Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-04-30T17:11:25.635Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2012

Edward W. Frees
Affiliation:
University of Wisconsin, Madison
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Longitudinal and Panel Data
Analysis and Applications in the Social Sciences
, pp. 451 - 462
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gibbons, R. D., and Hedeker, D. (1997). Random effects probit and logistic regression models for three-level data. Biometrics 53, 1527–37CrossRefGoogle ScholarPubMed
Grizzle, J. E., and Allen, M. D. (1969). Analysis of growth and dose response curves. Biometrics 25, 357–81CrossRefGoogle ScholarPubMed
Henderson, C. R. (1953). Estimation of variance components. Biometrics 9, 226–52CrossRefGoogle Scholar
Henderson, C. R. (1973). Sire evaluation and genetic trends. In Proceedings of the Animal Breeding and Genetics Symposium in Honor of Dr. Jay L. Lush, 10–41. Amer. Soc. Animal Sci. – Amer. Dairy Sci. Assoc. Poultry Sci. Assoc., Champaign, IL.CrossRef
Henderson, C. R. (1984). Applications of Linear Models in Animal Breeding, University of Guelph, Guelph, ON, Canada
Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer-Verlag, New York
Jennrich, R. I., and Schlucter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matirces. Biometrics 42, 805–20CrossRefGoogle Scholar
Kenward, M. G., and Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983–97CrossRefGoogle ScholarPubMed
Klein, J. P., and M. L. Moeschberger (1997). Survival Analysis: Techniques for Censored and Truncated Data. Springer-Verlag, New York
Laird, N. M. (1988). Missing data in longitudinal studies. Statistics in Medicine 7, 305–15CrossRefGoogle ScholarPubMed
Laird, N. M., and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963–74CrossRefGoogle ScholarPubMed
Liang, K.-Y., and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 12–22CrossRefGoogle Scholar
Palta, M., and Yao, T.-J. (1991). Analysis of longitudinal data with unmeasured confounders. Biometrics 47, 1355–69CrossRefGoogle ScholarPubMed
Palta, M., Yao, T.-J., and Velu, R. (1994). Testing for omitted variables and non-linearity in regression models for longitudinal data. Statistics in Medicine 13, 2219–31CrossRefGoogle ScholarPubMed
Patterson, H. D., and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58, 545–54CrossRefGoogle Scholar
Potthoff, R. F., and Roy, S. N. (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika 51, 313–26CrossRefGoogle Scholar
Prentice, R. L. (1988). Correlated binary regression with covariates specific to each binary observation. Biometrics 44, 1033–48CrossRefGoogle ScholarPubMed
Rao, C. R. (1965). The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. Biometrika 52, 447–58CrossRefGoogle ScholarPubMed
Rao, C. R. (1987). Prediction of future observations in growth curve models. Statistical Science 2, 434–71CrossRefGoogle Scholar
Stiratelli, R., Laird, N., and Ware, J. H. (1984). Random effects models for serial observations with binary responses. Biometrics 40, 961–71CrossRefGoogle Scholar
Sullivan, L. M., Dukes, K. A., and Losina, E. (1999). An introduction to hierarchical linear modelling. Statistics in Medicine 18, 855–883.0.CO;2-7>CrossRefGoogle ScholarPubMed
Wishart, J. (1938). Growth-rate determinations in nutrition studies with the bacon pig, and their analysis. Biometrka 30, 16–28CrossRefGoogle Scholar
Wright, S. (1918). On the nature of size factors. Genetics 3, 367–74Google ScholarPubMed
Zeger, S. L., and Liang, K.-Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121–30CrossRefGoogle ScholarPubMed
Zeger, S. L., Liang, K.-Y., and Albert, P. S. (1988). Models for longitudinal data: A generalized estimating equation approach. Biometrics 44, 1049–60CrossRefGoogle ScholarPubMed
Amemiya, T. (1985). Advanced Econometrics. Harvard University Press, Cambridge, MA.
