Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-04T03:42:29.300Z Has data issue: false hasContentIssue false

4 - Immunophenotyping

from Section 2 - Cell biology and pathobiology

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Introduction

The diagnosis and treatment of childhood leukemia rest on the recognition of a leukemic cell population and its cell lineage and, sometimes the stage of maturation. The presence of myeloperoxidase (MPO), Auer rods, or monocyte-associated esterases in leukemic blasts readily identifies most cases of acute myeloid leukemia (AML). By contrast, the leukemic blasts of acute lymphoblastic leukemia (ALL) do not present with unique morphologic or cytochemical features. Malignant megakaryo-blasts also lack definitive cytologic and cytochemical features and may be mistaken for ALL. Although rare in children, chronic lymphoid malignancies, such as human T-cell lymphotropic virus type 1 (HTLV-1) leukemia/lymphoma or hepatosplenic T-cell lymphoma, can be confused with reactive lymphocytosis or acute leukemia. Non-lymphoid neoplasms, such as blastic plasmacytoid dendritic cell neoplasm (BPDCN), can mimic acute leukemia in their presentation and morphologic features. The prognosis and therapy for ALL and AML differ greatly; therefore, it is crucial to differentiate between these two acute neoplastic processes. In the absence of diagnostic morphologic features, accurate diagnosis requires contemporary immunologic, cytogenetic, and molecular analyses. Immunologic testing, or immunophenotyping, is an essential component of the diagnostic workup that confirms or establishes the lineage of the leukemia, its stage of differentiation, and, sometimes, its clonality. In addition, the immunophenotype profile of ALL and AML often correlates with non-random genetic abnormalities, facilitates minimal residual disease studies, and provides prognostic information. In the following discussions, the terminology of the 2008 WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues is used, but that of the older classification, the French–American–British (FAB) terminology, is also invoked as needed for simplicity and clarification.

Type
Chapter
Information
Childhood Leukemias , pp. 72 - 112
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Swerdlow, SH, Campos, E, Harris, NL, et al. (eds.). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008.Google Scholar
Zola, H, Swart, G, Nicholson, I, Voss, E. Leukocyte and Stromal Cell Molecules: the CD Markers. Hoboken, NJ:Wiley, 2007.Google Scholar
McKenna, RW, Washington, LT, Aquino, DB, et al. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood 2001;98:2498–2507.CrossRefGoogle ScholarPubMed
van Lochem, EG, van der Velden, VH, Wind, HK, et al. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry 2004;60B:1–13.CrossRefGoogle Scholar
Res, P, Martinez-Cáceres, E, Jaleco, AC, et al. CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood 1996;87:5196–5206.Google Scholar
Prockop, S, Petrie, H. Cell migration and the anatomic control of thymocyte precursor differentiation. Semin Immunol 2000;12:435–444.CrossRefGoogle ScholarPubMed
Anderson, G, Harman, BC, Hare, KJ, Jenkins, EJ. Microenvironmental regulation of T cell development in the thymus. Semin Immunol 2000;12:457–464.CrossRefGoogle ScholarPubMed
Blom, B, Res, P, Noteboom, E, et al. Prethymic CD34+ progenitors capable of developing into T cells are not committed to the T cell lineage. J Immunol 1997;158:3571–3577.Google Scholar
Res, P, Spits, H. Developmental stages in the human thymus. Semin Immunol 1999;11:39–46.CrossRefGoogle ScholarPubMed
Michie, AM, Zuniga-Pflucker, JC. Regulation of thymocyte differentiation: pre-TCR signals and b-selection. Immunology 2002;14:311–323.Google Scholar
Mari, B, Breittmayer, J-P, Guerin, S, et al. High levels of functional endopeptidase 24.11 (CD10) activity on human thymocytes: preferential expression on immature subsets. Immunology 1994;82:433–438.Google ScholarPubMed
Fischer, EM, Mouhoub, A, Maillet, F, et al. Expression of CD21 is developmentally regulated during thymic maturation of human T lymphocytes. Int Immunol 1999;11:1841–1849.CrossRefGoogle ScholarPubMed
Gaipa, G, Coustan-Smith, E, Todisco, E, et al. Characterization of CD34+, CD13+, CD33- cells, a rare subset of immature human hematopoietic cells. Haematologica 2002;87:347–356.Google ScholarPubMed
Strobl, H, Takimoto, M, Majdic, O, et al. Myeloperoxidase expression in CD34+ normal hematopoietic cells. Blood 1993;82:2069–2078.Google Scholar
Bello-Fernández, C, Matyash, M, Strobl, H, et al. Analysis of myeloid-associated genes in human hematopoietic progenitor cells. Exp Hematol 1997;251:1158–1166.Google Scholar
Peffault de Latour, R, LeGrand, O, Moreau, D, et al. Comparison of flow cytometry and enzyme cytochemistry for the detection of myeloperoxidase in acute myeloid leukaemia: interests of a new positivity threshold. Br J Haematol 2003;122:211–216.CrossRefGoogle ScholarPubMed
Saravanan, L, Juneja, S. Immunohistochemistry is a more sensitive marker for the detection of myeloperoxidase in acute myeloid leukemia compared with flow cytometry and cytochemistry. Int J Lab Hematol 2010;32:132–136.CrossRefGoogle ScholarPubMed
Sperling, C, Schwartz, S, Buchner, T, et al. Expression of the stem cell bactor receptor c-KIT (CD117) in acute leukemias. Haematologica 1997;82:617–621.Google Scholar
Nomdedeu, JF, Mateu, R, Altes, A, et al. Enhanced myeloid specificity of CD117 compared with CD13 and CD33. Leuk Res 1999;23:341–344.CrossRefGoogle ScholarPubMed
Di Noto, R, Lo Pardo, C, Schiavone, EM, et al. Stem cell factor receptor (c-Kit, CD117) is expressed on blast cells from most immature types of acute myeloid malignancies but is also a characteristic of a subset of acute promyelocytic leukaemia. Br J Haematol 1996;92:562–564.CrossRefGoogle ScholarPubMed
Borowitz, MJ, Guenther, KL, Shults, KE, et al. Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol 1993;100:534–540.CrossRefGoogle ScholarPubMed
Rainer, RO, Hodges, L, Stelzer, GT. CD45 gating correlates with bone marrow differential. Cytometry 1995;22:139–145.CrossRefGoogle ScholarPubMed
Sun, T, Sangaline, R, Ryder, J, et al. Gating strategy for immunophenotyping of leukemia and lymphoma. Am J Clin Pathol 1997;108:152–157.CrossRefGoogle ScholarPubMed
Olsen, RJ, Chang, C-C, Herrick, JL, et al. Acute leukemia immunohistochemistry. A systematic diagnostic approach. Arch Pathol Lab Med 2008;132:462–475.Google ScholarPubMed
Rubnitz, JE, Camitta, BM, Mahmoud, H, et al. Childhood acute lymphoblastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol 1999;17:191–196.CrossRefGoogle Scholar
Behm, FG, Smith, FO, Raimondi, SC, et al. The human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearrangements. Blood 1996;87:1134–1139.Google Scholar
Behm, FG, Raimondi, SC, Schell, MJ, et al. Lack of CD45 antigen on blast cells in childhood acute lymphoblastic leukemia is associated with chromosome hyperdiploidy and other favorable prognostic features. Blood 1992;79:1011–1016.Google Scholar
Borowitz, MJ, Shuster, J, Carroll, AJ, et al. Prognostic significance of fluorescence intensity of surface marker expression in childhood B-precursor ALL. A Pediatric Oncology Group study. Blood 1997;89:3960–3966.Google Scholar
Boue, DR, LeBein, TW. Expression and structure of CD22 in acute leukemia. Blood 1988;71:1480–1486.Google ScholarPubMed
