Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-24T04:34:32.528Z Has data issue: false hasContentIssue false

5 - Immunoglobulin and T-cell receptor gene rearrangements

from Section 2 - Cell biology and pathobiology

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Introduction

The ability of the immune system to specifically recognize millions of different antigens and antigenic epitopes is based on the enormous diversity (at least 1012) of antigen-specific receptors, that is, surface membrane-bound immunoglobulin (smIg) molecules on B-lymphocytes and T-cell receptor (TCR) molecules on T-lymphocytes. The antigen-specific receptors differ from lymphocyte to lymphocyte, but each single lymphocyte or lymphocyte clone expresses approximately 105 receptors with identical antigen specificities. The extensive diversity of the antigen-specific receptors of lymphocytes is based on rearrangement processes in the genes encoding the Ig/TCRs (IG/TCR).

Since the various types of lymphoid leukemia resemble normal lymphoid (precursor) cells, most lymphoid leukemias and lymphomas also contain rearranged IG/TCRs. Being derived from a single malignantly transformed lymphoid cell, all cells of a lymphoid malignancy have their IG/TCR genes rearranged in an identical way. This information can be readily employed for clonality assessment in lymphoproliferations. The IG/TCR rearrangement processes and the methods for detecting their clonal rearrangements in various types of (childhood) leukemia will be discussed. Finally, several applications of diagnostic clonality studies in childhood leukemia are presented.

Type
Chapter
Information
Childhood Leukemias , pp. 113 - 134
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borst, J, Brouns, GS, de Vries, E, et al. Antigen receptors on T and B lymphocytes: parallels in organization and function. Immunol Rev 1993;132:49–84.CrossRefGoogle Scholar
Owen, MJ, Lamb, JR (eds.) Immune Recognition. Oxford: IRL Press, 1988.Google Scholar
van Dongen, JJM, Wolvers-Tettero, ILM. Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta 1991;198:1–91.CrossRefGoogle Scholar
Janossy, G, Bollum, FJ, Bradstock, KF, Ashley, J. Cellular phenotypes of normal and leukemic hemopoietic cells determined by analysis with selected antibody combinations. Blood 1980;56:430–441.Google ScholarPubMed
Foon, KA, Todd, RF. Immunologic classification of leukemia and lymphoma. Blood 1986;68:1–31.Google ScholarPubMed
Greaves, MF. Differentiation-linked leukemogenesis in lymphocytes. Science 1986;234:697–704.CrossRefGoogle ScholarPubMed
van Dongen, JJM, Adriaansen, HJ, Hooijkaas, H. Immunophenotyping of leukaemias and non-Hodgkin's lymphomas. Immunological markers and their CD codes. Neth J Med 1988;33:298–314.Google ScholarPubMed
van Dongen, JJM, Wolvers-Tettero, ILM. Analysis of immunoglobulin and T cell receptor genes. Part II: possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta 1991;198:93–174.CrossRefGoogle Scholar
Klaus, GGB. B Lymphocytes. Oxford: Oxford University Press, 1990.Google Scholar
Tonegawa, S. Somatic generation of antibody diversity. Nature 1983;302:575–581.CrossRefGoogle ScholarPubMed
Davis, MM, Björkman, PJ. T-cell antigen receptor genes and T-cell recognition. Nature 1988;334:395–402.CrossRefGoogle ScholarPubMed
van Dongen, JJM, Comans-Bitter, WM, Wolvers-Tettero, ILM, Borst, J. Development of human T lymphocytes and their thymus-dependency. Thymus 1990;16:207–234.Google Scholar
Chen, J, Alt, FW. Gene rearrangement and B-cell development. Curr Opin Immunol 1993;5:194–200.CrossRefGoogle ScholarPubMed
Ravetch, JV, Siebenlist, U, Korsmeyer, S, Waldmann, T, Leder, P. Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell 1981;27:583–591.CrossRefGoogle Scholar
Ichihara, Y, Matsuoka, H, Kurosawa, Y. Organization of human immunoglobulin heavy chain diversity gene loci. EMBO J 1988;7:4141–4150.Google ScholarPubMed
Matsuda, F, Shin, EK, Nagaoka, H, et al. Structure and physical map of 64 variable segments in the 3′ 0.8-megabase region of the human immunoglobulin heavy-chain locus. Nat Genet 1993;3:88–94.CrossRefGoogle ScholarPubMed
Hieter, PA, Max, EE, Seidman, JG, Maizel, JV, Jr., Leder, P. Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell 1980;22:197–207.CrossRefGoogle Scholar
Schäble, KF, Zachau, HG. The variable genes of the human immunoglobulin kappa locus. Biol Chem Hoppe Seyler 1993;374:1001–1022.Google ScholarPubMed
Vasicek, TJ, Leder, P. Structure and expression of the human immunoglobulin lambda genes. J Exp Med 1990;172:609–620.CrossRefGoogle ScholarPubMed
Bauer, TR, Jr., Blomberg, B. The human lambda L chain Ig locus. Recharacterization of JC lambda 6 and identification of a functional JC lambda 7. J Immunol 1991;146:2813–2820.Google ScholarPubMed