Anderson, T. W., and Hsiao, C. (1982). Formulation and estimation of dynamic models using panel data. Journal of Econometrics 18, 47–82CrossRefGoogle Scholar
Andrews, D. W. K. (2001). Testing when a parameter is on the boundary of the maintained hypothesis. Econometrica 69, 683–734CrossRefGoogle Scholar
Arellano, M. (1993). On the testing of correlated effects with panel data. Journal of Econometrics 59, 87–97CrossRefGoogle Scholar
Arellano, M. (2003). Panel Data Econometrics. Oxford University Press, Oxford, UK.CrossRef
Arellano, M., and Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies 58, 277–97CrossRefGoogle Scholar
Arellano, M., and Bover, O. (1995). Another look at the instrumental-variable estimation of error components models. Journal of Econometrics 68, 29–51CrossRefGoogle Scholar
Arellano, M., and B. Honoré (2001). Panel data models: Some recent developments. In Handbook of Econometrics, Vol. 5, ed. J. J. Heckman and E. Leamer, pp. 3231–96. Elsevier, New York
Ashenfelter, O. (1978). Estimating the effect of training programs on earnings with longitudinal data. Review of Economics and Statistics 60, 47–57CrossRefGoogle Scholar
Avery, R. B. (1977). Error components and seemingly unrelated regressions. Econometrica 45, 199–209CrossRefGoogle Scholar
Balestra, P., and Nerlove, M. (1966). Pooling cross-section and time-series data in the estimation of a dynamic model: The demand for natural gas. Econometrica 34, 585–612CrossRefGoogle Scholar
Baltagi, B. H. (1980). On seemingly unrelated regressions and error components. Econometrica 48, 1547–51CrossRefGoogle Scholar
Baltagi, B. H. (2001). Econometric Analysis of Panel Data, Second Edition. Wiley, New York
Baltagi, B. H., and Chang, Y. J. (1994). Incomplete panels: A comparative study of alternative estimators for the unbalanced one-way error component regression model. Journal of Econometrics 62, 67CrossRefGoogle Scholar
Baltagi, B. H., and Li, Q. (1990). A Lagrange multiplier test for the error components model with incomplete panels. Econometric Reviews 9, 103–107CrossRefGoogle Scholar
Baltagi, B. H., and Li, Q. (1992). Prediction in the one-way error components model with serial correlation. Journal of Forecasting 11, 561–67CrossRefGoogle Scholar
Becker, R., and Henderson, V. (2000). Effects of air quality regulations on polluting industries. Journal of Political Economy 108, 379–421CrossRefGoogle Scholar
Bhargava, A., Franzini, L., and Narendranathan, W. (1982). Serial correlation and the fixed effects model. Review of Economic Studies 49, 533–49CrossRefGoogle Scholar
Blundell, R., and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87, 115–43CrossRefGoogle Scholar
Bound, J., Jaeger, D. A., and Baker, R. M. (1995). Problems with instrumental variables estimation when the correlation between the instruments and endogenous explanatory variables is weak. Journal of the American Statistical Assocication 90, 443–50Google Scholar
Breusch, T. S., and Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. Review of Economic Studies 47, 239–53CrossRefGoogle Scholar
Cameron, A. C., and P. K. Trivedi (1998). Regresson Analysis of Count Data. Cambridge University Press, Cambridge, UK.