Arber, DA, Jenkins, KA. Paraffin section immunophenotyping of acute leukemias in bone marrow specimens. Am J Clin Pathol 1996;109:116–117.Google Scholar
Pilozzi, E, Pulford, K, Jones, M, et al. Co-expression of CD79a (JCB117) and CD3 by lymphoblastic lymphoma. J Pathol 1998;186:140–143.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Lai, R, Juco, J, Lee, SF, et al. Flow cytometric detection of CD79a expression in T-cell acute lymphoblastic leukemias. Am J Clin Pathol 2000;113:823–830.CrossRefGoogle ScholarPubMed
Astsaturov, IA, Matutes, E, Morilla, R, et al. Differential expression of B29 (CD79b) and mb-1 (CD79a) proteins in acute lymphoblastic leukaemia. Leukemia 1996;10:769–773.Google ScholarPubMed
Jensen, AW, Hokland, M, Jorgensen, H, et al. Solitary expression of CD7 among T-cell antigens in acute myeloid leukemia: identification of a group of patients with similar T-cell receptor beta and delta rearrangements and course of disease suggestive of poor prognosis. Blood 1991;78:1292–1300.Google ScholarPubMed
Kita, K, Mina, H, Nakase, K, et al. Clinical importance of CD7 expression in acute myeloid leukemia. Blood 1993;81:2399–2405.Google Scholar
Del Pota, G, Stasi, R, Venditti, A, et al. Prognostic value of cell marker analysis in de novo acute myeloid leukemia. Leukemia 1994;8:388–394.Google Scholar
Garnache-Ottou, F, Chaperot, L, Biichle, S, et al. Expression of the myeloid-associated marker CD33 is not an exclusive factor for leukemic plasmacytoid dendritic cells. Blood 2005;105:1256–1264.CrossRefGoogle Scholar
Hernández-Caselles, T, Martínez-Esparza, M, Pérez-Oliva, AB, et al. A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: two isoforms of CD33 are generated by alternative splicing. J Leukoc Biol 2006;79:46–58.CrossRefGoogle Scholar
Cuidad, J, Orfao, CS, Vidriales, B, et al. Immunophenotypic analysis of CD19+ precursors in normal adult bone marrow: implications for minimal residual disease detection. Haematologica 1998;83:1069–1075.Google Scholar
Rieman, D, Kehlen, A, Thiele, K, et al. Induction of aminopeptidase N/CD13 on human lymphocytes after adhesion to fibroblast-like synoviocytes, endothelial cells, epithelial cells, and monocytes/macrophages. J Immunol 1997;158:3425–3432.Google Scholar
Saxena, A, Rai, A, Raina, V, et al. Expression of CD13/aminopeptidase N in precursor B-cell leukemia: role in growth regulation of B cells. Cancer Immunol Immunother 2010;59:125–135.CrossRefGoogle ScholarPubMed
Mejstrikova, E, Kalina, T, Trka, J, et al. Correlation of CD33 with poorer prognosis in childhood ALL implicates a potential of anti-CD33 frontline therapy. Leukemia 2005;19:1092–1094.CrossRefGoogle ScholarPubMed
Seegmiller, AC, Kroft, SH, Karandikar, N, McKenna, RW. Characterization of immunophenotypic aberrancies in 200 cases of B acute lymphoblastic leukemia. Am J Clin Pathol 2009;132:940–949.CrossRefGoogle ScholarPubMed
Suggs, JL, Cruse, JM, Lewis, RE. Aberrant myeloid marker expression in precursor B-cell and T-cell leukemias. Exp Mol Pathol 2007;83:471–473.CrossRefGoogle ScholarPubMed
Sidhom, I, Shaaban, K, Ezzat, S, et al. Clinical significance of immunophenotypic markers in pediatric T-cell acute lymphoblastic leukemia. J Egypt Nat Canc Inst 2008;20:111–120.Google ScholarPubMed
Austin, GE, Chan, WC, Zhao, W, et al. Myeloperoxidase gene expression in normal granulopoiesis and acute leukemias. Leuk Lymphoma 1994;15:209–226.CrossRefGoogle ScholarPubMed
Thalhammer-Scherrer, R, Mitterbauer, G, Simonitsch, I, et al. The immunophenotype of 325 adult acute leukemias: relationship to morphologic and molecular classification and proposal for a minimal screening program highly predictive for lineage discrimination. Am J Clin Pathol 2002;117:380–389.CrossRefGoogle ScholarPubMed
Smith, FO, Broudy, VC, Zsebo, KM, et al. Cell surface expression of c-kit by childhood acute myeloid leukemia blasts is not of prognostic value: a report for the Childrens Cancer Group. Blood 1994;84:847–852.Google Scholar
Malaise, M, Steinbach, D, Corbacioglu, S. Clinical implications of c-Kit mutations in acute myelogenous leukemia. Curr Hematol Malig Rep 2009;4:77–82.CrossRefGoogle ScholarPubMed
Strauchen, JA, Miller, LK. Terminal deoxynucleotidyl transferase-positive cells in human tonsils. Am J Clin Pathol 2001;116:12–16.CrossRefGoogle ScholarPubMed
Onciu, M, Lorsbach, RB, Henry, EC, Behm, FG. Terminal deoxynucleotidyl transferase-positive lymphoid cells in reactive lymph nodes from children with malignant tumors: incidence, distribution pattern, and immunophenotyping in 26 patients. Am J Clin Pathol 2002;118:348–354.CrossRefGoogle ScholarPubMed
Faber, J, Kantarjian, H, Roberts, MW, et al. Terminal deoxynucleotidyl transferase-negative acute lymphoblastic leukemia. Arch Pathol Lab Med 2000;124:92–97.Google ScholarPubMed
Liu, L, McGavran, L, Lovell, MA, et al. Nonpositive terminal deoxynucleotidyl transferase in pediatric precursor B-lymphoblastic leukemia. Am J Clin Pathol 2004;121:810–815.CrossRefGoogle ScholarPubMed
Khoury, H, Dalal, BI, Nevill, TJ, Horsman, DE, et al. Acute myelogenous leukemia with t(8;21)–identification of a specific immunophenotype. Leuk Lymphoma 2003;44:1713–1718.CrossRefGoogle Scholar
Sperling, C, Buchner, T, Creutzig, T, et al. Clinical, morphologic, cytogenetic and prognostic implications of CD34 expression in childhood and adult de novo AML. Leuk Lymphoma 1995;17:417–426.CrossRefGoogle ScholarPubMed
Casasnovas, RO, Campos, L, Mugneret, F, et al. Immunophenotypic patterns and genetic anomalies in acute non-lymphoblastic leukemia subtypes: a prospective study of 432 patients. Leukemia 1998;12:34–43.CrossRefGoogle ScholarPubMed
Adriaansen, HJ, te Boekhorst, PA, Hagmeijer, AM, et al. Acute myeloid leukemia M4 with bone marrow eosinophilia (M4Eo) and inv(16)(p13q22) exhibits a specific immunophenotype with CD2 expression. Blood 1993;81:3043–3051.Google ScholarPubMed
Campana, D, Coustan-Smith, E, Behm, FG. The definition of remission in acute leukemia with immunologic techniques. Bone Marrow Transplant 1991;8:429–437.Google ScholarPubMed
Borowitz, MJ, Shuster, JJ, Civin, CI, et al. Prognostic significance of CD34 expression in childhood B-precursor acute lymphocytic leukemia: a Pediatric Oncology Group study. J Clin Oncol 1990;8:1389–1398.CrossRefGoogle ScholarPubMed
Pui, C-H, Hancock, ML, Head, DR, et al. Clinical significance of CD34 expression in childhood acute lymphoblastic leukemia. Blood 1993;82:889–894.Google ScholarPubMed
Pui, C-H, Behm, FG, Crist, WM. Clinical and biological relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood 1993;82:343–362.Google Scholar
Smith, FO, Lampkin, BC, Versteeg, C, et al. Expression of lymphoid-associated cell surface antigens by childhood acute myeloid leukemia cell lacks prognostic significance. Blood 1992;79:2415–2422.Google ScholarPubMed
Kuerbitz, SJ, Civin, CI, Krischer, JP, et al. Expression of myeloid-associated and lymphoid-associated cell-surface antigens in acute myeloid leukemia of childhood: a Pediatric Oncology Group Study. J Clin Oncol 1992;9:1419–1429.CrossRefGoogle Scholar
Béné, MC, Castoldi, G, Knapp, W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995;9:1783–1786.Google Scholar
Lemers, B, Arnoulet, C, Fossat, C, et al. Fine characterization of childhood and adult acute lymphoblastic leukemia (ALL) by a proB and preB surrogate light chain-specific mAb and a proposal for a new B cell ALL classification. Leukemia 2000;14:2103–2111.CrossRefGoogle Scholar
