and promoter usage is not linked to glucocorticoid resistance in childhood ALL. Blood 2006;108:1045–1049.CrossRefGoogle Scholar
Tissing, WJ, Meijerink, JP, den Boer, ML, et al. Genetic variations in the glucocorticoid receptor gene are not related to glucocorticoid resistance in childhood acute lymphoblastic leukemia. Clin Cancer Res 2005;11:6050–6056.CrossRefGoogle Scholar
Hillmann, AG, Ramdas, J, Multanen, K, et al. Glucocorticoid receptor gene mutations in leukemic cells acquired in vitro and in vivo. Cancer Res 2000;60:2056–2062.Google ScholarPubMed
Schmidt, S, Irving, JA, Minto, L, et al. Glucocorticoid resistance in two key models of acute lymphoblastic leukemia occurs at the level of the glucocorticoid receptor. FASEB J 2006;20:2600–2602.CrossRefGoogle ScholarPubMed
Beesley, AH, Weller, RE, Senanayake, S, et al. Receptor mutation is not a common mechanism of naturally occurring glucocorticoid resistance in leukaemia cell lines. Leuk Res 2009;33:321–325.CrossRefGoogle Scholar
Yudt, MR, Jewell, CM, Bienstock, RJ, Cidlowski, A. Molecular origins for the dominant negative function of human glucocorticoid receptor beta. Mol Cell Biol 2003;23:4319–4330.CrossRefGoogle ScholarPubMed
de Lange, P, Segeren, CM, Koper, JW, et al. Expression in hematological malignancies of a glucocorticoid receptor splice variant that augments glucocorticoid receptor-mediated effects in transfected cells. Cancer Res 2001;61:3937–3941.Google ScholarPubMed
Rivers, C, Levy, A, Hancock, J, et al. Insertion of an amino acid in the DNA-binding domain of the glucocorticoid receptor as a result of alternative splicing. J Clin Endocrinol Metab 1999;84:4283–4286.CrossRefGoogle ScholarPubMed
Ray, DW, Davis, JR, White, A, et al. Glucocorticoid receptor structure and function in glucocorticoid-resistant small cell lung carcinoma cells. Cancer Res 1996;56:3276–3280.Google ScholarPubMed
Sanchez-Vega, B, Krett, N, Rosen, ST, et al. Glucocorticoid receptor transcriptional isoforms and resistance in multiple myeloma cells. Mol Cancer Ther 2006;5:3062–3070.CrossRefGoogle ScholarPubMed
Tissing, WJ, Lauten, M, Meijerink, JP, et al. Expression of the glucocorticoid receptor and its isoforms in relation to glucocorticoid resistance in childhood acute lymphocytic leukemia. Haematologica 2005;90: 1279–1281.Google ScholarPubMed
Haarman, EG, Kaspers, GJ, Pieters, R, et al. Glucocorticoid receptor alpha, beta, and gamma expression vs in vitro glucocorticoid resistance in childhood leukemia. Leukemia 2004;18:530–537.CrossRefGoogle Scholar
Beger, C, Gerdes, K, Lauten, M, et al. Expression and structural analysis of glucocorticoid receptor isoform gamma in human leukaemia cells using an isoform-specific real-time polymerase chain reaction approach. Br J Haematol 2003;122:245–252.CrossRefGoogle ScholarPubMed
van Galen, JC, Kuiper, RP, van Emst, L, et al. BTG1 regulates glucocorticoid receptor autoinduction in acute lymphoblastic leukemia. Blood 2010;115:1810–1819.CrossRefGoogle ScholarPubMed
Lauten, M, Beger, C, Gerdes, K, et al. Expression of heat-shock protein 90 in glucocorticoid-sensitive and -resistant childhood acute lymphoblastic leukaemia. Leukemia 2003;17:1551–1556.CrossRefGoogle ScholarPubMed
Tissing, WJ, Meijerink, JP, den Boer, ML, et al. mRNA expression levels of (co)chaperone molecules of the glucocorticoid receptor are not involved in glucocorticoid resistance in pediatric ALL. Leukemia 2005;19:727–733.CrossRefGoogle Scholar
Tissing, WJE, den Boer, ML, Meijerink, JPP, et al. Genomewide identification of prednisolone-responsive genes in acute lymphoblastic leukemia cells. Blood 2007;109:3929–3935.CrossRefGoogle ScholarPubMed