Williams, SC, Winter, G. Cloning and sequencing of human immunoglobulin V lambda gene segments. Eur J Immunol 1993;23:1456–1461.CrossRefGoogle ScholarPubMed
Yoshikai, Y, Clark, SP, Taylor, S, et al. Organization and sequences of the variable, joining and constant region genes of the human T-cell receptor alpha-chain. Nature 1985;316:837–840.CrossRefGoogle ScholarPubMed
Griesser, H, Champagne, E, Tkachuk, D, et al. The human T cell receptor alpha-delta locus: a physical map of the variable, joining and constant region genes. Eur J Immunol 1988;18:641–644.CrossRefGoogle Scholar
Toyonaga, B, Yoshikai, Y, Vadasz, V, Chin, B, Mak, TW. Organization and sequences of the diversity, joining, and constant region genes of the human T-cell receptor beta chain. Proc Natl Acad Sci USA 1985;82:8624–8628.CrossRefGoogle ScholarPubMed
Quertermous, T, Strauss, WM, van Dongen, JJM, Seidman, JG. Human T cell gamma chain joining regions and T cell development. J Immunol 1987;138:2687–2690.Google Scholar
Lefranc, MP, Rabbitts, TH. The human T-cell receptor gamma (TRG) genes. Trends Biochem Sci 1989;14:214–218.CrossRefGoogle ScholarPubMed
Zhang, XM, Tonnelle, C, Lefranc, MP, Huck, S. T cell receptor gamma cDNA in human fetal liver and thymus: variable regions of gamma chains are restricted to V gamma I or V9, due to the absence of splicing of the V10 and V11 leader intron. Eur J Immunol 1994;24:571–578.CrossRefGoogle ScholarPubMed
Takihara, Y, Tkachuk, D, Michalopoulos, E, et al. Sequence and organization of the diversity, joining, and constant region genes of the human T-cell delta-chain locus. Proc Natl Acad Sci USA 1988;85:6097–6101.CrossRefGoogle ScholarPubMed
Breit, TM, Wolvers-Tettero, ILM, Beishuizen, A, et al. Southern blot patterns, frequencies and junctional diversity of T-cell receptor D gene rearrangements in acute lymphoblastic leukemia. Blood 1993;82:3063–3074.Google ScholarPubMed
Davodeau, F, Peyrat, MA, Hallet, MM, Vie, H, Bonneville, M. Characterization of a new functional TCR J delta segment in humans. Evidence for a marked conservation of J delta sequences between humans, mice, and sheep. J Immunol 1994;153: 137–142.Google Scholar
Schatz, DG, Oettinger, MA, Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 1989;59:1035–1048.CrossRefGoogle Scholar
Oettinger, MA, Schatz, DG, Gorka, C, Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 1990;248:1517–1523.CrossRefGoogle ScholarPubMed
McBlane, JF, van Gent, DC, Ramsden, DA, et al. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 1995;83:387–395.CrossRefGoogle Scholar
Lieber, MR.The mechanism of V(D)J recombination: a balance of diversity, specificity, and stability. Cell 1992;70:873–876.CrossRefGoogle Scholar
Lieber, MR. The role of site-directed recombinases in physiologic and pathologic chromosomal rearrangements. In Kirsch, IR (ed.) The Causes and Consequences of Chromosomal Aberrations. Boca Raton, FL: CRC Press, 1993:239–275.Google Scholar
van Gent, DC, Ramsden, DA, Gellert, M. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell 1996;85:107–113.CrossRefGoogle Scholar
Lefranc, MP. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 2001;29:207–209.CrossRefGoogle ScholarPubMed
Alt, FW, Blackwell, TK, Yancopoulos, GD. Development of the primary antibody repertoire. Science 1987;238:1079–1087.CrossRefGoogle ScholarPubMed
Schroeder, HW, Jr., Hillson, JL, Perlmutter, RM. Early restriction of the human antibody repertoire. Science 1987;238:791–793.CrossRefGoogle ScholarPubMed
Leiden, JM, Dialynas, DP, Duby, AD, et al. Rearrangement and expression of T-cell antigen receptor genes in human T-lymphocyte tumor lines and normal human T-cell clones: evidence for allelic exclusion of Ti beta gene expression and preferential use of a J beta 2 gene segment. Mol Cell Biol 1986;6:3207–3214.CrossRefGoogle ScholarPubMed
Triebel, F, Hercend, T. Subpopulations of human peripheral T gamma delta lymphocytes. Immunol Today 1989;10:186–188.CrossRefGoogle ScholarPubMed
Borst, J, Wicherink, A, van Dongen, JJM, et al. Non-random expression of T cell receptor gamma and delta variable gene segments in functional T lymphocyte clones from human peripheral blood. Eur J Immunol 1989;19:1559–1568.CrossRefGoogle ScholarPubMed
Breit, TM, Wolvers-Tettero, IL, van Dongen, JJ. Unique selection determinant in polyclonal V delta 2–J delta 1 junctional regions of human peripheral gamma delta T lymphocytes. J Immunol 1994;152:2860–2864.Google ScholarPubMed
Desiderio, SV, Yancopoulos, GD, Paskind, M, et al. Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells. Nature 1984;311:752–755.CrossRefGoogle Scholar
Landau, NR, Schatz, DG, Rosa, M, Baltimore, D. Increased frequency of N-region insertion in a murine pre-B-cell line infected with a terminal deoxynucleotidyl transferase retroviral expression vector. Mol Cell Biol 1987;7:3237–3243.CrossRefGoogle Scholar
