Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-01T01:10:37.343Z Has data issue: false hasContentIssue false

18 - Chronobiological aspects of primate research

Published online by Cambridge University Press:  05 June 2012

Joanna M. Setchell
Affiliation:
University of Durham
Deborah J. Curtis
Affiliation:
Oxford Brookes University
Get access

Summary

INTRODUCTION

Terrestrial animals live in an environment that undergoes regular variations, ultimately induced by the geophysical conditions prevailing in our solar/Earth system. Solar radiation and gravity, in combination with the Earth's rotation around its inclined axis and its orbit around the sun, and the moon's revolution around Earth, produce marked diurnal, seasonal and lunar as well as tidal periodicities in important physical environmental factors, such as light intensity, ambient temperature, humidity, precipitation, day and night length, and duration of twilight. As a consequence of the superimposition of these periodicities on one another, many relevant biotic environmental factors, such as food availability and predator pressure, as well as social contact, communication and competition with conspecifics, and intra- and interspecific competition for food may also vary diurnally, seasonally, lunar periodically or tidally. In this way, each animal's environment has a highly complex time structure, is highly repetitive in time and thus highly predictable. Reliable predictability provides a good substrate for genetically fixed adaptations. Hence, in addition to other general or specific physiological, ecological and/or behavioural adaptations, animals have also evolved endogenous diurnal (circadian), annual (circannual), lunar (circalunar) and/or tidal (circatidal) rhythms.

In non-human primates (hereafter ‘primates’), adaptation to the time structure of the physical and biotic environment is restricted mainly to the development of a circadian timing system, which is involved in the regulation of the pronounced daily (circadian) organization of physiology and behaviour.