Schmidt, S, Rainer, J, Riml, S, et al. Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia. Blood 2006;107:2061–2069.CrossRefGoogle ScholarPubMed
Reichardt, HM, Kaestner, KH, Tuckermann, J, et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 1998;93:531–541.CrossRefGoogle ScholarPubMed
Bailey, S, Hall, AG, Pearson, AD, et al. The role of AP-1 in glucocorticoid resistance in leukaemia. Leukemia 2001;15:391–397.CrossRefGoogle ScholarPubMed
Kordes, U, Krappmann, D, Heissmeyer, V, et al. Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 2000;14:399–402.CrossRefGoogle ScholarPubMed
Weston, VJ, Austen, B, Wei, W, et al. Apoptotic resistance to ionizing radiation in pediatric B-precursor acute lymphoblastic leukemia frequently involves increased NF-kappaB survival pathway signaling. Blood 2004;104:1465–1473.CrossRefGoogle ScholarPubMed
Karin, M, Cao, Y, Greten, FR, et al. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002;2:301–310.CrossRefGoogle ScholarPubMed
Wei, G, Twomey, D, Lamb, J, et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 2006;10:331–342.CrossRefGoogle ScholarPubMed
Holleman, A, den Boer, ML, Menezes, RX, et al. The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood 2006;107:769–776.CrossRefGoogle ScholarPubMed
Armstrong, SA, Staunton, JE, Silverman, LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002;30:41–47.CrossRefGoogle ScholarPubMed
Stam, RW, den Boer, ML, Schneider, P, et al. Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia. Blood 2010;115:1018–1025.CrossRefGoogle ScholarPubMed
Bonapace, L, Bornhauser, BC, Schmitz, M, et al. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest 2010;120:1310–1323.CrossRefGoogle ScholarPubMed
Hulleman, E, Kazemier, KM, Holleman, A, et al. Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 2009;113:2014–2021.CrossRefGoogle ScholarPubMed
Zhong, D, Liu, X, Schafer-Hales, K, et al. 2-Deoxyglucose induces Akt phosphorylation via a mechanism independent of LKB1/AMP-activated protein kinase signaling activation or glycolysis inhibition. Mol Cancer Ther 2008;7:809–817.CrossRefGoogle ScholarPubMed
Deroo, BJ, Archer, TK. Glucocorticoid receptor-mediated chromatin remodeling in vivo. Oncogene 2001;20:3039–3046.CrossRefGoogle ScholarPubMed
Pottier, N, Yang, W, Assem, M, et al. The SWI/SNF chromatin-remodeling complex and glucocorticoid resistance in acute lymphoblastic leukemia. J Natl Cancer Inst 2008;100: 1792–1803.CrossRefGoogle ScholarPubMed
Saito, Y, Suzuki, H, Tsugawa, H, et al. Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene 2009;28:2738–2744.CrossRefGoogle ScholarPubMed
Stumpel, DJ, Schneider, P, van Roon, EH, et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 2009;114:5490–5498.CrossRefGoogle ScholarPubMed
Stumpel, DJPM, Schotte, D, Lange-Turenhout, EAM, et al. Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: Major matters at a micro scale. Leukemia 2011;25:429–439.CrossRefGoogle Scholar
Bachmann, PS, Gorman, R, Mackenzie, KL, et al. Dexamethasone resistance in B-cell precursor childhood acute lymphoblastic leukemia occurs downstream of ligand-induced nuclear translocation of the glucocorticoid receptor. Blood 2005;105:2519–2526.CrossRefGoogle ScholarPubMed
Bachmann, PS, Piazza, RG, Janes, ME, et al. Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood 2010;116:3013–3022.CrossRefGoogle ScholarPubMed
Haskell, CM, Canellos, GP, Leventhal, BG, et al. l-Asparaginase resistance in human leukemia-asparagine synthetase. Biochem Pharmacol 1969;18:2578–2580.CrossRefGoogle ScholarPubMed