Elliott, JF, Rock, EP, Patten, PA, Davis, MM, Chien, YH. The adult T-cell receptor delta-chain is diverse and distinct from that of fetal thymocytes. Nature 1988;331:627–631.CrossRefGoogle ScholarPubMed
Breit, TM, Wolvers-Tettero, IL, Bogers, AJ, et al. Rearrangements of the human TCRD-deleting elements. Immunogenetics 1994;40:70–75.CrossRefGoogle ScholarPubMed
Victor, KD, Capra, JD. An apparently common mechanism of generating antibody diversity: length variation of the VL–JL junction. Mol Immunol 1994;31:39–46.CrossRefGoogle ScholarPubMed
Reth, MG, Jackson, S, Alt, FW. VHDJH formation and DJH replacement during pre-B differentiation: non-random usage of gene segments. EMBO J 1986;5:2131–2138.Google ScholarPubMed
Marolleau, JP, Fondell, JD, Malissen, M, et al. The joining of germ-line Valpha to Jalpha genes replaces the preexisting Valpha-Jalpha complexes in a T cell receptor alpha, beta positive T cell line. Cell 1988;55:291–300.CrossRefGoogle Scholar
Reth, M, Gehrmann, P, Petrac, E, Wiese, P. A novel VH to VHDJH joining mechanism in heavy-chain-negative (null) pre-B cells results in heavy-chain production. Nature 1986;322:840–842.CrossRefGoogle ScholarPubMed
Kleinfield, R, Hardy, RR, Tarlinton, D, et al. Recombination between an expressed immunoglobulin heavy-chain gene and a germline variable gene segment in a Ly 1+ B-cell lymphoma. Nature 1986;322:843–846.CrossRefGoogle Scholar
Covey, LR, Ferrier, P, Alt, FW. VH to VHDJH rearrangement is mediated by the internal VH heptamer. Int Immunol 1990;2:579–583.CrossRefGoogle ScholarPubMed
Fondell, JD, Marolleau, JP, Primi, D, Marcu, KB. On the mechanism of non-allelically excluded V alpha-J alpha T cell receptor secondary rearrangements in a murine T cell lymphoma. J Immunol 1990;144:1094–1103.Google Scholar
Berek, C, Milstein, C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev 1987;96:23–41.CrossRefGoogle ScholarPubMed
Rajewsky, K, Forster, I, Cumano, A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 1987;238:1088–1094.CrossRefGoogle ScholarPubMed
Raffeld, M, Wright, JJ, Lipford, E, et al. Clonal evolution of t(14;18) follicular lymphomas demonstrated by immunoglobulin genes and the 18q21 major breakpoint region. Cancer Res 1987;47:2537–2542.Google Scholar
Cleary, ML, Galili, N, Trela, M, Levy, R, Sklar, J. Single cell origin of bigenotypic and biphenotypic B cell proliferations in human follicular lymphomas. J Exp Med 1988;167:582–597.CrossRefGoogle ScholarPubMed
Romanow, WJ, Langerak, AW, Goebel, P, et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol Cell 2000;5:343–353.CrossRefGoogle Scholar
Langerak, AW, Wolvers-Tettero, ILM, van Gastel-Mol, EJ, Oud, ME, van Dongen, JJM. Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood 2001;98:2456–2465.CrossRefGoogle ScholarPubMed
Hieter, PA, Korsmeyer, SJ, Waldmann, TA, Leder, P. Human immunoglobulin kappa light-chain genes are deleted or rearranged in lambda-producing B cells. Nature 1981;290:368–372.CrossRefGoogle ScholarPubMed
Korsmeyer, SJ, Hieter, PA, Sharrow, SO, et al. Normal human B cells display ordered light chain gene rearrangements and deletions. J Exp Med 1982;156:975–985.CrossRefGoogle Scholar
Klobeck, HG, Zachau, HG. The human CK gene segment and the kappa deleting element are closely linked. Nucleic Acids Res 1986;14:4591–4603.CrossRefGoogle ScholarPubMed
Siminovitch, KA, Bakhshi, A, Goldman, P, Korsmeyer, SJ. A uniform deleting element mediates the loss of kappa genes in human B cells. Nature 1985;316:260–262.CrossRefGoogle ScholarPubMed
Graninger, WB, Goldman, PL, Morton, CC, O'Brien, SJ, Korsmeyer, SJ. The kappa-deleting element. Germline and rearranged, duplicated and dispersed forms. J Exp Med 1988;167:488–501.CrossRefGoogle ScholarPubMed
van Dongen, JJM, Krissansen, GW, Wolvers-Tettero, IL, et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood 1988;71:603–612.Google ScholarPubMed
Verschuren, MC, Comans-Bitter, WM, Kapteijn, CA, et al. Transcription and protein expression of MB-1 and B29 genes in human hematopoietic malignancies and cell lines. Leukemia 1993;7:1939–1947.Google ScholarPubMed
Buccheri, V, Mihaljevic, B, Matutes, E, et al. MB-1: a new marker for B-lineage lymphoblastic leukemia. Blood 1993;82:853–857.Google ScholarPubMed
Gathings, WE, Lawton, AR, Cooper, MD. Immunofluorescent studies of the development of pre-B cells, B lymphocytes and immunoglobulin isotype diversity in humans. Eur J Immunol 1977;7:804–810.CrossRefGoogle ScholarPubMed
Vogler, LB, Crist, WM, Bockman, DE, et al. Pre-B-cell leukemia. A new phenotype of childhood lymphoblastic leukemia. N Engl J Med 1978;298:872–878.CrossRefGoogle ScholarPubMed