Ludwig, W-D, Haferlach, T, Schoch, C. Classification of acute leukemias: perspective 1. In Pui, C-H (ed.) Treatment of Acute Leukemias. New Directions for Clinical Research. Totowa, NJ:Humana Press, 2003:3–41.Google Scholar
Hrušák, O, Porwit-MacDonald, A. Antigen expression patterns reflecting genotype of acute leukemias. Leukemia 2002;16:1233–1258.CrossRefGoogle ScholarPubMed
Lo-Coco, F, di Celle, PF, Alimena, G, et al. Acute lymphoblastic leukemia with the 4:11 translocation exhibiting early T cell features. Leukemia 1989;3:79–82.Google ScholarPubMed
Pui, C-H, Frankel, LS, Carroll, AJ, et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. Blood 1991;77:440–447.Google Scholar
Pui, C-H. Acute leukemias with the t(4;11)(q21;q23). Leuk Lymphoma 1991;7:173–179.CrossRef
Smith, FO, Rauch, C, Williams, DE, et al. The human homologue of rat NG2, a chondroitin sulfate proteoglycan, is not expressed on the cell surface of normal hematopoietic cells but is expressed by acute myeloid leukemia blasts from poor prognosis patients with abnormalities of chromosome band 11q23. Blood 1996;87:1123–1133.Google Scholar
Hilden, JM, Smith, FO, Frestedt, JL, et al. MLL gene rearrangement, cytogenetic 11q23 abnormalities, and expression of the NG2 molecule in infant acute myeloid leukemia. Blood 1997;89:3801–3805.Google ScholarPubMed
Mauvieux, L, Delabesse, E, Bourquelot, P, et al. NG2 expression in MLL rearranged acute myeloid leukaemia is restricted to monoblastic cases. Br J Haematol 1999;107:674–676.CrossRefGoogle ScholarPubMed
Wuchter, C, Harbott, J, Schoch, C, et al. Detection of acute leukemia cells with mixed lineage leukemia (MLL) gene rearrangements by flow cytometry using monoclonal antibody 7.1. Leukemia 2000;14:1232–1238.CrossRefGoogle ScholarPubMed
Cantu-Rajnoldi, A, Putti, MC, Schiro, R, et al. Biological and clinical features of B-precursor childhood acute lymphoblastic leukemia showing CD2 and/or E-rosette co-expression. Haematologica 1992;77:384–389.Google ScholarPubMed
Dunphy, CH, Chu, JY. Aberrant CD2 expression in precursor-B acute lymphoblastic leukemia of childhood. Am J Hematol 1996;52:224–226.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Manabe, A, Mori, T, Ebihara, Y, et al. Characterization of leukemic cells in CD2/CD19 double positive acute lymphoblastic leukemia. Int J Hematol 1998;67:45–52.CrossRefGoogle ScholarPubMed
Kalina, T, Vaskova, M, Mejstrikova, E, et al. Myeloid antigens in childhood lymphoblastic leukemia: clinical data point to regulation of CD66c distinct from other myeloid antigens. BMC Cancer 2005;5:1–11.CrossRefGoogle ScholarPubMed
Owaidah, TM, Rawas, FI, Al Khayatt, MF, Elkum, N. Expression of CD66c, and CD25 in acute lymphoblastic leukemia as a predictor of the presence of BCR/ABL rearrangement. Hematol Oncol Stem Cell Ther 2008;1:34–37.CrossRefGoogle ScholarPubMed
Rubnitz, JE, Downing, JR, Pui, C-H, et al. TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol 1997;15:1150–1157.CrossRefGoogle ScholarPubMed
Borkhardt, A, Cazzaniga, G, Viehmann, S, et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemias enrolled in the German and Italian multicenter therapy trials. Blood 1997;90:571–577.Google ScholarPubMed
Baruchel, A, Cayuela, JM, Ballerini, P, et al. The majority of myeloid-antigen-positive (My+) childhood B-cell precursor acute lymphoblastic leukaemias express TEL-AML1 fusion transcripts. Br J Haematol 1997;99:101–106.CrossRefGoogle ScholarPubMed
Borowitz, MJ, Rubnitz, J, Nash, M, et al. Surface antigen phenotype can predict TEL-AML1 rearrangement in childhood B-precursor ALL: a Pediatric Oncology Group study. Leukemia 1998;12:1764–1770.CrossRefGoogle ScholarPubMed
De Zen, I, Orfao, A, Cazzaniga, G, et al. Quantitative multiparameter immunophenotyping in acute lymphoblastic leukemia: correlation with specific genotype. I. ETV6/AML-1 ALLs identification. Leukemia 2000;14:1225–1231.CrossRefGoogle Scholar
Gandemer, V, Aubry, M, Roussel, M, et al. CD9 expression can be used to predict childhood TEL/AML1-positive acute lymphoblastic leukemia: proposal for an accelerated diagnostic flowchart. Leuk Res 2010;34:430–437.CrossRefGoogle ScholarPubMed
Pui, C-H, Rivera, GK, Hancock, ML, et al. Clinical significance of CD10 expression in childhood acute lymphoblastic leukemia. Leukemia 1993;7:35–40.Google ScholarPubMed
Jeha, S, Behm, F, Pei, D, et al. Prognostic significance of CD20 expression in childhood B-cell precursor acute lymphoblastic leukemia. Blood 2006;108:3302–3304.CrossRefGoogle ScholarPubMed
Raimondi, SC, Behm, FG, Roberson, PK, et al. Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol 1990;8:1380–1388.CrossRefGoogle Scholar
Borowitz, MJ, Hunger, SP, Carroll, AJ, et al. Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. Blood 1993;82:1086–1091.Google Scholar
Pui, C-H, Raimondi, SC, Hancock, ML, et al. Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19)(q23;p13) or its derivative. J Clin Oncol 1994;12:2601–2606.CrossRefGoogle ScholarPubMed
Privitera, E, Kamps, MP, Hayashi, Y, et al. Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood 1992;79:1781–1788.Google ScholarPubMed
Sang, B-C, Shi, L, Dias, P, et al. Monoclonal antibodies to the acute lymphoblastic leukemia t(1;19)-associated E2A/pbx1 chimeric protein: characterization and diagnostic utility. Blood 1997;89:2909–2914.Google Scholar
Koehler, M, Behm, FG, Shuster, J, et al. Transitional pre-B-cell acute lymphoblastic leukemia of childhood is associated with favorable prognostic clinical features and an excellent outcome: a Pediatric Oncology Group study. Leukemia 1993;7:2064–2068.Google ScholarPubMed
Shaffer, AL, RosenWald, A, Staudt, LM. Lymphoid malignancies: dark side of B-cell differentiation. Nat Rev Immunol 2002;2:920–932.CrossRefGoogle ScholarPubMed
Komrokji, R, Lancet, J, Felgar, R, et al. Burkitt's lymphoma with precursor B-cell immunophenotype and atypical morphology (atypical Burkitt's leukemia/lymphoma): case report and review of literature. Leuk Res 2003;27:561–566.CrossRefGoogle ScholarPubMed
Kansal, R, Deeb, G, Barcos, M, et al. Precursor B lymphoblastic leukemia with surface light chain immunoglobulin restriction. Am J Clin Pathol 2004;121:512–525.CrossRefGoogle ScholarPubMed
Michiels, JJ, Adraiaansen, HJ, Hagemeijer, A, et al. Tdt positive B-cell acute lymphoblastic leukemia (B-ALL) without Burkitt characteristics. Br J Haematol 1988;68:423–426.CrossRefGoogle Scholar
Chan, NPH, Ma, ESK, Wan, TSK, Chan, LC. The spectrum of acute lymphoblastic leukemia with mature B-cell phenotype. Leuk Res 2003;27:231–234.CrossRefGoogle ScholarPubMed
van Dongen, JJM, Krissansen, GW, Wolvers-Tettero, ILM, et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood 1988;71:603–612.Google ScholarPubMed
Pui, C-H, Behm, FG, Singh, B, et al. Heterogeneity of presenting prognostic features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood 1990;75:174–179.Google Scholar
Behm, FG, Fitzgerald, TJ, Patton, D, et al. CD21 (CR2) is frequently expressed on blasts of childhood T-cell acute lymphoblastic leukemia (T-ALL). In Knapp W (ed.) Leukocyte Typing IV. Oxford: Oxford University Press, 1989: 61–62.Google Scholar
Behm, FG, Pui, C-H, Rivera, GR, et al. Acute lymphoblastic leukemia (ALL) expressing NK cell-associated CD56 do not arise from NK cell progenitors. Mod Pathol 1995;8:106a.Google Scholar