Card, D. (1995). Using geographic variation in college proximity to estimate the return to schooling. In Aspects of Labour Market Behavior: Essays in Honour of John Vanderkamp, ed. L. N. Christophides, E. K. Grant, and R. Swidinsky, pp. 201–222. University of Toronto Press, Toronto, Canada
Chamberlain, G. (1980). Analysis of covariance with qualitative data. Review of Economic Studies 47, 225–38CrossRefGoogle Scholar
Chamberlain, G. (1982). Multivariate regression models for panel data. Journal of Econometrics 18, 5–46CrossRefGoogle Scholar
Chamberlain, G. (1984). Panel data. In Handbook of Econometrics, ed. Z. Griliches and M. Intrilligator, pp. 1247–1318. North-Holland, AmsterdamCrossRef
Chamberlain, G. (1992). Comment: Sequential moment restrictions in panel data. Journal of Business and Economic Statistics 10, 20–26Google Scholar
Chib, S., Greenberg, E., and Winkelman, R. (1998). Posterior simulation and Bayes factor in panel count data models. Journal of Econometrics 86, 33–54CrossRefGoogle Scholar
Davidson, R., and MacKinnon, J. G. (1990). Specification tests based on artificial regressions. Journal of the American Statistical Association 85, 220–27CrossRefGoogle Scholar
Engle, R. F., Hendry, D. F., and Richard, J. F. (1983). Exogeneity. Econometrica 51, 277–304CrossRefGoogle Scholar
Feinberg, S. E., Keane, M. P., and Bognano, M. F. (1998). Trade liberalization and “delocalization”: New evidence from firm-level panel data. Canadian Journal of Economics 31, 749–77CrossRefGoogle Scholar
Frees, E. W. (1995). Assessing cross-sectional correlations in longitudinal data. Journal of Econometrics 69, 393–414CrossRefGoogle Scholar
Glaeser, E. L., and Maré, D. C. (2001). Cities and skills. Journal of Labor Economics 19, 316–42CrossRefGoogle Scholar
Goldberger, A. S. (1962). Best linear unbiased prediction in the generalized linear regression model. Journal of the American Statistical Association 57, 369–75CrossRefGoogle Scholar
Goldberger, A. S. (1972). Structural equation methods in the social sciences. Econometrica 40, 979–1001CrossRefGoogle Scholar
Goldberger, A. S. (1991). A Course in Econometrics. Harvard University Press, Cambridge, MA
Gourieroux, C., Monfort, A., and Trognon, A. (1984). Pseudo-maximum likelihood methods: Theory. Econometrica 52, 681–700CrossRefGoogle Scholar
Greene, W. H. (2002), Econometric Analysis, Fifth Edition. Prentice-Hall, Englewood Cliffs, NJ
Haavelmo, T. (1944). The probability approach to econometrics. Supplement to Econometrica 12, ⅲ–ⅵ, 1–115Google Scholar
Haisken-DeNew, J. P. (2001). A hitchhiker's guide to the world's household panel data sets. The Australian Economic Review 34(3), 356–66CrossRefGoogle Scholar
Hausman, J. A. (1978). Specification tests in econometrics. Econometrica 46, 1251–71CrossRefGoogle Scholar
Hausman, J. A., Hall, B. H., and Griliches, Z. (1984). Econometric models for count data with an application to the patents–R&D relationship. Econometrica 52, 909–38CrossRefGoogle Scholar
Hausman, J. A., and Taylor, W. E. (1981). Panel data and unobservable individual effects. Econometrica 49, 1377–98CrossRefGoogle Scholar
Hausman, J. A., and Wise, D. (1979). Attrition bias in experimental and panel data: The Gary income maintenance experiment. Econometrica 47, 455–73CrossRefGoogle Scholar
Hayashi, F. (2000). Econometrics. Princeton University Press, Princeton, NJ.
Heckman, J. J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables, and a simple estimator for such models. Ann. Econ. Soc. Meas 5, 475–92Google Scholar
Heckman, J. J. (1981). Statistical models for discrete panel data. In Structural Analysis Of Discrete Data with Econometric Applications, ed. C. F. Manski and D. McFadden, pp. 114–78. MIT Press, Cambridge, MA.
Hoch, I. (1962). Estimation of production function parameters combining time-series and cross-section data. Econometrica 30, 34–53CrossRefGoogle Scholar
Hsiao, C. (2002). Analysis of Panel Data, Second Edition. Cambridge University Press, Cambridge, UK.