Koehler, M, Behm, FG, Shuster, J, et al. Transitional pre-B-cell acute lymphoblastic leukemia of childhood is associated with favorable prognostic clinical features and an excellent outcome: a Pediatric Oncology Group study. Leukemia 1993;7:2064–2068.Google ScholarPubMed
Melchers, F, Karasuyama, H, Haasner, D, et al. The surrogate light chain in B-cell development. Immunol Today 1993;14:60–68.CrossRefGoogle ScholarPubMed
Ritter, MA, Crispe, IN. The Thymus. Oxford: Oxford University Press, 1992.Google Scholar
de Villartay, JP, Hockett, RD, Coran, D, Korsmeyer, SJ, Cohen, DI. Deletion of the human T-cell receptor delta-gene by a site-specific recombination. Nature 1988;335:170–174.CrossRefGoogle ScholarPubMed
Hockett, RD, de Villartay, JP, Pollock, K, et al. Human T-cell antigen receptor (TCR) delta-chain locus and elements responsible for its deletion are within the TCR alpha-chain locus. Proc Natl Acad Sci USA 1988;85:9694–9698.CrossRefGoogle ScholarPubMed
Groettrup, M, Ungewiss, K, Azogui, O, et al. A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor beta chain and a 33 kd glycoprotein. Cell 1993;75:283–294.CrossRefGoogle Scholar
Sambrook, J, Fritsch, EF, Maniatis, T. Molecular Cloning, A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1989.Google Scholar
Beishuizen, A, Verhoeven, MA, Mol, EJ, et al. Detection of immunoglobulin heavy-chain gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia 1993;7:2045–2053.Google ScholarPubMed
Beishuizen, A, Verhoeven, MA, Mol, EJ, van Dongen, JJM. Detection of immunoglobulin kappa light-chain gene rearrangement patterns by Southern blot analysis. Leukemia 1994;8:2228–2236.Google ScholarPubMed
Tümkaya, T, Comans-Bitter, WM, Verhoeven, MA, van Dongen, JJM. Southern blot detection of immunoglobulin lambda light chain gene rearrangements for clonality studies. Leukemia 1995;9:2127–2132.Google ScholarPubMed
Tümkaya, T, Beishuizen, A, Wolvers-Tettero, ILM, van Dongen, JJM. Identification of immunoglobulin lambda isotype gene rearrangements by Southern blot analysis. Leukemia 1996;10:1834–1839.Google ScholarPubMed
Langerak, AW, Wolvers-Tettero, ILM, van Dongen, JJM. Detection of T cell receptor beta (TCRB) gene rearrangement patterns in T cell malignancies by Southern blot analysis. Leukemia 1999;13:965–974.CrossRefGoogle Scholar
Moreau, EJ, Langerak, AW, van Gastel- Mol, EJ, et al. Easy detection of all T cell receptor gamma (TCRG) gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia 1999;13:1620–1626.CrossRefGoogle ScholarPubMed
Tümkaya, T, van der Burg, M, Garcia Sanz, R, et al. Immunoglobulin lambda isotype gene rearrangements in B-cell malignancies. Leukemia 2001;15:121–127.CrossRefGoogle ScholarPubMed
White, TJ, Arnheim, N, Erlich, HA. The polymerase chain reaction. Trends Genet 1989;5:185–189.CrossRefGoogle ScholarPubMed
Newton, CR, Graham, A. PCR. Oxford: BIOS Scientific, 1994.Google Scholar
Yamada, M, Hudson, S, Tournay, O, et al. Detection of minimal disease in hematopoietic malignancies of the B-cell lineage by using third-complementarity-determining region (CDR-III)-specific probes. Proc Natl Acad Sci USA 1989;86:5123–5127.CrossRefGoogle ScholarPubMed
d'Auriol, L, Macintyre, E, Galibert, F, Sigaux, F. In vitro amplification of T cell gamma gene rearrangements: a new tool for the assessment of minimal residual disease in acute lymphoblastic leukemias. Leukemia 1989;3:155–158.Google ScholarPubMed
Macintyre, EA, d'Auriol, L, Duparc, N, et al. Use of oligonucleotide probes directed against T cell antigen receptor gamma delta variable-(diversity)- joining junctional sequences as a general method for detecting minimal residual disease in acute lymphoblastic leukemias. J Clin Invest 1990;86:2125–2135.CrossRefGoogle ScholarPubMed
Breit, TM, Wolvers-Tettero, ILM, Hählen, K, van Wering, ER, van Dongen, JJM. Extensive junctional diversity of gd T-cell receptors expressed by T-cell acute lymphoblastic leukemias: implications for the detection of minimal residual disease. Leukemia 1991;5:1076–1086.Google Scholar
Deane, M, Norton, JD. Immunoglobulin heavy chain variable region family usage is independent of tumor cell phenotype in human B lineage leukemias. Eur J Immunol 1990;20:2209–2217.CrossRefGoogle ScholarPubMed
Deane, M, Pappas, H, Norton, JD. Immunoglobulin heavy chain gene fingerprinting reveals widespread oligoclonality in B-lineage acute lymphoblastic leukaemia. Leukemia 1991;5:832–838.Google ScholarPubMed
Veelken, H, Tycko, B, Sklar, J. Sensitive detection of clonal antigen receptor gene rearrangements for the diagnosis and monitoring of lymphoid neoplasms by a polymerase chain reaction-mediated ribonuclease protection assay. Blood 1991;78:1318–1326.Google ScholarPubMed