Miller, HK, Salzer, JS, Balis, ME. Amino acid levels following l-asparaginase amidohydrolase (EC.3.5.1.1) therapy. Cancer Res 1969;29:183–187.Google ScholarPubMed
Ohnuma, T, Holland, JF, Freeman, A, et al. Biochemical and pharmacological studies with asparaginase in man. Cancer Res 1970;30:2297–2305.Google ScholarPubMed
Stams, WAG, den Boer, ML, Beverloo, HB, et al. Sensitivity to l-asparaginase is not associated with expression levels of asparagine synthetase in t(12;21)+ pediatric ALL. Blood 2003;101:2743–2747.CrossRefGoogle ScholarPubMed
Hutson, RG, Kitoh, T, Moraga Amador, DA, et al. Amino acid control of asparagine synthetase: relation to asparaginase resistance in human leukemia cells. Am J Physiol 1997;272:C1691–C1699.CrossRefGoogle ScholarPubMed
Jousse, C, Bruhat, A, Ferrara, M, et al. Evidence for multiple signaling pathways in the regulation of gene expression by amino acids in human cell lines. J Nutr 2000;130:1555–1560.CrossRefGoogle ScholarPubMed
Aslanian, AM, Fletcher, BS, Kilberg, MS. Asparagine synthetase expression alone is sufficient to induce l-asparaginase resistance in MOLT-4 human leukaemia cells. Biochem J 2001;357:321–328.CrossRefGoogle ScholarPubMed
Appel, IM, den Boer, ML, Meijerink, JP, et al. Up-regulation of asparagine synthetase expression is not linked to the clinical response l-asparaginase in pediatric acute lymphoblastic leukemia. Blood 2006;107:4244–4249.CrossRefGoogle Scholar
Krejci, O, Starkova, J, Otova, B, et al. Upregulation of asparagine synthetase fails to avert cell cycle arrest induced by l-asparaginase in TEL/AML1-positive leukaemic cells. Leukemia 2004;18:434–441.CrossRefGoogle ScholarPubMed
Stams, WAG, den Boer, ML, Holleman, A, et al. Asparagine synthetase expression is linked with l-asparaginase resistance in TEL-AML1-negative, but not TEL-AML1-positive pediatric acute lymphoblastic leukemia. Blood 2005;105:4223–4225.CrossRefGoogle Scholar
Li, BS, Gu, LJ, Luo, CY, et al. The downregulation of asparagine synthetase expression can increase the sensitivity of cells resistant to l-asparaginase. Leukemia 2006;20:2199–2201.CrossRefGoogle ScholarPubMed
Dubbers, A, Wurthwein, G, Muller, HJ, et al. Asparagine synthetase activity in paediatric acute leukaemias: AML-M5 subtype shows lowest activity. Br J Haematol 2000;109:427–429.CrossRefGoogle ScholarPubMed
Patel, N, Krishnan, S, Offman, MN, et al. A dyad of lymphoblastic lysosomal cysteine proteases degrades the antileukemic drug l-asparaginase. J Clin Invest 2009;119:1964–1973.Google ScholarPubMed
Strefford, JC, van Delft, FW, Robinson, HM, et al. Complex genomic alterations and gene expression in acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Proc Natl Acad Sci USA 2006;103:8167–8172.CrossRefGoogle ScholarPubMed
Iwamoto, S, Mihara, K, Downing, JR, et al. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 2007;117:1049–1057.CrossRefGoogle ScholarPubMed
Iiboshi, Y, Papst, PJ, Hunger, SP, et al. l-Asparaginase inhibits the rapamycin-targeted signaling pathway. Biochem Biophys Res Commun 1999;260:534–539.CrossRefGoogle ScholarPubMed
Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 2010;10:194–204.CrossRefGoogle ScholarPubMed
Kavallaris, M, Tait, AS, Walsh, BJ, et al. Multiple microtubule alterations are associated with vinca alkaloid resistance in human leukemia cells. Cancer Res 2001;61:5803–5809.Google ScholarPubMed
Ong, V, Liem, NL, Schmid, MA, et al. A role for altered microtubule polymer levels in vincristine resistance of childhood acute lymphoblastic leukemia xenografts. J Pharmacol Exp Ther 2008;324:434–442.CrossRefGoogle ScholarPubMed