Johnson, P. R. (1960). Land substitutes and changes in corn yields. Journal of Farm Economics 42, 294–306CrossRefGoogle Scholar
Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lütkepohl, and T. C. Lee (1985). The Theory and Practice of Econometrics. Wiley, New York
Keane, M. P., and Runkle, D. E. (1992). On the estimation of panel data models with serial correlation when instruments are not strictly exogenous. Journal of Business and Economic Statistics 10, 1–9Google Scholar
Kiefer, N. M. (1980). Estimation of fixed effects models for time series of cross sections with arbitrary intertemporal covariance. Journal of Econometrics 14, 195–202CrossRefGoogle Scholar
Kuh, E. (1959). The validity of cross-sectionally estimated behavior equation in time series application. Econometrica 27, 197–214CrossRefGoogle Scholar
Lancaster, T. (1990). The Econometric Analysis of Transition Data. Cambridge University Press, New York
Maddala, G. S. (1971). The use of variance components models in pooling cross section and time series data. Econometrica 39, 341–58CrossRefGoogle Scholar
Manski, C. (1992). Comment: The impact of sociological methodology on statistical methodology by C. C. Clogg. Statistical Science 7(2), 201–203CrossRefGoogle Scholar
Mátyás, L., and, P. Sevestre eds. (1996). The Econometrics of Panel Data: Handbook of Theory and Applications. Kluwer Academic Publishers, Dordrecht
McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In Frontiers of Econometrics, ed. P. Zarembka, pp. 105–142. Academic Press, New York
McFadden, D. (1978). Modeling the choice of residential location. In Spatial Interaction Theory and Planning Models, ed. A Karlqvist et al., pp. 75–96. North-Holland, Amsterdam
McFadden, D. (1981). Econometric models of probabilistic choice. In Structural Analysis of Discrete Data with Econometric Applications, ed. C. Manski and D. McFadden, pp. 198–272. MIT Press, Cambridge, MA.
Mundlak, Y. (1961). Empirical production function free of management bias. Journal of Farm Economics 43, 44–56CrossRefGoogle Scholar
Mundlak, Y. (1978a). On the pooling of time series and cross-section data. Econometrica 46, 69–85CrossRefGoogle Scholar
Mundlak, Y. (1978b). Models with variable coefficients: Integration and extensions. Annales de L'Insee 30–31, 483–509CrossRefGoogle Scholar
Neyman, J., and Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica 16, 1–32CrossRefGoogle Scholar
Polachek, S. W., and Kim, M. (1994). Panel estimates of the gender earnings gap. Journal of Econometrics 61, 23–42CrossRefGoogle Scholar
Swamy, P. A. V. B. (1970). Efficient inference in a random coefficient regression model. Econometrica 38, 311–23CrossRefGoogle Scholar
Theil, H., and Goldberger, A. (1961). On pure and mixed estimation in economics. International Economic Review 2, 65–78CrossRefGoogle Scholar
Valletta, R. G. (1999). Declining job security. Journal of Labor Economics 17, S170-S197CrossRefGoogle Scholar
Wallace, T., and Hussain, A. (1969). The use of error components in combining cross section with time series data. Econometrica 37, 55–72CrossRefGoogle Scholar
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 817–38CrossRefGoogle Scholar
White, H. (1984). Asymptotic Theory for Econometricians. Academic Press, Orlando, FL.
Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge, MA.
Zellner, A. (1962). An efficient method of estimating seemingly unrelated regression and tests for aggregation bias. Journal of the American Statistical Association 57, 348–68CrossRefGoogle Scholar
Baltes, P. B., and J. R. Nesselroade (1979). History and rational of longitudinal research. In Longitudinal Research in the Study of Behavior and Development, ed. J. R. Nesselroade and P. B. Baltes, pp. 1–39. Academic Press, New York
Bollen, K. A. (1989). Structural Equations with Latent Variables. Wiley, New York
de Leeuw, J., and I. Kreft (2001). Software for multilevel analysis. In Multilevel Modeling of Health Statistics ed. A. H. Leyland and H. Goldstein, pp. 187–204. Wiley, New York
Duncan, O. D. (1969). Some linear models for two wave, two variable panel analysis. Psychological Bulletin 72, 177–82CrossRefGoogle Scholar
Duncan, T. E., S. C. Duncan, L. A. Stryakar, F. Li, and A. Alpert (1999). An Introduction to Latent Variable Growth Curve Modeling. Lawrence Erlbaum, Mahwah, NJ
Frees, E. W. and J.-S. Kim (2004). Multilevel model prediction. UW working paper, available at http://research.bus.wisc.edu/jFrees/
Goldstein, H. (2002). Multilevel Statistical Models, Third Edition. Edward Arnold, London
Guo, S., and Hussey, D. (1999). Analyzing longitudinal rating data: A three-level hierarchical linear model. Social Work Research 23(4), 258–68CrossRefGoogle Scholar
Kreft, I., and J. de Leeuw (1998). Introducing Multilevel Modeling. Sage, New York
Lee, V. (2000). Using hierarchical linear modeling to study social contexts: The case of school effects. Educational Psychologist 35(2), 125–41CrossRefGoogle Scholar
Lee, V., and Smith, J. B. (1997). High school size: Which works best and for whom? Educational Evaluation and Policy Analysis 19(3), 205–27CrossRefGoogle Scholar
Longford, N. T. (1993). Random Coefficient Models. Clarendon Press, Oxford, UK.
Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proc. Fourth Berkeley Symposium 4, 434–58Google Scholar
Raudenbush, S. W., and A. S. Bryk (2002). Hierarchical Linear Models: Applications and Data Analysis Methods, Second Edition. Sage, London
Rubin, D. R. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66, 688–701CrossRefGoogle Scholar
Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics 27, 323–55CrossRefGoogle Scholar
Singer, J. D., and J. B. Willett (2003). Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford University Press, Oxford, UK.CrossRef
Toon, T. J. (2000). A Primer in Longitudinal Data Analysis. Sage, London
Webb, N. L., W. H. Clune, D. Bolt, A. Gamoran, R. H. Meyer, E. Osthoff, and C. Thorn. (2002). Models for analysis of NSF's systemic initiative programs – The impact of the urban system initiatives on student achievement in Texas, 1994–2000. Wisconsin Center for Education Research Technical Report, July. Available at http://facstaff.wcer.wisc.edu/normw/technical_reports.htm
Willett, J. B., and Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin 116, 363–81CrossRefGoogle Scholar
Ashley, T., Liu, Y., and Chang, S. (1999). Estimating net lottery revenues for states. Atlantic Economics Journal 27, 170–78CrossRefGoogle Scholar
Bailey, A. (1950). Credibility procedures: LaPlace's generalization of Bayes' rule and the combination of collateral knowledge with observed data. Proceedings of the Casualty Actuarial Society 37, 7–23Google Scholar
Beck, N., and Katz, J. N. (1995). What to do (and not to do) with time-series cross-section data. American Political Science Review 89, 634–47CrossRefGoogle Scholar
Brader, T., and Tucker, J. A. (2001). The emergence of mass partisanship in Russia, 1993–1996. American Journal of Political Science 45, 69–83CrossRefGoogle Scholar
Bühlmann, H. (1967). Experience rating and credibility. ASTIN Bulletin 4, 199–207CrossRefGoogle Scholar
Bühlmann, H., and Straub, E. (1970). Glaubwürdigkeit für Schadensätze. Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker 70, 111–33Google Scholar
Dannenburg, D. R., R. Kaas, and M. J. Goovaerts (1996). Practical Actuarial Credibility Models. Institute of Actuarial Science and Econometrics, University of Amsterdam, Amsterdam
Dielman, T. E. (1989). Pooled Cross-Sectional and Time Series Data Analysis. Marcel Dekker, New York
Frees, E. W., and Miller, T. W. (2004). Sales forecasting using longitudinal data models. International Journal of Forecasting 20, 97–111CrossRefGoogle Scholar
Frees, E. W., Young, V., and Luo, Y. (1999). A longitudinal data analysis interpretation of credibility models. Insurance: Mathematics and Economics 24, 229–47Google Scholar
Frees, E. W., Young, V., and Luo, Y. (2001). Case studies using panel data models. North American Actuarial Journal 4(4), 24–42CrossRefGoogle Scholar
Frischmann, P. J., and Frees, E. W. (1999). Demand for services: Determinants of tax preparation fees. Journal of the American Taxation Association 21, Supplement 1–23CrossRefGoogle Scholar
Green, R. K., and S. Malpezzi (2003). A Primer on U.S. Housing Markets and Policy. Urban Institute Press, Washington, DC.