Hansen-Hagge, TE, Yokota, S, Bartram, CR. Detection of minimal residual disease in acute lymphoblastic leukemia by in vitro amplification of rearranged T-cell receptor delta chain sequences. Blood 1989;74:1762–1767.Google ScholarPubMed
Jonsson, OG, Kitchens, RL, Scott, FC, Smith, RG. Detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin hypervariable region specific oligonucleotide probes. Blood 1990;76:2072–2079.Google ScholarPubMed
van Dongen, JJM, Langerak, AW, San Miguel, JF, et al. PCR-based clonality studies for early diagnosis of lymphoproliferative disorders. Haematologica 2002;87S:27–29.Google Scholar
Langerak, AW, San Miguel, JF, Parreira, A, et al. Clonality analysis in malignant lymphoma: the BIOMED-2 experience. Histopathology 2002;41S2:506–508.Google Scholar
Oksenberg, JR, Stuart, S, Begovich, AB, et al. Limited heterogeneity of rearranged T-cell receptor V alpha transcripts in brains of multiple sclerosis patients. Nature 1991;353: 94.CrossRefGoogle ScholarPubMed
Broeren, CP, Verjans, GM, Van Eden, W, et al. Conserved nucleotide sequences at the 5′ end of T cell receptor variable genes facilitate polymerase chain reaction amplification. Eur J Immunol 1991;21:569–575.CrossRefGoogle ScholarPubMed
Doherty, PJ, Roifman, CM, Pan, SH, et al. Expression of the human T cell receptor V beta repertoire. Mol Immunol 1991;28:607–612.CrossRefGoogle ScholarPubMed
Wei, S, Charmley, P, Robinson, MA, Concannon, P. The extent of the human germline T-cell receptor V beta gene segment repertoire. Immunogenetics 1994;40:27–36.CrossRefGoogle ScholarPubMed
Van Oostveen, JW, Breit, TM, de Wolf, JT, et al. Polyclonal expansion of T-cell receptor-gd+ T lymphocytes associated with neutropenia and thrombocytopenia. Leukemia 1992;6:410–418.Google ScholarPubMed
Davis, TH, Yockey, CE, Balk, SP. Detection of clonal immunoglobulin gene rearrangements by polymerase chain reaction amplification and single-strand conformational polymorphism analysis. Am J Pathol 1993;142:1841–1847.Google ScholarPubMed
Koch, OM, Volkenandt, M, Goker, E, et al. Molecular detection and characterization of clonal cell populations in acute lymphocytic leukemia by analysis of conformational polymorphisms of cRNA molecules of rearranged T-cell-receptor-gamma and immunoglobulin heavy-chain genes. Leukemia 1994;8:946–952.Google ScholarPubMed
Bourguin, A, Tung, R, Galili, N, Sklar, J. Rapid, nonradioactive detection of clonal T-cell receptor gene rearrangements in lymphoid neoplasms. Proc Natl Acad Sci USA 1990;87:8536–8640.CrossRefGoogle ScholarPubMed
Wood, GS, Tung, RM, Haeffner, AC, et al. Detection of clonal T-cell receptor gamma gene rearrangements in early mycosis fungoides/Sezary syndrome by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE). J Invest Dermatol 1994;103:34–41.CrossRefGoogle Scholar
Linke, B, Pyttlich, J, Tiemann, M, et al. Identification and structural analysis of rearranged immunoglobulin heavy chain genes in lymphomas and leukemias. Leukemia 1995;9:840–847.Google ScholarPubMed
Bottaro, M, Berti, E, Biondi, A, Migone, N, Crosti, L. Heteroduplex analysis of T-cell receptor gamma gene rearrangements for diagnosis and monitoring of cutaneous T-cell lymphomas. Blood 1994;83:3271–3278.Google ScholarPubMed
Langerak, AW, Szczepański, T, van der Burg, M, Wolvers-Tettero, ILM, van Dongen, JJM. Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia 1997;11:2192–2199.CrossRefGoogle ScholarPubMed
Kneba, M, Bolz, I, Linke, B, Hiddemann, W. Analysis of rearranged T-cell receptor beta-chain genes by polymerase chain reaction (PCR) DNA sequencing and automated high resolution PCR fragment analysis. Blood 1995;86:3930–3937.Google ScholarPubMed
Linke, B, Bolz, I, Fayyazi, A, et al. Automated high resolution PCR fragment analysis for identification of clonally rearranged immunoglobulin heavy chain genes. Leukemia 1997;11:1055–1062.CrossRefGoogle ScholarPubMed
Visser, O, Coebergh, JWW, Schouten, LJ, Dijck, JAAM. Incidence of Cancer in the Netherlands 1995. Utrecht: Vereniging van Integrale Kankercentra, 1998.Google Scholar
van Dongen, JJM, Szczepański, T, Adriaansen, HJ. Immunobiology of leukemia. In Henderson, ES, Lister, TA, Greaves, MF (eds.) Leukemia, 2nd edn. Philadelphia, PA: Saunders, 2002: 85–129.Google Scholar
Sandlund, JT, Downing, JR, Crist, WM. Non-Hodgkin's lymphoma in childhood. N Engl J Med 1996;334:1238–1248.CrossRefGoogle ScholarPubMed
Gouttefangeas, C, Bensussan, A, Boumsell, L. Study of the CD3-associated T-cell receptors reveals further differences between T-cell acute lymphoblastic lymphoma and leukemia. Blood 1990;75:931–934.Google ScholarPubMed
Korsmeyer, SJ, Arnold, A, Bakhshi, A, et al. Immunoglobulin gene rearrangement and cell surface antigen expression in acute lymphocytic leukemias of T cell and B cell precursor origins. J Clin Invest 1983;71:301–313.CrossRefGoogle Scholar