Niehues, T, Kapaun, P, Harms, DO, et al. A classification on T cell selection-related phenotypes identifies a subgroup of childhood T-ALL with favorable outcomes in the COALL studies. Leukemia 1999;13:614–617.CrossRefGoogle Scholar
Pullen, J, Shuster, JJ, Link, M, et al. Significance of commonly used prognostic factors differs for children with T cell acute lymphoblastic leukemia (ALL) as compared to those with B-precursor ALL. A Pediatric Oncology Group (POG) study. Leukemia 1999;13:1696–1707.CrossRefGoogle Scholar
van Grotel, M, Meijerink, JP, van Wering, ER, et al. Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotype differences. Leukemia 2008;22:124–131.CrossRefGoogle Scholar
Babusikoa, O, Stevulova, L, Fajtova, M. Immunophenotyping parameters as prognostic factors in T-acute leukemia patients. Neoplasma 2009;56:508–513.CrossRefGoogle Scholar
Coustan-Smith, E, Mullighan, CG, Oncui, M, et al. Early T-cell precursor leukemia: a subtype of very high-risk acute lymphoblastic leukemia identified in two independent cohorts. Lancet Oncol 2009;10:147–156.CrossRefGoogle Scholar
Uckun, FM, Steinherz, PG, Sather, H, et al. CD2 expression on leukemic cells as a predictor of event-free survival after chemotherapy for T-lineage acute lymphoblastic leukemia: a Children's Cancer Group study. Blood 1996;88:4288–4295.Google ScholarPubMed
Paietta, E, Ferrando, AA, Neuberg, D, et al. Activating FLT3 mutations in CD117/KIT+ T-cell acute lymphoblastic leukemias. Blood 2004;104:558–560.CrossRefGoogle ScholarPubMed
Van Vierberghe, P, Meijerink, JPP, Stam, RW, et al. Activating FLT3 mutations in CD4+/CD8− pediatric T-cell acute lymphoblastic leukemias. Blood 2005;106:4414–4415.CrossRefGoogle Scholar
Smith, ML, Hills, RK, Grimwald, D. Independent prognostic variables in acute myeloid leukemia. Blood Rev 2011;25:39–51.CrossRefGoogle Scholar
Bennett, JM, Catovsky, D, Daniel, M-T, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group. Ann Intern Med 1985;103:626–629.Google ScholarPubMed
Lin, HI, Chen, CY, Lin, DT, et al. Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells. Clin Cancer Res 2005;11:1372–1379.CrossRefGoogle ScholarPubMed
Hurwitz, CA, Raimondi, SC, Head, D, et al. Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Blood 1992;80:3182–3188.Google Scholar
Kita, K, Nakase, K, Miwa, H, et al. Phenotypical characteristics of acute myelocytic leukemia associated with the t(8;21)(q22;q22) chromosomal abnormality: frequent expression of immature B-cell antigen CD19 together with stem cell antigen CD34. Blood 1992;80:470–477.Google Scholar
Tsuchiya, H, ElSonbaty, SS, Nagano, K, et al. Acute myeloblastic leukemia (ANLL-M2) with t(8;21)(q22;q22) variant expressing lymphoid but not myeloid surface antigens with a high number of G-CSF receptors. Leuk Res 1993;17:375–377.CrossRefGoogle Scholar
Arber, DA, Glackin, C, Lowe, G, et al. Presence of t(8;21)(q22;22) in myeloperoxidase-positive myeloid surface antigen-negative acute myeloid leukemia. Am J Clin Pathol 1997;107:68–73.CrossRefGoogle Scholar
Khalil, SH, Jackson, JM, Quri, MH, et al. Acute myeloblastic leukemia (AML-M2) expressing CD19 B-cell lymphoid antigen without myeloid surface antigens. Leuk Res 1994;18:145.CrossRefGoogle ScholarPubMed
Seshi, B, Kashyap, A, Bennett, JM. Acute myeloid leukaemia with an unusual phenotype: myeloperoxidase (+), CD13 (−), CD14 (−) and CD33 (−). Br J Haematol 1992;81:374–377.CrossRefGoogle Scholar
Garcia-Vela, JA, Martin, M, Delgado, I, et al. Acute myeloid leukemia M2 and t(8;21)(q22;q22) with an unusual phenotype: myeloperoxidase (+), CD13 (−), CD14 (−), and CD33(−). Ann Hematol 1999;78:237–240.CrossRefGoogle Scholar
Lee, JJ, Chung, IJ, Yang, DH, et al. Clinical significance of CD56 expression in patients with acute myeloid leukemia. Leuk Lymphoma 2002;43:1897–1899.CrossRefGoogle ScholarPubMed
Rubnitz, JE, Raimondi, SC, Halbert, AR, et al. Characteristics and outcome of t(8;21) positive childhood acute myeloid leukemia: a single institution's experience. Leukemia 2002;16:2072–2077.CrossRefGoogle Scholar
Baer, MR, Stewart, CC, Lawrence, D, et al. Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood 1997;90:1643–1648.Google Scholar
Valbuena, JR, Medeiros, LJ, Rassidakis, GZ, et al. Expression of B cell-specific activator protein/PAX5 in acute myeloid leukemia with t(8;21)(q22;22). Am J Clin Pathol 2006;126:235–240.CrossRefGoogle Scholar
Tiacci, E, Pileri, S, Orleth, A, et al. PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t(8;21)-acute myeloid leukemia. Cancer Res 2004;64:7399–7404.CrossRefGoogle Scholar
Zanjani, DJ, Hibbard, M, Davis, BH. Immunophenotypic profile predictive of KIT activating mutations in AML1-ETO leukemia. Am J Clin Pathol 2007;128:550–557.Google Scholar
Paietta, F. Expression of cell-surface antigens in acute promyelocytic leukemia. Best Pract Res Clin Haematol 2003;16:369–385.CrossRefGoogle Scholar
Orfao, A, Chillon, MC, Bortoluci, AM, et al. The flow cytometric pattern of CD34, CD15 and CD13 expression in acute myeloblastic leukemia is highly characteristic of the presence of PML-RARA gene rearrangements. Haematologica 1999;84:405–412.Google Scholar
Paietta, E, Goloubeva, O, Neuberg, D, et al. A surrogate marker profile for PML/RAR alpha expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic markers and molecular subtypes. Cytometry 2004;59B:1–9.CrossRefGoogle Scholar
Stasi, R, Bruno, A, Venditti, A, et al. A microgranular variant of acute promyelocytic leukemia with atypical morpho-cytochemical features and an early myeloid immunophenotype. Leuk Res 1997;21:575–580.CrossRefGoogle ScholarPubMed
Exner, M, Thalhammer, R, Kapiotis, S, et al. The “typical” immunophenotype of acute promyelocytic leukemia (APL-M3): does it prove true for the M3-variant?Cytometry 2000;42:106–109.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Foley, R, Soamboonsrup, P, Carter, RF, et al. CD34-positive acute promyelocytic leukemia is associated with leukocytosis, microgranular/hypogranular morphology, expression of CD2 and Bcr3 isoform. Am J Hematol 2001;67:34–41.CrossRefGoogle ScholarPubMed
Albano, F, Mestice, A, Pannunzio, A, et al. The biological characteristics of CD34+CD2+ adult acute promyelocytic leukemia and the CD34−CD2− hypergranular (M3) and microgranular (M3v) phenotypes. Haematologica 2006;91:311–316.Google ScholarPubMed
Villamor, N, Costa, D, Aymerich, M, et al. Rapid diagnosis of acute promyelocytic leukemia by analyzing the immunocytochemical pattern of the PML protein with the monoclonal antibody PG-M3. Am J Clin Pathol 2000;114:786–792.CrossRefGoogle ScholarPubMed
Murray, CK, Estey, E, Paietta, E, et al. CD56 expression in acute promyelocytic leukemia: a possible indicator of poor treatment outcome. J Clin Oncol 1999;17:293–297.CrossRefGoogle ScholarPubMed
Ferrara, F, Morabito, F, Martino, B, et al. CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy. J Clin Oncol 2000;18:1295–1300.CrossRefGoogle ScholarPubMed
Di Bona, E, Sartori, R, Zambello, R, et al. Prognostic significance of CD56 antigen expression in acute myeloid leukemia. Haematologica 2002;87:250–256.Google ScholarPubMed
Biondi, A, Luciano, A, Bassan, R, et al. CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML breakpoint. Leukemia 1995;9:1461–1466.Google Scholar
Rizzatti, EG, Portieres, FL, Martins, SLR, et al. Microgranular and t(11;17)/PLZF–RARα variants of acute promyelocytic leukemia also present the flow cytometric pattern of CD13, CD34, and CD15 expression characteristic of PML-RARA gene rearrangement. Am J Hematol 2004;76:44–51.CrossRefGoogle Scholar