Haberman, S., and E. Pitacco (1999). Actuarial Models for Disability Insurance. Chapman and Hall/CRC, Boca Raton
Hachemeister, C. A. (1975). Credibility for regression models with applications to trend. In Credibility: Theory and Applications, ed. P. M. Kahn, pp. 129–163 Academic Press, New York
Hickman, J. C., and Heacox, L. (1999). Credibility theory: The cornerstone of actuarial science. North American Actuarial Journal 3(2), 1–8Google Scholar
Jain, D. C., Vilcassim, N. J., and Chintagunta, P. K. (1994). A random-coefficients logit brand choice model applied to panel data. Journal of Business and Economic Statistics 12, 317–28Google Scholar
Jewell, W. S. (1975). The use of collateral data in credibility theory: A hierarchical model. Giornale dell'Istituto Italiano degli Attuari 38, 1–16. (Also, Research Memorandum 75–24 of the International Institute for Applied Systems Analysis, Laxenburg, Austria.)Google Scholar
Kim, Y.-D., Anderson, D. R., Amburgey, T. L., and Hickman, J. C. (1995). The use of event history analysis to examine insurance insolvencies. Journal of Risk and Insurance 62, 94–110CrossRefGoogle Scholar
Klugman, S. A. (1992). Bayesian Statistics in Actuarial Science: With Emphasis on Credibility. Kluwer Academic, Boston
Klugman, S., H. Panjer, and G. Willmot (1998). Loss Models: From Data to Decisions. Wiley, New York
Kung, Y. (1996). Panel Data with Serial Correlation. Unpublished Ph. D. thesis, University of Wisconsin, Madison
Lazarsfeld, P. F., and Fiske, M. (1938). The panel as a new tool for measuring opinion. Public Opinion Quarterly 2, 596–612CrossRefGoogle Scholar
Ledolter, J., Klugman, S., and Lee, C.-S. (1991). Credibility models with time-varying trend components. ASTIN Bulletin 21, 73–91CrossRefGoogle Scholar
Lee, H. D. (1994). An Empirical Study of the Effects of Tort Reforms on the Rate of Tort Filings. Unpublished Ph. D. thesis, University of Wisconsin, Madison
Lee, H. D., Browne, M. J., and Schmit, J. T. (1994). How does joint and several tort reform affect the rate of tort filings? Evidence from the state courts. Journal of Risk and Insurance 61(2), 595–616CrossRefGoogle Scholar
Lintner, J. (1965). The valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics 47, 13–37CrossRefGoogle Scholar
Luo, Y., Young, V. R., and Frees, E. W. (2004). Credibility ratemaking using collateral information. To appear in Scandinavian Actuarial JournalCrossRefGoogle Scholar
Malpezzi, S. (1996). Housing prices, externalities, and regulation in U.S. metropolitan areas. Journal of Housing Research 7(2), 209–41Google Scholar
Markowitz, H. (1952). Portfolio selection. Journal of Finance 7, 77–91Google Scholar
Mowbray, A. H. (1914). How extensive a payroll exposure is necessary to give a dependable pure premium. Proceedings of the Casualty Actuarial Society 1, 24–30Google Scholar
Norberg, R. (1980). Empirical Bayes credibility. Scandinavian Actuarial Journal 1980, 177–94CrossRefGoogle Scholar
Norberg, R. (1986). Hierarchical credibility: Analysis of a random effect linear model with nested classification. Scandinavian Actuarial Journal 1986, 204–22CrossRefGoogle Scholar
Paker, B. S. (2000). Corporate Fund Raising and Capital Structure in Japan during the 1980s and 1990s. Unpublished Ph. D. thesis, University of Wisconsin, Madison
Pinquet, J. (1997). Allowance for cost of claims in bonus-malus systems. ASTIN Bulletin 27, 33–57CrossRefGoogle Scholar
Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under risk. Journal of Finance 19, 425–42Google Scholar
Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business 74, 101–24CrossRefGoogle Scholar
Stimson, J. (1985). Regression in space and time: A statistical essay. American Journal of Political Science 29, 914–47CrossRefGoogle Scholar
Stohs, M. H., and Mauer, D. C. (1996). The determinants of corporate debt maturity structure. Journal of Business 69(3), 279–312CrossRefGoogle Scholar
Taylor, G. C. (1977). Abstract credibility. Scandinavian Actuarial Journal 1977, 149–68CrossRefGoogle Scholar
Venter, G. (1996). Credibility. In Foundations of Casualty Actuarial Science, Third Edition, ed. I. K. Bass et al. Casualty Actuarial Society, Arlington, VA.