Felix, CA, Wright, JJ, Poplack, DG, et al. T cell receptor alpha-, beta-, and gamma-genes in T cell and pre-B cell acute lymphoblastic leukemia. J Clin Invest 1987;80:545–556.CrossRefGoogle Scholar
Foroni, L, Catovsky, D, Luzzatto, L. Immunoglobulin gene rearrangements in hairy cell leukemia and other chronic B cell lymphoproliferative disorders. Leukemia 1987;1:389–392.Google ScholarPubMed
Williams, ME, Innes, DJ, Jr., Borowitz, MJ, et al. Immunoglobulin and T cell receptor gene rearrangements in human lymphoma and leukemia. Blood 1987;69:79–86.Google Scholar
Furley, AJ, Mizutani, S, Weilbaecher, K, et al. Developmentally regulated rearrangement and expression of genes encoding the T cell receptor–T3 complex. Cell 1986;46:75–87.CrossRefGoogle ScholarPubMed
Foroni, L, Foldi, J, Matutes, E, et al. Alpha, beta and gamma T-cell receptor genes: rearrangements correlate with haematological phenotype in T cell leukaemias. Br J Haematol 1987;67:307–318.CrossRefGoogle ScholarPubMed
van Dongen, JJM, Quertermous, T, Bartram, CR, et al. T cell receptor-CD3 complex during early T cell differentiation. Analysis of immature T cell acute lymphoblastic leukemias (T-ALL) at DNA, RNA, and cell membrane level. J Immunol 1987;138:1260–1269.Google Scholar
Greaves, MF, Chan, LC, Furley, AJ, Watt, SM, Molgaard, HV. Lineage promiscuity in hemopoietic differentiation and leukemia. Blood 1986;67:1–11.Google ScholarPubMed
Adriaansen, HJ, Soeting, PW, Wolvers-Tettero, ILM, van Dongen, JJM. Immunoglobulin and T-cell receptor gene rearrangements in acute non-lymphocytic leukemias. Analysis of 54 cases and a review of the literature. Leukemia 1991;5:744–751.Google Scholar
Szczepański, T, Beishuizen, A, Pongers-Willemse, MJ, et al. Cross-lineage T-cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B-acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease. Leukemia 1999;13:196–205.CrossRefGoogle ScholarPubMed
Beishuizen, A, Hählen, K, Hagemeijer, A, et al. Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor B-cell origin. Leukemia 1991;5:657–667.Google ScholarPubMed
Beishuizen, A, van Wering, ER, Breit, TM, et al. Molecular biology of acute lymphoblastic leukemia: implications for detection of minimal residual disease. In Hiddeman, W, Büchner, T, Wörmann, B (eds.) Acute Leukemias V. Berlin: Springer Verlag, 1996:460–474.CrossRefGoogle Scholar
Bird, J, Galili, N, Link, M, Stites, D, Sklar, J. Continuing rearrangement but absence of somatic hypermutation in immunoglobulin genes of human B cell precursor leukemia. J Exp Med 1988;168:229–245.CrossRefGoogle ScholarPubMed
Steward, CG, Goulden, NJ, Katz, F, et al. A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood 1994;83:1355–1362.Google ScholarPubMed
Wasserman, R, Yamada, M, Ito, Y, et al. VH gene rearrangement events can modify the immunoglobulin heavy chain during progression of B-lineage acute lymphoblastic leukemia. Blood 1992;79:223–228.Google ScholarPubMed
Kitchingman, GR. Immunoglobulin heavy chain gene VH-D junctional diversity at diagnosis in patients with acute lymphoblastic leukemia. Blood 1993;81:775–782.Google ScholarPubMed
Steenbergen, EJ, Verhagen, OJ, van Leeuwen, EF, von dem Borne, AE, van der Schoot, CE. Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia. Blood 1993;82:581–589.Google ScholarPubMed
Beishuizen, A, Verhoeven, MA, van Wering, ER, et al. Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 1994;83:2238–2247.Google ScholarPubMed
Steenbergen, EJ, Verhagen, OJ, van Leeuwen, EF, et al. Frequent ongoing T-cell receptor rearrangements in childhood B-precursor acute lymphoblastic leukemia: implications for monitoring minimal residual disease. Blood 1995;86:692–702.Google ScholarPubMed
Ghali, DW, Panzer, S, Fischer, S, et al. Heterogeneity of the T-cell receptor delta gene indicating subclone formation in acute precursor B-cell leukemias. Blood 1995;85:2795–2801.Google ScholarPubMed
Hansen-Hagge, TE, Yokota, S, Reuter, HJ, Schwarz, K, Bartram, CR. Human common acute lymphoblastic leukemia-derived cell lines are competent to recombine their T-cell receptor delta/alpha regions along a hierarchically ordered pathway. Blood 1992;80:2353–2362.Google ScholarPubMed
Taylor, JJ, Rowe, D, Kylefjord, H, et al. Characterisation of non-concordance in the T-cell receptor gamma chain genes at presentation and clinical relapse in acute lymphoblastic leukemia. Leukemia 1994;8:60–66.Google ScholarPubMed
Szczepański, T, Willemse, MJ, Brinkhof, B, et al. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 2002;99:2315–2323.CrossRefGoogle Scholar
van der Velden, VHJ, Willemse, MJ, van der Schoot, CE, van Wering, ER, van Dongen, JJM. Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002;16:928–936.CrossRefGoogle ScholarPubMed