Verrills, NM, Liem, NL, Liaw, TY, et al. Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia: an in vivo study. Proteomics 2006;6: 1681–1694.CrossRefGoogle ScholarPubMed
Giannakakou, P, Nakano, M, Nicolaou, KC, et al. Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proc Natl Acad Sci USA 2002;99:10855–10860.CrossRefGoogle ScholarPubMed
Holleman, A, den Boer, ML, Kazemier, KM, et al. Resistance to different classes of drugs is associated with impaired apoptosis in childhood acute lymphoblastic leukemia. Blood 2003;102:4541–4546.CrossRefGoogle ScholarPubMed
High, LM, Szymanska, B, Wilczynska-Kalak, U, et al. The Bcl-2 homology domain 3 mimetic ABT-737 targets the apoptotic machinery in acute lymphoblastic leukemia resulting in synergistic in vitro and in vivo interactions with established drugs. Mol Pharmacol 2010;77:483–494.CrossRefGoogle ScholarPubMed
Crazzolara, R, Cisterne, A, Thien, M, et al. Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood 2009;113:3297–3306.CrossRefGoogle ScholarPubMed
Zwaan, CM, den Boer, ML, Kazemier, KM, et al. Does modulation of P-glycoprotein have clinical relevance in pediatric acute myeloid leukemia?Blood 2006;107:4975–4976 [author reply 4976–4977].CrossRefGoogle ScholarPubMed
den Boer, ML, Pieters, R, Kazemier, KM, et al. The modulating effect of PSC 833, cyclosporin A, verapamil and genistein on in vitro cytotoxicity and intracellular content of daunorubicin in childhood acute lymphoblastic leukemia. Leukemia 1998;12:912–920.CrossRefGoogle ScholarPubMed
den Boer, ML, Pieters, R, Kazemier, KM, et al. Relationship between the intracellular daunorubicin concentration, expression of major vault protein/lung resistance protein and resistance to anthracyclines in childhood acute lymphoblastic leukemia. Leukemia 1999;13:2023–2030.CrossRefGoogle ScholarPubMed
Siva, AC, Raval-Fernandes, S, Stephen, AG, et al. Up-regulation of vaults may be necessary but not sufficient for multidrug resistance. Int J Cancer 2001;92:195–202.3.0.CO;2-7>CrossRefGoogle Scholar
Herlevsen, M, Oxford, G, Owens, CR, et al. Depletion of major vault protein increases doxorubicin sensitivity and nuclear accumulation and disrupts its sequestration in lysosomes. Mol Cancer Ther 2007;6:1804–1813.CrossRefGoogle ScholarPubMed
Kakihara, T, Tanaka, A, Watanabe, A, et al. Expression of multidrug resistance-related genes does not contribute to risk factors in newly diagnosed childhood acute lymphoblastic leukemia. Pediatr Int 1999;41:641–647.CrossRefGoogle Scholar
Kolli, S, Zito, CI, Mossink, MH, et al. The major vault protein is a novel substrate for the tyrosine phosphatase SHP-2 and scaffold protein in epidermal growth factor signaling. J Biol Chem 2004;279:29374–29385.CrossRefGoogle ScholarPubMed
McCubrey, JA, Abrams, SL, Ligresti, G, et al. Involvement of p53 and Raf/MEK/ERK pathways in hematopoietic drug resistance. Leukemia 2008;22:2080–2090.CrossRefGoogle ScholarPubMed
Jaffrezou, JP, Levade, T, Bettaieb, A, et al. Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis. EMBO J 1996;15:2417–2424.Google ScholarPubMed
Itoh, M, Kitano, T, Watanabe, M, et al. Possible role of ceramide as an indicator of chemoresistance: decrease of the ceramide content via activation of glucosylceramide synthase and sphingomyelin synthase in chemoresistant leukemia. Clin Cancer Res 2003;9:415–423.Google ScholarPubMed