Type
Chapter
Information
Field and Laboratory Methods in Primatology
A Practical Guide
, pp. 319 - 338
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, H. E., Lydic, R., Gander, P. H. & Moore-Ede, M. C. (1984). Role of suprachiasmatic nuclei in the circadian timing system of the squirrel monkey. I. The generation of rhythmicity. Brain Res. 300, 275–84.CrossRefGoogle ScholarPubMed
Alonso, C & Langguth, A. (1989). Ecologia e comportamento de Callithrix jacchus (Primates: Callitrichidae) numa ilha de floresta atlantica. Rev. Nordest. Biol. 6, 105–37.Google Scholar
Aschoff, J., Daan, S. & Honma, K. I. (1982). Zeitgebers, entrainment, and masking: some unsettled questions. In Vertebrate Circadian Systems. Structure and Physiology, ed. Aschoff, J., Daan, S. & Groos, G. A., pp. 13–24. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Aschoff, J. & Tokura, H. (1986). Circadian activity rhythms in squirrel monkeys: entrainment by temperature cyclesJ. Biol. Rhythms 1, 91–9.CrossRefGoogle ScholarPubMed
Colquhoun, I. C. (1998). Cathemeral behaviour of Eulemur macaco macaco at Ambato Massif, Madagascar. Folia Primatol. 69, 22–34.CrossRefGoogle Scholar
Curtis, D. J. & Rasmussen, M. A. (2006). The evolution of cathemerality in primates and other mammals: a comparative chronoecological approach. Folia Primatol. 77, 178–93.CrossRefGoogle ScholarPubMed
Curtis, D. J., Zaramody, A. & Martin, R. D. (1999). Cathemeral activity in the mongoose lemur, Eulemur mongoz. Am. J. Primatol. 47, 279–98.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Donati, G., Lunardi, A., Kappeler, P. M. & Borgognini Tarli, S. M. (2001). Nocturnal activity in the cathemeral red-fronted lemur (Eulemur fulvus rufus), with observations during a lunar eclipse. Am. J. Primatol. 53, 69–78.3.0.CO;2-R>CrossRefGoogle Scholar
DuMond, F. V. (1968). The squirrel monkey in a seminatural environment. In The Squirrel Monkey, ed. Rosenblum, L. A. & Cooper, R. W., pp. 87–145. New York: Academic Press.CrossRefGoogle Scholar
Engqvist, A. & Richard, A. (1991). Diet as a possible determinant of cathemeral activity patterns in primates. Folia Primatol. 57, 169–72.CrossRefGoogle ScholarPubMed
Erkert, H. G. (1974). Der Einfluss des Mondlichtes auf die Aktivitätsperiodik nachtaktiver Säugetiere. Oecologia 14, 269–87.CrossRefGoogle Scholar
Erkert, H. G. (1989). Characteristics of the circadian activity rhythm in common marmosets (Callithrix j. jacchus). Am. J. Primatol. 17, 271–86.CrossRefGoogle Scholar
Erkert, H. G. (2008). Diurnality and nocturnality in non-human primates: comparative chronobiological studies in laboratory and nature. Biol. Rhythm Res. 39, 229–67.CrossRefGoogle Scholar
Erkert, H. G. & Cramer, B. (2006). Chronobiological background to cathemerality: circadian rhythms in Eulemur fulvus albifrons (Prosimii) and Aotus azarai boliviensis (Anthropoidea). Folia Primatol. 77, 87–103.CrossRefGoogle Scholar
Erkert, H. G., Gburek, V. & Scheideler, A. (2006). Photic entrainment and masking of prosimian circadian rhythms (Otolemur garnettii, Primates). Physiol. Behav. 88, 39–46.CrossRefGoogle Scholar
Farrer, D. N. & Ternes, J. W. (1969). Illumination intensity and behavioural circadian rhythms. In Circadian Rhythms in Nonhuman Primates, ed. Rohles, F. H., Bibl. Primat. 9, 1–7. Basel: S. Karger.Google Scholar
Fernandez-Duque, E. F. (2003). Influences of moonlight, ambient temperature and food availability in the diurnal and nocturnal activity rhythms of owl monkeys (Aotus azarai). Behav. Ecol. Sociobiol. 54, 431–40.CrossRefGoogle Scholar
Fernandez-Duque, E. F. & Erkert, H. G. (2006). Cathemerality and lunar periodicity of activity rhythms in owl monkeys of the Argentinean Chaco. Folia Primatol. 77, 123–38.CrossRefGoogle Scholar
Glass, J. D., Tardiff, S. D., Clements, R. & Mrosowsky, N. (2001). Photic and nonphotic circadian phase resetting in a diurnal primate, the common marmoset. Am. J. Physiol. 280, R191–7.Google Scholar
Hawking, F. & Lobban, M. C. (1970). Circadian rhythms in macaca monkeys (physical activity, temperature, urine and microfilarial levels). J. Interdisc. Cycle Res. 1, 267–90.CrossRefGoogle Scholar
Hunnell, N. A., Rockcastle, N. J., McCormick, K. N.et al. (2007). Physical activity of adult female rhesus monkeys (Macaca mulatta) across the menstrual cycle. Am. J. Physiol. 292, E1520–5.Google ScholarPubMed
Kappeler, P. M. & Erkert, H. G. (2003). On the move around the clock: correlates and determinants of cathemeral activity in wild redfronted lemurs (Eulemur f. fulvus). Behav. Ecol. Sociobiol. 54, 359–69.CrossRefGoogle Scholar
Klein, D. C., Moore, R. Y. & Reppert, S. M. (eds.) (1991). Suprachiasmatic Nucleus. The Mind's Clock. New York, Oxford: Oxford University Press.
Kremers, J., Silveira, L. C. L., Yamada, E. S. & Lee, B. B. (1999). The ecology and evolution of primate color vision. In Color Vision. From Genes to Perception, ed. Gegenfurter, K. R. & Sharpe, L. T., pp. 123–42. Cambridge: Cambridge University Press.Google Scholar