Chapman, CJ, Zhou, JX, Gregory, C, Rickinson, AB, Stevenson, FK. VH and VL gene analysis in sporadic Burkitt's lymphoma shows somatic hypermutation, intraclonal heterogeneity, and a role for antigen selection. Blood 1996;88:3562–3568.Google Scholar
van der Burg, M, Barendregt, BH, van Wering, ER, et al. The presence of somatic mutations in immunoglobulin genes of B-cell acute lymphoblastic leukemia (ALL-L3) supports assignment as Burkitt's leukemia-lymphoma rather than B-lineage ALL. Leukemia 2001;15:1141–1143.CrossRefGoogle ScholarPubMed
Langerak, AW, Wolvers-Tettero, ILM, van den Beemd, MWM, et al. Immunophenotypic and immunogenotypic characteristics of TCRgd+ T cell acute lymphoblastic leukemia. Leukemia 1999;13: 206–214.CrossRefGoogle Scholar
Szczepański, T, Pongers-Willemse, MJ, Langerak, AW, et al. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predomina1 1 nt DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor αβ lineage. Blood 1999;93:4079–4085.Google Scholar
Breit, TM, Verschuren, MCM, Wolvers-Tettero, ILM, et al. Human T cell leukemias with continuous V(D)J recombinase activity for TCR-delta gene deletion. J Immunol 1997;159:4341–4349.Google Scholar
Schmidt, CA, Oettle, H, Neubauer, A, et al. Rearrangements of T-cell receptor delta, gamma and beta genes in acute myeloid leukemia coexpressing T-lymphoid features. Leukemia 1992;6:1263–1267.Google ScholarPubMed
Boeckx, N, Willemse, MJ, Szczepański, T, et al. Fusion gene transcripts and Ig/TCR gene rearrangements are complementary but infrequent targets for PCR-based detection of minimal residual disease in acute myeloid leukemia. Leukemia 2002;16:368–375.CrossRefGoogle ScholarPubMed
Willis, TG, Dyer, MJ. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 2000;96:808–822.Google ScholarPubMed
Hinz, T, Allam, A, Wesch, D, Schindler, D, Kabelitz, D. Cell-surface expression of transrearranged Vgamma-Cbeta T-cell receptor chains in healthy donors and in ataxia telangiectasia patients. Br J Haematol 2000;109:201–210.CrossRefGoogle ScholarPubMed
Kobayashi, Y, Tycko, B, Soreng, AL, Sklar, J. Transrearrangements between antigen receptor genes in normal human lymphoid tissues and in ataxia telangiectasia. J Immunol 1991;147:3201–3209.Google ScholarPubMed
Retiere, C, Halary, F, Peyrat, MA, et al. The mechanism of chromosome 7 inversion in human lymphocytes expressing chimeric gamma beta TCR. J Immunol 1999;162:903–910.Google ScholarPubMed
Stern, MH, Lipkowitz, S, Aurias, A, et al. Inversion of chromosome 7 in ataxia telangiectasia is generated by a rearrangement between T-cell receptor beta and T-cell receptor gamma genes. Blood 1989;74:2076–2080.Google ScholarPubMed
Bernard, O, Groettrup, M, Mugneret, F, Berger, R, Azogui, O. Molecular analysis of T-cell receptor transcripts in a human T-cell leukemia bearing a t(1;14) and an inv(7); cell surface expression of a TCR-beta chain in the absence of alpha chain. Leukemia 1993;7:1645–1653.Google Scholar
Marculescu, R, Vanura, K, Montpellier, B, et al. Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures. DNA Repair 2006;8:1246–1258.CrossRefGoogle Scholar
Dik, WA, Nadel, B, Przybylski, GK, et al. Different chromosomal breakpoints impact the level of LMO2 expression in T-ALL. Blood 2007;110:388–392.CrossRefGoogle ScholarPubMed
Begley, CG, Aplan, PD, Denning, SM, et al. The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc Natl Acad Sci USA 1989;86:10128–10132.CrossRefGoogle ScholarPubMed
Breit, TM, Mol, EJ, Wolvers-Tettero, ILM, et al. Site-specific deletions involving the tal-1 and sil genes are restricted to cells of the T cell receptor alpha/beta lineage: T cell receptor delta gene deletion mechanism affects multiple genes. J Exp Med 1993;177: 965–977.CrossRefGoogle Scholar
Fitzgerald, TJ, Neale, GA, Raimondi, SC, Goorha, RM. c-tal, a helix-loop-helix protein, is juxtaposed to the T-cell receptor-beta chain gene by a reciprocal chromosomal translocation: t(1;7)(p32;q35). Blood 1991;78: 2686–2695.Google Scholar
Mellentin, JD, Smith, SD, Cleary, ML. lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 1989;58:77–83.CrossRefGoogle Scholar
Xia, Y, Brown, L, Yang, CY, et al. TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc Natl Acad Sci USA 1991;88:11416–11420.CrossRefGoogle ScholarPubMed
Kennedy, MA, Gonzalez-Sarmiento, R, Kees, UR, et al. HOX11, a homeobox- containing T-cell oncogene on human chromosome 10q24. Proc Natl Acad Sci USA 1991;88:8900–8904.CrossRefGoogle ScholarPubMed
Hatano, M, Roberts, CW, Minden, M, Crist, WM, Korsmeyer, SJ. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 1991;253:79–82.CrossRefGoogle Scholar