Nagendra, S, Meyerson, H, Skallerud, G, Rosenthal, N. Leukemias resembling acute promyelocytic leukemia, microgranular variant. Am J Clin Pathol 2002;117:651–657.CrossRefGoogle ScholarPubMed
Borrow, J, Shipley, J, Howe, K, et al. Molecular analysis of simple variant translocations in acute promyelocytic leukemia. Genes Chromosomes Cancer 1994;9:234–243.CrossRefGoogle ScholarPubMed
Head, DR, Behm, FG, Raimondi, SC, et al. Genetic heterogeneity of acute myeloid leukemia (AML) with FAB-AML M3 morphology. Mod Pathol 1995;8:112A.Google Scholar
Scott, AA, Head, DR, Kpecky, KJ, et al. HLA-D−, CD33+, CD56+, CD16− myeloid/natural killer cell acute leukemia: a previously unrecognized form of acute leukemia potentially misdiagnosed as French–American–British acute myeloid leukemia-M3. Blood 1994;84:2824–2825.Google ScholarPubMed
Rizzatti, EG, Garcia, AB, Portieres, FL, et al. Expression of CD117 and CD11b in bone marrow can differentiate acute promyelocytic leukemia for recovering benign myeloid proliferation. Am J Clin Pathol 2002;118:31–37.CrossRefGoogle ScholarPubMed
Boccuni, P, Di Noto, R, Lo Pardo, C, et al. CD66c antigen expression is myeloid restricted in normal bone marrow but is a common feature of CD10+ early-B-cell malignancies. Tissue Antigens 1998;52:1–8.CrossRefGoogle ScholarPubMed
Veillon, DM, Nordberg, ML, Neupane, P, Cotelingam, JD. Spontaneous resolution of RARalpha rearrangement in bone marrow recovery with a predominance of CD117- and CD11b-negative promyelocytes. Am J Clin Pathol 2002;118:956–965.Google ScholarPubMed
Paietta, E, Wiernik, PH, Andersen, J, et al. Acute myeloid leukemia M4 with inv(16)(p13q22) exhibits a specific immunophenotype with CD2 expression. Blood 1993;82:2595.Google ScholarPubMed
Liu, PP, Wijmenga, C, Hajra, A, et al. Identification of the chimeric protein product of the CBFB-MYHII fusion gene in inv(16) leukemia cells. Genes Chromosomes Cancer 1996;16:77–87.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Viswanatha, DS, Chen, I, Liu, PP, et al. Characterization and use of an antibody to the CBFβ-SMMHC protein in inv(16)/t(16;16)-associated acute myeloid leukemias. Blood 1998;91:1882–1890.Google Scholar
Slovak, ML, Gundacker, H, Bloomfield, CD, et al. A retrospective study of 69 patients with t(6;9)(p23;q34) AML emphasizes the need for a prospective, multicenter initiative for rare “poor prognosis” myeloid malignancies. Leukemia 2006;20:1295–1297.CrossRefGoogle Scholar
Chi, Y, Lindgren, V, Quigley, S, Gaitonde, S. Acute myelogenous leukemia with t(6;9)(p23;q34) and marrow basophilia: an overview. Arch Pathol Lab Med 2008;132:1835–1837.Google Scholar
Dunphy, CH, Tang, W. The value of CD64 expression in distinguishing acute myeloid leukemia with monocytic differentiation from other subtypes of acute myeloid leukemia. Arch Pathol Lab Med 2007;131:748–754.Google ScholarPubMed
Garcia, C, Gardner, D, Reichard, KK. CD163: a specific immunohistochemical marker for acute myeloid leukemia with monocytic differentiation. Appl Immunohistochem Mol Morphol 2008;16:417–421.CrossRefGoogle ScholarPubMed
Ross, ME, Mahfouz, R, Onciu, M, et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004;104:3679–3687.CrossRefGoogle ScholarPubMed
Betz, SA, Foucar, K, Head, DR, et al. False-positive flow cytometric platelet glycoprotein IIb/IIIa expression in myeloid leukemias secondary to platelet adherence to blasts. Blood 1992;79:2399–2403.Google ScholarPubMed
Krissansen, GW, Lucas, CM, Stomski, FC, et al. Blood leukocytes bind platelet glycoprotein (IIb-IIIa) but do not express the vitronectin receptor. Int Immunol 1990;2:267–277.CrossRefGoogle Scholar
Delgado, J, Morado, M, Jimenez, MC, et al. CD56 expression in myeloperoxidase-negative FAB M5 acute myeloid leukemia. Am J Hematol 2002;69:28–30.CrossRefGoogle ScholarPubMed
Raspadori, D, Damiani, D, Lenoci, M, et al. CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis. Leukemia 2001;15:1161–1164.CrossRefGoogle ScholarPubMed
Yamada, S, Hongo, T, Okada, S, et al. Distinctive multidrug sensitivity and outcome of acute erythroblastic and megakaryoblastic leukemia in children with Down syndrome. Int J Hematol 2001;74:428–436.CrossRefGoogle ScholarPubMed
Hadjiyannakis, A, Fletcher, WA, Lebrun, DP, et al. Congenital erythroleukemia in a neonate with severe hypoxic ischemic encephalopathy. Am J Perinatol 1998;15:689–694.CrossRefGoogle Scholar
Liu, W, Hasserjian, RP, Hu, Y, et al. Pure erythroid leukemia: a reassessment of the entity using the 2008 World Health Organization classification. Mod Pathol 2010;24:375–383.CrossRefGoogle ScholarPubMed
Breton-Gorius, J, Villeval, JL, Mitjavila, MT, et al. Ultrastructural and cytochemical characterization of blasts from early erythroblastic leukemias. Leukemia 1987;1:173–181.Google ScholarPubMed
Garand, R, Duchayne, E, Blanchard, D, et al. Minimally differentiated erythroleukemia (AML M6 “variant”): a rare subset of AML distinct from AML M6. Br J Haematol 1995;90:868–875.CrossRefGoogle ScholarPubMed
Day, DS, Gay, JN, Kraus, JS, et al. Erythroleukemia of childhood and infancy: a report of two cases. Ann Clin Lab Sci 1997;27:142–150.Google ScholarPubMed
Breton-Gorius, J, Villeval, JL, Kieffer, N, et al. Limits of phenotypic markers for the diagnosis of megakaryoblastic leukemia. Blood Cells 1989;15:259–277.Google Scholar
Debili, N, Coulombel, L, Croisille, L, et al. Characterization of a bipotent erythromegakaryocytic progenitor in human bone marrow. Blood 1996;88:1284–1296.Google Scholar
Bellucci, S, Han, ZC, Pidard, D, et al. Identification of a normal human bone marrow cell population co-expressing megakaryocytic and erythroid markers in culture. Eur J Haematol 1992;48:259–265.CrossRefGoogle ScholarPubMed
Muroi, K. Tarumoto, T, Akioka, T, et al. Sialyl-Tn- and neuron-specific enolase-positive minimally differentiated erythroleukemia. Intern Med 2000;39:761–762.CrossRefGoogle ScholarPubMed
Ribeiro, RC, Oliveira, MSP, Fairclough, D, et al. Acute megakaryoblastic leukemia in children and adolescents: a retrospective analysis of 24 cases. Leuk Lymphoma 1993;10:299–306.CrossRefGoogle ScholarPubMed
Athale, UH, Razzouk, BI, Raimondi, SC, et al. Biology and outcome of acute megakaryoblastic leukemia: a single institution's experience. Blood 2001;97:3727–3732.CrossRefGoogle ScholarPubMed
Kafer, G, Willer, A, Ludwig, W, et al. Intracellular expression of CD61 precedes surface expression. Ann Hematol 1999;78:472–474.Google ScholarPubMed
Duchayne, E, Fenneteau, O, Pages, M-P, et al. Acute megakaryoblastic leukaemia: a national clinical and biological study of 53 adult and childhood cases by the Groupe Francais d'Hematologie Cellulaire (GFHC). Leuk Lymphoma 2003;44:39–58.CrossRefGoogle Scholar
Quentmeier, H, Zaborski, M, Graf, G, et al. Expression of the receptor for MPL and proliferative effects of its ligand thrombopoietin on human leukemic cells. Leukemia 1996;10:297–310.Google Scholar
Lion, T, Haas, OA, Harbott, J, et al. The translocation t(1;22)(p13;q13) is a nonrandom marker specifically associated with acute megakaryocytic leukemia in young children. Blood 1992;79:3325–3330.Google Scholar
Chan, WC, Carroll, A, Alvarado, CS, et al. Acute megakaryoblastic leukemia in infants with t(1;22)(p13;q13) abnormality. Am J Clin Pathol 1992;98:214–221.CrossRefGoogle Scholar