Bezombes, C, de Thonel, A, Apostolou, A, et al. Overexpression of protein kinase Czeta confers protection against antileukemic drugs by inhibiting the redox-dependent sphingomyelinase activation. Mol Pharmacol 2002;62:1446–1455.CrossRefGoogle ScholarPubMed
Mas, VM, Hernandez, H, Plo, I, et al. Protein kinase Czeta mediated Raf-1/extracellular-regulated kinase activation by daunorubicin. Blood 2003;101:1543–1550.CrossRefGoogle ScholarPubMed
Sobue, S, Nemoto, S, Murakami, M, et al. Implications of sphingosine kinase 1 expression level for the cellular sphingolipid rheostat: relevance as a marker for daunorubicin sensitivity of leukemia cells. Int J Hematol 2008;87:266–275.CrossRefGoogle ScholarPubMed
Batist, G, Schecter, R, Woo, A, et al. Glutathione depletion in human and in rat multi-drug resistant breast cancer cell lines. Biochem Pharmacol 1991;41:631–635.CrossRefGoogle ScholarPubMed
Versantvoort, CHM, Broxterman, HJ, Bagrij, T, et al. Regulation of glutathione of drug transport in multidrug-resistant human lung tumour cell lines overexpressing multidrug resistance-associated protein. Br J Cancer 1995;72:82–89.CrossRefGoogle ScholarPubMed
Klumper, E, Giaccone, G, Pieters, R, et al. Topoisomerase IIa gene expression in childhood acute lymphoblastic leukemia. Leukemia 1995;9:1653–1660.Google Scholar
Plo, I, Hernandez, H, Kohlhagen, G, et al. Overexpression of the atypical protein kinase C zeta reduces topoisomerase II catalytic activity, cleavable complexes formation, and drug-induced cytotoxicity in monocytic U937 leukemia cells. J Biol Chem 2002;277:31407–31415.CrossRefGoogle ScholarPubMed
Khan, NI, Bradstock, KF, Bendall, LJ. Activation of Wnt/beta-catenin pathway mediates growth and survival in B-cell progenitor acute lymphoblastic leukaemia. Br J Haematol 2007;138:338–348.CrossRefGoogle ScholarPubMed
Nygren, MK, Dosen, G, Hystad, ME, et al. Wnt3A activates canonical Wnt signalling in acute lymphoblastic leukaemia (ALL) cells and inhibits the proliferation of B-ALL cell lines. Br J Haematol 2007;136:400–413.CrossRefGoogle ScholarPubMed
Thiago, LS, Costa, ES, Lopes, DV, et al. The Wnt signaling pathway regulates Nalm-16 B-cell precursor acute lymphoblastic leukemic cell line survival and etoposide resistance. Biomed Pharmacother 2010;64: 63–72.CrossRefGoogle ScholarPubMed
Owens, JK, Shewach, DS, Ullman, B, et al. Resistance to 1-beta- d-arabinofuranosylcytosine in human T-lymphoblasts mediated by mutations within the deoxycytidine kinase gene. Cancer Res 1992;52:2389–2393.Google ScholarPubMed
Flasshove, M, Strumberg, D, Ayscue, L, et al. Structural analysis of the deoxycytidine kinase gene in patients with acute myeloid leukemia and resistance to cytosine arabinoside. Leukemia 1994;8:780–785.Google ScholarPubMed
Van den Heuvel-Eibrink, MM, Wiemer, EA, Kuijpers, M, et al. Absence of mutations in the deoxycytidine kinase (dCK) gene in patients with relapsed and/or refractory acute myeloid leukemia (AML). Leukemia 2001;15:855–856.CrossRefGoogle Scholar
Taub, JW, Huang, X, Matherly, LH, et al. Expression of chromosome 21-localized genes in acute myeloid leukemia: differences between Down syndrome and non-Down syndrome blast cells and relationship to in vitro sensitivity to cytosine arabinoside and daunorubicin. Blood 1999;94:1393–1400.Google ScholarPubMed
Veuger, MJ, Honders, MW, Landegent, JE, et al. High incidence of alternatively spliced forms of deoxycytidine kinase in patients with resistant acute myeloid leukemia. Blood 2000;96:1517–1524.Google ScholarPubMed
Veuger, MJ, Heemskerk, MH, Honders, MW, et al. Functional role of alternatively spliced deoxycytidine kinase in sensitivity to cytarabine of acute myeloid leukemic cells. Blood 2002;99:1373–1380.CrossRefGoogle ScholarPubMed