Lerchl, A., Küderling, I., Kurre, J. & Fuchs, E. (1988). Locomotor activity registration by passive infrared detection in saddle back tamarins and tree shrews. Physiol. Behav. 44, 281–4.CrossRefGoogle ScholarPubMed
Martin, R. D. (1990). Primate Origins and Evolution. A Phylogenetic Reconstruction. London: Chapman & Hall.Google Scholar
Martinez, J. L. (1972). Effects of selected illumination levels on circadian periodicity in the rhesus monkey (Macaca mulatta). J. Interdisc. Cycle Res. 3, 47–59.CrossRefGoogle Scholar
Michael, R. P. & Bonsall, R. W. (1977). A 3-year study of an annual rhythm in plasma androgen levels in male rhesus monkeys (Macaca mulatta) in a constant laboratory environment. J. Reprod. Fert. 49, 129–31.CrossRefGoogle Scholar
Moore, R. Y. (1999). Circadian timing. In Fundamental Neuroscience, ed. Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L. & Squire, L. R., pp. 1189–206. San Diego, CA: Academic Press.Google Scholar
Moore-Ede, M. C., Sulzman, F. M. & Fuller, C. A. (1982). The Clocks that Time Us. Physiology of the Circadian Timing System. Cambridge, MA, London: Harvard University Press.Google Scholar
Overdorff, D. J. & Rasmussen, M. A. (1995). Determinants of nighttime activity in “diurnal” lemurid primates. In Creatures of the Dark: the Nocturnal Prosimians, ed. Alterman, L. G., Doyle, G. A. & Izard, K., pp. 61–74. New York: Plenum Press.CrossRefGoogle Scholar
Pereira, M. E., Strohecker, R. A., Cavigelli, S. A.Hughes, C. L. & Pearson, D. D. (1999). Metabolic strategy and social behavior in Lemuridae. In New Directions in Lemur Studies, ed. Rakotosamimanana, B., Rasamimanana, H., Ganzhorn, J. U. & Goodman, S. M., pp. 93–118. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Petter-Rousseaux, A. (1975). Activité sexuelle de Microcebus murinus (Miller 1777) soumis à des régimes photopériodiques experimenteaux. Ann. Biol. Anim. Biochem. Biophys. 15, 503–8.CrossRefGoogle Scholar
Rappold, I. & Erkert, H. G. (1994). Re-entrainment, phase-response and range of entrainment of circadian rhythms in owl monkeys (Aotus lemurinus g.) of different age. Biol. Rhythm Res. 25, 133–52.CrossRefGoogle Scholar
Rauth-Widmann, B., Thiemann-Jäger, A. & Erkert, H. G. (1991). Significance of nonparametric light effects in entrainment of circadian rhythms in owl monkeys (Aotus lemurinus griseimembra) by light-dark cycles. Chronobiol. Int. 8, 251–66.CrossRefGoogle ScholarPubMed
Richter, C. P. (1968). Inherent twenty-four and lunar clocks of a primate – the squirrel monkey. Comm. Behav. Biol. 1, 305–32.Google Scholar
Schanz, F. & Erkert, H. G. (1987). Resynchronisationsverhalten der Aktivitätsperiodik von Galagos (Galago senegalensis, Galago crassicaudatus garnettii). Z. Säugetierk. 52, 218–26.Google Scholar
Schilling, A., Richard, J. P. & Servière, J. (1999). Duration of activity and period of circadian activity-rest rhythm in a photoperiod-dependent primate, Microcebus murinus. C. R. Acad. Sci. 322, 759–70.CrossRefGoogle Scholar
Sulzman, F. M., Fuller, C. A. & Moore-Ede, M. C. (1977). Environmental synchronizers of squirrel monkey circadian rhythms. J. Appl. Physiol. 43, 795–800.CrossRefGoogle ScholarPubMed
Sulzman, F. M., Fuller, C. A. & Moore-Ede, M. C. (1979). Tonic effects of light on the circadian system of the squirrel monkey. J. Comp. Physiol. 129, 43–50.CrossRefGoogle Scholar
Tattersall, I. (1982). The Primates of Madagascar. New York: Columbia University Press.Google Scholar
Tattersall, I. (2006). The concept of cathemerality: history and definition. Folia Primatol. 77, 7–14.CrossRefGoogle ScholarPubMed
,The Astronomical Almanac. Issued each year by The Nautical Almanac Office, USA and Her Majesty's Nautical Almanac Office, Royal Greenwich Observatory. Washington, D.C.: US Government Printing Office; London: HMSO.
Thiemann-Jäger, A. (1986). Charakteristika der circadianen Aktivitätsperiodik von Nachtaffen (Aotus trivirgatus Humboldt 1811). Unpublished dissertation, University of Tübingen.Google Scholar
Thomas, R. M. & Curtis, D. J. (2001). A novel software application for the study of photoperiodic cueing mechanisms underlying circadian and circannual rhythms and lunar-periodic modulations. Folia Primatol. 72, 187.Google Scholar
Tokura, H. & Aschoff, J. (1978). Circadian activity rhythms of the pig-tailed macaques Macaca nemestrina, under constant illumination. Pflügers Arch. 376, 241–3.CrossRefGoogle ScholarPubMed
Horn, R. N. (1975). Primate breeding season: photoperiodic regulation in captive Lemur catta. Folia Primatol. 24, 203–20.CrossRefGoogle ScholarPubMed
Wright, P. C. (1989). The nocturnal primate niche in the New World. J. Hum. Evol. 18, 635–46.CrossRefGoogle Scholar
Yellin, A. M. & Hauty, G. T. (1971). Activity cycles of the rhesus monkey (Macaca mulatta) under several experimental conditions, both in isolation and in a group situation. J. Interdisc. Cycle Res. 2, 475–90.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×