Helleberg, C, Knudsen, H, Hansen, PB, et al. CD34+ megakaryoblastic leukaemic cells are CD38−, but CD61+ and glycophorin A+; improved criteria for diagnosis of AML-M7?Leukemia 1997;11:830–834.CrossRefGoogle ScholarPubMed
Athale, UH, Kaste, SC, Razzouk, BT, et al. Skeletal manifestations of pediatric acute megakaryoblastic leukemia. J Pediatr Hematol Oncol 2002;24:561–565.CrossRefGoogle ScholarPubMed
Das, DK, Shome, DK, Garg, A, et al. Pediatric acute leukemia presenting as bilateral renal enlargement. Report of a case with fine aspiration cytologic features suggestive of megakaryocytic differentiation. Acta Cytol 2000;44:819–823.CrossRefGoogle ScholarPubMed
Bennett, JM, Catovsky, D, Daniel, M-T, et al. Proposal for the recognition of minimally differentiated acute myeloid leukemia (AML-M0). Br J Haematol 1991;78:325–329.CrossRefGoogle Scholar
Kaleem, Z, White, G. Diagnostic criteria for minimally differentiated acute myeloid leukemia (AML-M0). Evaluation and a proposal. Am J Clin Pathol 2001;115:876–884.CrossRefGoogle Scholar
Stasi, R, Amadori, S. AML-M0: a review of laboratory features and proposal of new diagnostic criteria. Blood Cells Mol Dis 1999;25:120–129.CrossRefGoogle ScholarPubMed
Behm, FG. Immunotyping. In Pui, C-H (ed.) Childhood Leukemias, 2nd edn. Cambridge, UK: Cambridge University Press, 2006: 150–209.CrossRefGoogle Scholar
Praxedes, MK, de Oliveira, LZ, Pereira, WDV, et al. Monoclonal antibody anti-MPO is useful in recognizing minimally differentiated acute myeloid leukaemia. Leuk Lymphoma 1994;12:233–239.CrossRefGoogle ScholarPubMed
Venditti, A, del Poeta, G, Stasi, R, et al. Biological profile of 23 cases of minimally differentiated acute myeloid leukemia (AML-M0) and its clinical implications. Blood 1996;87:418–420.Google ScholarPubMed
Venditti, A, Del Poeta, G, Buccisano, F, et al. Minimally differentiated acute myeloid leukemia (AML-MO): comparison of 25 cases with other French–American–British subtypes. Blood 1997;89:621–629.Google Scholar
Villamor, N, Zarco, MA, Rozman, M, et al. Acute myeloblastic leukemia with minimal myeloid differentiation: phenotypical ultrastructural characteristics. Leukemia 1998;12:1071–1075.CrossRefGoogle ScholarPubMed
Kotylo, PK, Seo, IS, Smith, FO, et al. Flow cytometric immunophenotypic characterization of pediatric and adult minimally differentiated acute myeloid leukemia (AML-M0). Am J Clin Pathol 2000;113:193–200.CrossRefGoogle Scholar
Huang, SY, Tang, JL, Jou, ST, et al. Minimally differentiated acute myeloid leukemia in Taiwan: predominantly occurs in children less than 3 years and adults between 51 and 70 years. Leukemia 1999;13:1506–1512.CrossRefGoogle ScholarPubMed
Cohen, PL, Hoyer, JD, Kurtin, PJ, et al. Acute myeloid leukemia with minimal differentiation. A multiple parameter study. Am J Clin Pathol 1998;109:32–38.CrossRefGoogle ScholarPubMed
Béné, MC, Bernier, M, Casasnovas, RO, et al. Acute myeloid leukaemia M0: haematological, immunophenotypic and cytogenetic characteristics and their prognostic significance: an analysis in 241 patients. Br J Haematol 2001;113:737–745.CrossRefGoogle ScholarPubMed
Amadori, S, Venditti, A, Del Poeta, G, et al. Minimally differentiated acute myeloid leukemia (AML M0): a distinct clinico-biologic entity with poor prognosis. Ann Hematol 1996;72:208–215.CrossRefGoogle ScholarPubMed
Venditti, A, Del Poeta, G, Stasi, R, et al. Minimally differentiated acute myeloid leukemia (AML M0): cytochemical, immunophenotypic and cytogenetic analysis of 19 cases. Br J Haematol 1994;88:784–793.CrossRefGoogle ScholarPubMed
Carlson, KM, Vignon, C, Bohlander, S, et al. Identification and molecular characterization of CALM/AF10 fusion products in T cell acute lymphoblastic leukemia and acute myeloid leukemia. Leukemia 2000;14:100–104.CrossRefGoogle Scholar
Dreyling, MH, Schrader, K, Fonatsch, C, et al. MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. Blood 1998;91:4662–4667.Google Scholar
Zipursky, A. Transient leukemia: a benign form of leukaemia in newborn infants with trisomy 21. Br J Haematol 2003;120:930–938.CrossRefGoogle ScholarPubMed
Shivdasani, RA. Molecular and transcriptional regulation of megakaryocyte differentiation. Stem Cells 2001;19:397–407.CrossRefGoogle ScholarPubMed
Gurbuxani, S, Vyas, P, Crispino, JD. Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood 2004;103:399–406.CrossRefGoogle ScholarPubMed
Hitzler, J, Cheung, J, Li, Y, et al. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood 2003;101:4301–4304.CrossRefGoogle ScholarPubMed
Groet, J, McElwaine, S, Spinelli, M, et al. Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet 2003;361:1617–1620.CrossRefGoogle ScholarPubMed
Xu, G, Nagano, M, Kanezak, R, et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down's syndrome. Blood 2003;102:2960–2968.CrossRefGoogle Scholar
Issacs, H, Jr. Fetal and neonatal leukemia. J Pediatr Hematol Oncol 2003;25:348–361.CrossRefGoogle Scholar
Pui, CH, Kane, JR, Crist, WM. Biology and treatment of infant leukemias. Leukemia 1995;9:762–769.Google ScholarPubMed
Heikinheimo, M, Pakkala, S, Juvonen, E, et al. Immuno- and cytochemical- characterization of congenital leukemia. Med Pediatr Oncol 1994;22:279–282.CrossRefGoogle ScholarPubMed
Tao, J, Valderrama, E, Kahn, L. Congenital acute T lymphoblastic leukemia: report of a case with immunohistochemical and molecular characterization. J Clin Pathol 2000;53:150–152.CrossRefGoogle Scholar
McCoy, JP, Overton, WR. Immunophenotyping of congential leukemia. Cytometry 1995;22:85–88.CrossRefGoogle Scholar
Carroll, A, Civin, C, Schneider, N, et al. The t(1;22)(p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group study. Blood 1991;78:48–52.Google Scholar
McCoy, JP, Travis, SF, Blumstein, L, et al. Congenital leukemia: report of two cases. Cytometry 1995;22:89–92.CrossRefGoogle ScholarPubMed
Bresters, D, Reus, AC, Veerman, AJ, et al. Congenital leukaemia: the Dutch experience and review of the literature. Br J Haematol 2002;117:513–524.CrossRefGoogle ScholarPubMed
Cimino, G, Rapanotti, MC, Rivolta, A, et al. Prognostic relevance of ALL-1 gene rearrangement in infant acute leukemias. Leukemia 1995;9:391–395.Google ScholarPubMed
Biondi, A, Cimino, G, Pieters, R, Pui, C-H. Biologic and therapeutic aspects of infant leukemia. Blood 2000;96:24–33.Google Scholar
Pui, CH, Rubinitz, JE, Hancock, ML, et al. Reappraisal of the clinical and biologic significance of myeloid-associated antigen expression in childhood acute lymphoblastic leukemia. J Clin Oncol 1998;16:3768–3773.CrossRefGoogle ScholarPubMed
Al-Mawali, A, Gillis, D, Hissaria, P, Lewis, I. Incidence, sensitivity, and specificity of leukemia-associated phenotypes in acute myeloid leukemia using specific five-color multiparameter flow cytometry. Am J Clin Pathol 2008;129:934–945.CrossRefGoogle ScholarPubMed
Rubnitz, JE, Onciu, M, Pounds, S, et al. Acute mixed lineage leukemia in children: the experience of St. Jude Children's Research Hospital. Blood 2009;113:5083–5089.CrossRefGoogle ScholarPubMed
Campana, D, Hansen-Hagge, TE, Matutes, E, et al. Phenotypic, genotypic, cytochemical, and ultrastructural characterization of acute undifferentiated leukemia. Leukemia 1990;4:620–624.Google ScholarPubMed
van't Veer, MB. The diagnosis of acute leukemia with undifferentiated or minimally differentiated blasts. Ann Hematol 1992;64:161–165.CrossRefGoogle ScholarPubMed