Stam, RW, den Boer, ML, Meijerink, JP, et al. Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood 2003;101:1270–1276.CrossRefGoogle ScholarPubMed
Hubeek, I, Stam, RW, Peters, GJ, et al. The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia. Br J Cancer 2005;93:1388–1394.CrossRefGoogle ScholarPubMed
Boos, J, Hohenlochter, B, Schulze-Westhoff, P, et al. Intracellular retention of cytosine arabinoside triphosphate in blast cells from children with acute myelogenous and lymphoblastic leukemia. Med Pediatr Oncol 1996;26:397–404.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Braess, J, Wegendt, C, Feuring-Buske, M, et al. Leukaemic blasts differ from normal bone marrow mononuclear cells and CD34+ haemopoietic stem cells in their metabolism of cytosine arabinoside. Br J Haematol 1999;105:388–393.CrossRefGoogle ScholarPubMed
Galmarini, CM, Thomas, X, Calvo, F, et al. In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br J Haematol 2002;117:860–868.CrossRefGoogle ScholarPubMed
Verschuur, AC, van Gennip, AH, Leen, R, et al. In vitro inhibition of cytidine triphosphate synthetase activity by cyclopentenyl cytosine in paediatric acute lymphocytic leukaemia. Br J Haematol 2000;110:161–169.CrossRefGoogle ScholarPubMed
Prakasha Gowda, AS, Polizzi, JM, Eckert, KA, et al. Incorporation of gemcitabine and cytarabine into DNA by DNA polymerase beta and ligase III/XRCC1. Biochemistry 2010;49:4833–4840.CrossRefGoogle ScholarPubMed
Gutierrez, MI, Siraj, AK, Bhargava, M, et al. Concurrent methylation of multiple genes in childhood ALL: correlation with phenotype and molecular subgroup. Leukemia 2003;17:1845–1850.CrossRefGoogle ScholarPubMed
Stam, RW, den Boer, ML, Passier, MMCJ, et al. Silencing of the tumor suppressor gene FHIT is highly characteristic for MLL gene rearranged infant acute lymphoblastic leukemia. Leukemia 2006;20:264–271.CrossRefGoogle ScholarPubMed
Dumon, KR, Ishii, H, Fong, LY, et al. FHIT gene therapy prevents tumor development in Fhit-deficient mice. Proc Natl Acad Sci USA 2001;98:3346–3351.CrossRefGoogle ScholarPubMed
Rocco, A, Schandl, L, Chen, J, et al. Loss of FHIT protein expression correlates with disease progression and poor differentiation in gastric cancer. J Cancer Res Clin Oncol 2003;129:84–88.Google ScholarPubMed
Milani, L, Lundmark, A, Kiialainen, A, et al. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood 2010;115: 1214–1225.CrossRefGoogle ScholarPubMed
Lilleyman, JS, Lennard, L. Mercaptopurine metabolism and risk of relapse in childhood lymphoblastic leukaemia. Lancet 1994;343: 1188–1190.CrossRefGoogle ScholarPubMed
Lennard, L, Lilleyman, JS. Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. J Clin Oncol 1989;7:1816–1823.CrossRefGoogle ScholarPubMed
Schmiegelow, K, Schroder, H, Gustafsson, G, et al. Risk of relapse in childhood acute lymphoblastic leukemia is related to RBC methotrexate and mercaptopurine metabolites during maintenance chemotherapy. Nordic Society for Pediatric Hematology and Oncology. J Clin Oncol 1995;13:345–351.CrossRefGoogle ScholarPubMed
Griffiths, M, Beaumont, N, Yao, SY, et al. Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. Nat Med 1997;3:89–93.CrossRefGoogle ScholarPubMed
Kong, W, Engel, K, Wang, J. Mammalian nucleoside transporters. Curr Drug Metab 2004;5:63–84.CrossRefGoogle ScholarPubMed
Zaza, G, Cheok, M, Yang, W, et al. Gene expression and thioguanine nucleotide disposition in acute lymphoblastic leukemia after in vivo mercaptopurine treatment. Blood 2005;106:1778–1785.CrossRefGoogle ScholarPubMed