Royer-Pokora, B, Rogers, M, Zhu, TH, et al. The TTG-2/RBTN2 T cell oncogene encodes two alternative transcripts from two promoters: the distal promoter is removed by most 11p13 translocations in acute T cell leukaemia's (T-ALL). Oncogene 1995;10:1353–1360.Google Scholar
Boehm, T, Foroni, L, Kaneko, Y, Perutz, MF, Rabbitts, TH. The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci USA 1991;88:4367–4371.CrossRefGoogle ScholarPubMed
Bernard, OA, Busson-LeConiat, M, Ballerini, P, et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the HOX11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001;15:1495–1504.CrossRefGoogle Scholar
Mauvieux, L, Leymarie, V, Helias, C, et al. High incidence of HOX11L2 expression in children with T-ALL. Leukemia 2002;16:2417–2422.CrossRefGoogle ScholarPubMed
Soulier, J, Clapppier, E, Cayuela, JM, et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005;106:274–286.CrossRefGoogle Scholar
Przybylski, GK, Dik, WA, Wanzeck, J, et al. The effect of a novel recombination between the homeobox gene NKX2-5 and the TRD locus in T-cell acute lymphoblastic leukemia on activation of the NKX2-5 gene. Haematologica 2006;91:317–321.Google ScholarPubMed
Cauwelier, B, Cavé, H, Gervais, C, et al. Clinical, cytogenetic and molecular characteristics of 14 T-ALL patients carrying the TCRbeta-HOXA rearrangement: a study of the Groupe Francophone de Cytogénétique Hématologique. Leukemia 2007;21:121–128.CrossRefGoogle ScholarPubMed
Ferrando, AA, Neuberg, DS, Staunton, J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002;1:75–87.CrossRefGoogle ScholarPubMed
Asnafi, V, Beldjord, K, Libura, M, et al. Age-related phenotypic and oncogenic differences in T-cell acute lymphoblastic leukemias may reflect thymic atrophy. Blood 2004;104:4173–4180.CrossRefGoogle ScholarPubMed
van Grotel, M, Meijerink, JP, van Wering, ER, et al. Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia 2008;22:124–131.CrossRefGoogle Scholar
Przybylski, G, Oettle, H, Ludwig, WD, Siegert, W, Schmidt, CA. Molecular characterization of illegitimate TCRdelta gene rearrangements in acute myeloid leukaemia. Br J Haematol 1994;87:301–307.CrossRefGoogle Scholar
O'Connor, N, Gatter, KC, Wainscoat, JS, et al. Practical value of genotypic analysis for diagnosing lymphoproliferative disorders. J Clin Pathol 1987;40:147–150.CrossRefGoogle ScholarPubMed
Korsmeyer, SJ. Antigen receptor genes as molecular markers of lymphoid neoplasms. J Clin Invest 1987;79:1291–1295.CrossRefGoogle ScholarPubMed
Kneba, M, Bolz, I, Linke, B, et al. Characterization of clone-specific rearranged T-cell receptor gamma-chain genes in lymphomas and leukemias by the polymerase chain reaction and DNA sequencing. Blood 1994;84:574–581.Google ScholarPubMed
Siegelman, MH, Cleary, ML, Warnke, R, Sklar, J. Frequent biclonality and Ig gene alterations among B cell lymphomas that show multiple histologic forms. J Exp Med 1985;161:850–863.CrossRefGoogle ScholarPubMed
van Wering, ER, Beishuizen, A, Roeffen, ET, et al. Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia. Leukemia 1995;9:1523–1533.Google ScholarPubMed
Szczepański, T, Willemse, MJ, Kamps, WA, et al. Molecular discrimination between relapsed and secondary acute lymphoblastic leukemia: proposal for an easy strategy. Med Pediatr Oncol 2001;36:352–358.CrossRefGoogle ScholarPubMed
Smedmyr, B, Bengtsson, M, Jakobsson, A, et al. Regeneration of CALLA (CD10+), TdT+ and double-positive cells in the bone marrow and blood after autologous bone marrow transplantation. Eur J Haematol 1991;46:146–151.CrossRefGoogle Scholar
van Wering, ER, van der Linden-Schrever, BE, Szczepański, T, et al. Regenerating normal B-cell precursors during and after treatment of acute lymphoblastic leukaemia: implications for monitoring of minimal residual disease. Br J Haematol 2000;110:139–146.CrossRefGoogle ScholarPubMed
Knulst, AC, Adriaansen, HJ, Hahlen, K, et al. Early diagnosis of smoldering acute lymphoblastic leukemia using immunological marker analysis. Leukemia 1993;7:532–536.Google ScholarPubMed
Campana, D, Yokota, S, Coustan- Smith, E, et al. The detection of residual acute lymphoblastic leukemia cells with immunologic methods and polymerase chain reaction: a comparative study. Leukemia 1990;4:609–614.Google ScholarPubMed
Pongers-Willemse, MJ, Verhagen, OJHM, Tibbe, GJM, et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional regions specific TaqMan probes. Leukemia 1998;12:2006–2014.CrossRefGoogle ScholarPubMed
van Dongen, JJM, Seriu, T, Panzer-Grumayer, ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998;352: 1731–1738.CrossRefGoogle ScholarPubMed
van der Velden, VHJ, Wijkhuijs, JM, Jacobs, DCH, van Wering, ER, van Dongen, JJM. T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002;16:1372–1380.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×