Shende, AC, Bonagura, VR, Cheah, MS, et al. Acute undifferentiated leukemia (AUL): a case report and a proposed system of classification. Ann J Hematol 1992;40:234–237.CrossRefGoogle Scholar
Heil, G, Ganser, A, Raghavachar, A, et al. Induction of myeloperoxidase in five cases of acute unclassified leukemia. Br J Haematol 1988;68:23–32.CrossRefGoogle Scholar
van der Schoot, CE, Visser, FJ, Tetteroo, PAT, et al. In-vitro differentiation of cells of patients with acute undifferentiated leukemia. Br J Haematol 1989;71:351–355.CrossRefGoogle Scholar
Testa, U, Torelli, GF, Riccioni, R, et al. Human acute stem cell leukemia with multilineage differentiation potential via cascade activation of growth factor receptors. Blood 2002;99:4634–4637.CrossRefGoogle Scholar
Cuneo, A, Ferrant, A, Michaux, J-L, et al. Cytogenetic and clinicobiological features of acute leukemia with stem cell phenotype: study of nine cases. Cancer Genet Cytogenet 1996;92:31–36.CrossRefGoogle ScholarPubMed
Feuillard, J, Jacob, MC, Valensi, F, et al. Clinical and biologic features of CD(+)CD56(+) malignancies. Blood 2002;99:1556–1563.CrossRefGoogle Scholar
Jegalian, A, Buxbaum, NP, Facchetti, F, et al. Blastic plasmacytoid dendritic cell neoplasm of children: diagnostic features and clinical implications. Haematologica 2009;95:1873–1879.CrossRefGoogle Scholar
Reichard, KK, Burks, EJ, Foucar, MK, et al. CD4(+)CD56(+) lineage-negative malignancies are rare tumors of plasmacytoid dendritic cells. Am J Surg Pathol 2005;29:1274–1283.CrossRefGoogle ScholarPubMed
Herling, M, Jones, D. CD4+/CD56+ hematodermic tumor. The features of an evolving entity and its relationship to dendritic cells. Am J Clin Pathol 2007;127:687–700.CrossRefGoogle ScholarPubMed
Reimer, P, Rudiger, T, Kaemer, D, et al. What is CD4+CD56+ malignancy and how should it be treated?Transplant 2003;32:637–646.Google ScholarPubMed
Petrella, T, Bagot, M, Willemze, R, et al. Blastic NK-cell lymphomas (agranular CD4+CD56+ hematodermic neoplasms): a review. Am J Clin Pathol 2005;123:662–675.CrossRefGoogle ScholarPubMed
Sevilla, DW, Coloval, AI, Emmons, FN, et al. Hematogones: a review and update. Leuk Lymphoma 2010;51:10–19.CrossRefGoogle ScholarPubMed
Babusikova, O, Zeleznikova, T, Kirschnerova, G, Kankuri, E. Hematogones in acute leukemia during and after therapy. Leuk Lymphoma 2008;49:1935–1944.CrossRefGoogle ScholarPubMed
McKenna, RW, Asplund, SL, Kroft, SH. Immunophenotype analysis of hematogones (B-lymphocyte precursors) and neoplastic lymphoblasts by 4-color flow cytometry. Leuk Lymphoma 2004;45:277–285.CrossRefGoogle ScholarPubMed
Jmili, AB, Nsaibia, S, Jacob, MC, et al. Immunophenotypic analysis of bone marrow B lymphocyte precursors (hematogones) by flow cytometry. Clin Lab Sci 2009;22:208–215.Google Scholar
Sevilla, DW, Emmons, FN, Bai, X, et al. The pattern of cytoplasmic IgM expression in the context of the three currently recognized maturational stages of hematogones. Leuk Lymphoma 2009;50:642–644.CrossRefGoogle Scholar
Oliveira, JB, Bleesing, JJ, Dianzani, U, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood 2010;116:35–40.CrossRefGoogle ScholarPubMed
Teachey, DT, Seif, AE, Grupp, SA. Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Br J Haematol 2010;148:205–216.CrossRefGoogle Scholar
Bleesing, JJH, Brown, MR, Straus, SE, et al. Immunophenotypic profiles in families with autoimmune lymphoproliferative syndrome. Blood 2001;98:2466–2473.CrossRefGoogle ScholarPubMed
Liang, R, Chan, TK, Todd, D. Childhood acute lymphoblastic leukemia and aplastic anemia. Leuk Lymphoma 1994;13:411–415.CrossRefGoogle Scholar
Matloub, YH, Brunning, RD, Arthur, DC, et al. Severe aplastic anemia preceding acute lymphoblastic leukemia. Cancer 1993;71:264–268.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Horsley, SW, Colman, S, McKinley, M, et al. Genetic lesions in a preleukemic aplasia phase in a child with acute lymphoblastic leukemia. Genes Chromosomes Cancer 2008;47:333–340.CrossRefGoogle Scholar
Lamy, T, Loughran, TP, Jr. Clinical features of large granular lymphocyte leukemia. Semin Hematol 2003;40:185–195.CrossRefGoogle ScholarPubMed
Sokol, L, Loughran, TP, Jr. Large granular lymphocyte leukemia. Oncologist 2006;11:263–273.CrossRefGoogle ScholarPubMed
Bareau, B, Rey, J, Hamidou, M, et al. Analysis of a French cohort of patients with large granular lymphocyte leukemia: a report on 229 cases. Haematologica 2010;95:1534–1541.CrossRefGoogle ScholarPubMed
Macon, WR, Williams, ME, Greer, JP, et al. Natural killer-like T-cell lymphomas: aggressive lymphomas of T-large granular lymphocytes. Blood 1996;87:1474–1483.Google ScholarPubMed
Le Deist, F, Basile, G, Coulombel, L, et al. A familial occurrence of natural killer cell-T-lymphocyte proliferation disease in two children. Cancer 1991;67:2510–2517.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Plantanias, LC, Larson, RA, Vardiman, JW, et al. Complex rearrangement of the T cell receptor in large granular lymphocytosis associated with myeloid suppression. Leukemia 1990;4:863–865.Google Scholar
Boeckx, N, Uyttebroeck, A, Langerak, AW, et al. Clonal proliferation of T-Cell large granular lymphocytes. Pediatr Blood Cancer 2004;42:275–277.CrossRefGoogle ScholarPubMed
Manns, A, Hisada, M, La Grenada, L. Human T-lymphotropic virus type 1 infection. Lancet 1999;353:1051–1058.CrossRefGoogle Scholar
Boxus, M, Willems, L. Mechanisms of HTLV-I persistence and transformation. Br J Cancer 2009;101:1497–1501.CrossRefGoogle Scholar
Yoshida, M. Molecular approach to human leukemia: isolation and characterization of the first human retrovirus HTLV-I and its impact on tumorigenesis in adult T-cell leukemia. Proc Jpn Acad (Ser B) 2010;86:117–129.CrossRefGoogle ScholarPubMed
Siegel, RS, Gartenhaus, RB, Kuzel, TM. Human T-cell lymphotropic-I-associated leukemia/lymphoma. Curr Treat Options Oncol 2001;2:291–300.CrossRefGoogle ScholarPubMed
Matsuoka, M, Jeang, KT. Human T-cell leukemia virus type 1 (HTLV-I) infectivity and cellular transformation. Nat Rev Cancer 2007;7:270–280.CrossRefGoogle ScholarPubMed
Verdonck, K, Gonzales, E, van Dooren, S, et al. Human T-lymphotropic virus 1: recent knowledge about an ancient infection. Lancet 2007;7:266–281.CrossRefGoogle ScholarPubMed
Fort, JA, Graham-Pole, J, Mottshaw, G. Adult-type T-cell lymphoma in an adolescent with human T-lymphotropic virus type 1 seropositivity. Med Pediatr Oncol 1989;17:236–238.CrossRefGoogle Scholar
Lin, BT-Y, Musset, M, Székely, A-M, et al. Human T-cell lymphotropic virus-1-positive T-cell leukemia/lymphoma in a child. Arch Pathol Lab Med 1997;121:182–186.Google Scholar
Vilmer, E, Le Deist, F, Fischer, A, et al. Smouldering T lymphoma related to HTLV-I in a Sicilian child. Lancet 1985;ii:1301.CrossRefGoogle Scholar
de Oliveira, P, Matutes, E, Famadas, LC, et al. Adult T-cell leukaemia/lymphoma in Brazil and its relation to HTLV-I. Lancet 1990;336:987–990.CrossRefGoogle ScholarPubMed
Foucar, K, Carroll, TJ, Tannous, R, et al. Nonendemic adult T-cell leukemia/lymphoma in the United States: report of two cases and review of the literature. Am J Clin Pathol 1985;83:18–26.CrossRefGoogle ScholarPubMed
Broniscer, A, Ribeiro, RC, Srinivas, RV, et al. An adolescent with HTLV-1-associated adult T cell leukemia treated with interferon-alpha and zidovudine. Leukemia 1996;10:1244–1254.Google Scholar
Pombo-de-Oliveira, MS, Dobbin, JA, Laureiro, P, et al. Genetic mutation and early onset of T-cell leukemia in pediatric patients infected at birth with HTLV-I. Leuk Res 2002;26:155–161.CrossRefGoogle ScholarPubMed