Pieters, R, Huismans, DR, Loonen, AH, et al. Hypoxanthine–guanine phosphoribosyltransferase in childhood leukemia: relation with immunophenotype, differentiation stage, in vitro drug resistance and clinical prognosis. Int J Cancer 1992;51:213–217.CrossRefGoogle ScholarPubMed
Pieters, R, Huismans, DR, Loonen, AH, et al. Adenosine deaminase and purine nucleoside phosphorylase in childhood leukemia; relation with differentiation stage, clinical prognosis and in vitro drug resistance. Leukemia 1992;6:375–380.Google ScholarPubMed
Pieters, R, Huismans, DR, Loonen, AH, et al. Relation of 5′-nucleotidase and phosphatase activities with immunophenotype, drug resistance and clinical prognosis in childhood leukemia. Leuk Res 1992;16:873–880.CrossRefGoogle ScholarPubMed
Relling, MV, Hancock, ML, Boyett, JM, et al. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood 1999;93:2817–2823.Google ScholarPubMed
Schmiegelow, K, Forestier, E, Kristinsson, J, et al. Thiopurine methyltransferase activity is related to the risk of relapse of childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Leukemia 2009;23:557–564.CrossRefGoogle ScholarPubMed
Rots, MG, Pieters, R, Kaspers, GJ, et al. Classification of ex vivo methotrexate resistance in acute lymphoblastic and myeloid leukaemia. Br J Haematol 2000;110:791–800.CrossRefGoogle ScholarPubMed
Zhang, L, Taub, JW, Williamson, M, et al. Reduced folate carrier gene expression in childhood acute lymphoblastic leukemia: relationship to immunophenotype and ploidy. Clin Cancer Res 1998;4:2169–2177.Google ScholarPubMed
Barredo, JC, Synold, TW, Laver, J, et al. Differences in constitutive and post-methotrexate folylpolyglutamate synthetase activity in B-lineage and T-lineage leukemia. Blood 1994;84:564–569.Google ScholarPubMed
Rots, MG, Pieters, R, Peters, GJ, et al. Role of folylpolyglutamate synthetase and folylpolyglutamate hydrolase in methotrexate accumulation and polyglutamylation in childhood leukemia. Blood 1999;93:1677–1683.Google ScholarPubMed
Kaspers, GJ, Reinhardt, D, Fleischhack, G, et al. Low efficacy of methotrexate in childhood acute myeloid leukemia (AML): single-agent therapeutic window study in relapsed AML. Pediatr Blood Cancer 2006;47:539–542.CrossRefGoogle ScholarPubMed
Whitehead, VM, Payment, C, Cooley, L, et al. The association of the TEL-AML1 chromosomal translocation with the accumulation of methotrexate polyglutamates in lymphoblasts and with ploidy in childhood B-progenitor cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Leukemia 2001;15:1081–1088.CrossRefGoogle ScholarPubMed
Whitehead, VM, Vuchich, MJ, Lauer, SJ, et al. Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyperdiploid (greater than 50 chromosomes) B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1992;80:1316–1323.Google ScholarPubMed
Belkov, VM, Krynetski, EY, Schuetz, JD, et al. Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood 1999;93:1643–1650.Google Scholar
Stam, RW, den Boer, ML, Schneider, P, et al. Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood 2005;106:2484–2490.CrossRefGoogle ScholarPubMed
Stam, RW, Schneider, P, Hagelstein, JA, et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood 2010;115:2835–2844.CrossRefGoogle ScholarPubMed
Chauvenet, AR, Martin, PL, Devidas, M, et al. Antimetabolite therapy for lesser-risk B-lineage acute lymphoblastic leukemia of childhood: a report from Children's Oncology Group Study P9201. Blood 2007;110:1105–1111.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×