Bittencourt, AL, da Gracas Vieira, M, Brites, CR, et al. Adult T-cell leukemia/lymphoma in Bahia, Brazil. Analysis of prognostic factors in a group of 70 patients. Am J Clin Pathol 2007;128:875–882.CrossRefGoogle Scholar
Bittencourt, AL, Primo, J, Oliveira, M. Manifestations of the human T-cell lymphotropic virus type I infection in childhood and adolescence. J Pediatr (Rio J) 2006;82:411–420.CrossRefGoogle ScholarPubMed
Foucar, K. Mature T-cell leukemia including T-prolymphocytic leukemia, adult T-cell leukemia/lymphoma, and Sezary syndrome. Am J Clin Pathol 2007;127:496–510.CrossRefGoogle ScholarPubMed
Bittencourt, AL, Barbosa, HS, Requiáo, C, et al. Adult T-cell leukemia/lymphoma with a mixed CD4+ and CD8+ phenotype and indolent course. J Clin Oncol 2007;25:2480–2482.CrossRefGoogle ScholarPubMed
Yokote, T, Akioka, T, Oka, S, et al. Flow cytometric immunophenotyping of adult T-cell leukemia/lymphoma using CD3 gating. Am J Clin Pathol 2005;124:199–204.CrossRefGoogle ScholarPubMed
Weidmann, E. Hepatosplenic T cell lymphoma. A review on 45 cases since the first report describing the disease as a distinct lymphoma entity in 1990. Leukemia 2000;14:991–997.CrossRefGoogle ScholarPubMed
Lami, M, Almeida, J, Santos, AH, et al. Immunophenotype analysis of the TCR-Vbeta repertoire in 98 persistent expansions of CD3+/TCR-alphabeta+ large granular lymphocytes. Am J Clin Pathol 2001;159:1861–1868.Google Scholar
Lai, R, Larratt, LM, Etches, W, et al. Hepatosplenic T-cell lymphoma of alphabeta lineage in a 16-year-old boy presenting with hemolytic anemia and thrombocytopenia. Am J Surg Pathol 2000;24:45–63.CrossRefGoogle Scholar
Suarez, F, Wlodarska, I, Rigal-Huguet, F, et al. Hepatosplenic alphabeta T-cell lymphoma: an unusual case with clinical, histologic, and cytogenetic features of gammadelta hepatosplenic T-cell lymphoma. Am J Surg Pathol 2000;24:1027–1032.CrossRefGoogle ScholarPubMed
Cooke, CB, Krenacs, L, Steltler-Stevenson, M, et al. Hepatosplenic T-cell lymphoma: a distinct clinicopathologic entity of cytotoxic gamma delta T-cell origin. Blood 1996;88:4265–4274.Google ScholarPubMed
Macon, WR, Levy, NB, Kurtin, PJ, et al. Hepatosplenic αβ T-cell lymphomas. Am J Surg Pathol 2001;25:285–296.CrossRefGoogle ScholarPubMed
Farcet, J, Gaulard, P, Marolleau, J, et al. Hepatosplenic T-cell lymphoma: sinusal/sinusoidal localization of malignant cells expressing the T-cell receptor αβ. Blood 1990;75:2213–2219.Google Scholar
Francosis, A, Lesesve, J-F, Stamatoullas, A, et al. Hepatosplenic gamma/delta T-cell lymphoma: a report of two cases in immunocompromised patients associated with isochromosome 7q. Am J Surg Pathol 1997;21:781–790.CrossRefGoogle Scholar
Garcia-Sanchez, F, Menarguez, J, Cristobal, E, et al. Hepatosplenic gamma-delta T-cell malignant lymphoma: report of the first case in childhood, including molecular minimal residual disease follow-up. Br J Haematol 1995;90:943–946.CrossRefGoogle ScholarPubMed
Nosari, A, Oreste, PL, Biondi, A, et al. Hepato-splenic gammadelta T-cell lymphoma: a rare entity mimicking the hemophagocytic syndrome. Am J Hematol 1999;60:61–65.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Coventry, S, Punnett, HH, Tomeczak, EZ, et al. Consistency of isochromosome 7q and trisomy 8 in hepatosplenic gammadelta T-cell lymphoma: detection by fluorescence in situ hybridization of a splenic touch-preparation from a pediatric patient. Pediatr Dev Pathol 1999;2:478–483.CrossRefGoogle ScholarPubMed
Rossbach, HC, Chamizo, W, Dumont, DP, et al. Hepatosplenic gamma/delta T-cell lymphoma with isochromosome 7q, translocation t(7;21), and tetrasomy 8 in a 9-year-old girl. J Pediatr Hematol Oncol 2002;24:154–157.CrossRefGoogle Scholar
Vega, F, Medeiros, LJ, Bueso-Ramos, C, et al. Hepatosplenic gamma/delta T-cell lymphoma in bone marrow. A sinusoidal neoplasm with blastic cytologic features. Am J Clin Pathol 2001;116:410–419.CrossRefGoogle ScholarPubMed
Salhany, KE, Feldman, M, Kahn, MJ, et al. Hepatosplenic gammadelta T-cell lymphoma: ultrastructural, immunophenotypic, and functional evidence for cytotoxic T lymphocyte differentiation. Hum Pathol 1997;28:674–685.CrossRefGoogle ScholarPubMed
Felger, RE, Macon, WR, Kinney, MC, et al. TIA-1 expression in lymphoid neoplasms, identification of subsets with cytotoxic T lymphocyte or natural killer cell differentiation. Am J Pathol 1997;150:1893–1900.Google Scholar
Boulland, ML, Kanavaros, P, Wechsler, J, et al. Cytotoxic protein expression in natural killer cell lymphomas and in alpha beta and gamma delta peripheral T-cell lymphomas. J Pathol 1997;183:432–439.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Przybylski, GK, Wu, H, Macon, WR, et al. Hepatosplenic and subcutaneous panniculitis-like gamma/delta T cell lymphomas are derived from different Vdelta subsets of gamma/delta T lymphocytes. J Mol Diagn 2000;2:11–19.CrossRefGoogle ScholarPubMed
Weidmann, E, Hinz, T, Klein, S, et al. Cytotoxic hepatosplenic gammadelta T-cell lymphoma following acute myeloid leukemia bearing two distinct gamma chains of the T-cell receptor. Biologic and clinical features. Haematologica 2000;85:1024–1031.Google ScholarPubMed
Sandlund, JT, Behm, FG. Non-Hodgkin lymphomas in children. In Greer JP, Foerster J, Lukens JN, et al. (eds.) Wintrobe's Clinical Hematology, 12th edn. Philadelphia, PA: Wolters Kluwer, 2009:2195–2213.Google Scholar
Stein, H, Foss, H-D, Durkop, H, et al. CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic and clinical features. Blood 2000;96:3681–3695.Google ScholarPubMed
Morris, SW, Kirstein, MN, Valentine, MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994;263:1281–1284.CrossRefGoogle ScholarPubMed
Kinney, MC, Collins, RD, Greer, JP, et al. A small-cell-predominant variant of primary Ki-1 (CD30)+ T-cell lymphoma. Am J Surg Pathol 1993;17:859–868.CrossRefGoogle ScholarPubMed
Anderson, MM, Ross, CW, Singleton, TP, et al. Ki-1 anaplastic large cell lymphoma with a prominent leukemic phase. Hum Pathol 1996;27:1093–1095.CrossRefGoogle ScholarPubMed
Villamor, N, Rozman, M, Esteve, J, et al. Anaplastic large-cell lymphoma with rapid evolution to leukemic phase. Ann Hematol 1999;78:478–482.CrossRefGoogle ScholarPubMed
Bayle, C, Charpentier, A, Duchayne, E, et al. Leukaemic presentation of small cell variant anaplastic large cell lymphoma: report of four cases. Br J Haematol 1999;104:680–688.CrossRefGoogle ScholarPubMed
Meech, SJ, McGavran, K, Odom, LF, et al. Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomysin 4–anaplastic lymphoma kinase gene fusion. Blood 2001;98:1209–1216.CrossRefGoogle Scholar
Awaya, N, Mori, S, Takeuchi, H, et al. CD30 and NPM–ALK fusion protein (p80) are differentially expressed between peripheral blood and bone marrow in primary small cell variant of anaplastic large cell lymphoma. Am J Hematol 2002;69:200–204.CrossRefGoogle ScholarPubMed
Onciu, M, Behm, FG, Raimondi, SC, et al. ALK-positive anaplastic large cell lymphoma with leukemic peripheral blood involvement. Report of three cases and review of the literature. Am J Clin Pathol 2003;120:617–625.CrossRefGoogle ScholarPubMed
Bovio, IM, Allan, RW. The expression of myeloid antigens CD13 and/or CD33 is a marker of ALK+ anaplastic large cell lymphomas. Am J Clin Pathol 2008;130:628–634.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×