Zhou, X. (2000). Economic transformation and income inequality in urban China: Evidence from panel data. American Journal of Sociology 105, 1135–74CrossRefGoogle Scholar
Banerjee, M., and Frees, E. W. (1997). Influence diagnostics for linear longitudinal models. Journal of the American Statistical Association 92, 999–1005CrossRefGoogle Scholar
Chen, Z., and Kuo, L. (2001). A note on the estimation of multinomial logit model with random effects. American Statistician 55, 89–95CrossRefGoogle Scholar
Conaway, M. R. (1989). Analysis of repeated categorical measurements with conditional likelihood methods. Journal of the American Statistical Association 84, 53–62CrossRefGoogle Scholar
Corbeil, R. R., and Searle, S. R. (1976a). Restricted maximum likelihood (REML) estimation of variance components in the mixed model. Technometrics 18, 31–38CrossRefGoogle Scholar
Corbeil, R. R., and Searle, S. R. (1976b). A comparison of variance components estimators. Biometrics 32, 779–91CrossRefGoogle Scholar
Davidian, M., and D. M. Giltinan (1995). Nonlinear Models for Repeated Measurement Data. Chapman–Hall, London
Diggle, P. J., P. Heagarty, K.-Y. Liang, and S. L. Zeger (2002). Analysis of Longitudinal Data, Second Edition. Oxford University Press, Oxford, UK.
Fahrmeir, L., and G. Tutz (2001). Multivariate Statistical Modelling Based on Generalized Linear Models, Second Edition. Springer-Verlag, New York
Frees, E. W. (2001). Omitted variables in panel data models. Canadian Journal of Statistics 29(4), 1–23CrossRefGoogle Scholar
Frees, E. W., and Jin, C. (2004). Empirical standard errors for longitudinal data mixed linear models. To appear in Computational StatisticsCrossRefGoogle Scholar
Ghosh, M., and Rao, J. N. K. (1994). Small area estimation: An appraisal. Statistical Science 9, 55–93CrossRefGoogle Scholar
Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge, UK.
Harville, D. A. (1974). Bayesian inference for variance components using only error contrasts. Biometrika 61, 383–85CrossRefGoogle Scholar
Harville, D. (1976). Extension of the Gauss–Markov theorem to include the estimation of random effects. Annals of Statistics 2, 384–95CrossRefGoogle Scholar
Harville, D. (1977). Maximum likelihood estimation of variance components and related problems. Journal of the American Statistical Association 72, 320–40CrossRefGoogle Scholar
Herbach, L. H. (1959). Properties of model II type analysis of variance tests, A: Optimum nature of the F-test for model II in the balanced case. Annals of Mathematical Statistics 30, 939–59CrossRefGoogle Scholar
Hildreth, C., and Houck, C. (1968). Some estimators for a linear model with random coefficients. Journal of the American Statistical Association 63, 584–95Google Scholar
Jones, R. H. (1993). Longitudinal Data with Serial Correlation: A State-Space Approach. Chapman and Hall, London
Jöreskog, K. G., and Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association 70, 631–39Google Scholar
Kackar, R. N., and Harville, D. (1984). Approximations for standard errors of estimators of fixed and random effects in mixed linear models. Journal of the American Statistical Association 79, 853–62Google Scholar
Lin, X., and Breslow, N. E. (1996). Bias correction on generalized linear mixed models with multiple components of dispersion. Journal of the American Statistical Association 91, 1007–16CrossRefGoogle Scholar
Littell, R. C, G. A. Milliken, W. W. Stroup, and R. D. Wolfinger (1996). SAS System for Mixed Models. SAS Institute, Cary, NC.
Parks, R. (1967). Efficient estimation of a system of regression equations when disturbances are both serially and contemporaneously correlated. Journal of the American Statistical Association 62, 500–509CrossRefGoogle Scholar
Pinheiro, J. C., and D. M. Bates (2000). Mixed-Effects Models in S and S-Plus. Springer-Verlag, New York
Rao, C. R. (1965). The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. Biometrika 52, 447–58CrossRefGoogle ScholarPubMed
Rao, C. R. (1970). Estimation of variance and covariance components in linear models. Journal of the American Statistical Association 67, 112–15CrossRefGoogle Scholar
Reinsel, G. C. (1982). Multivariate repeated-measurement or growth curve models with multivariate random-effects covariance structure. Journal of the American Statistical Association 77, 190–95CrossRefGoogle Scholar
Reinsel, G. C. (1984). Estimation and prediction in a multivariate random effects generalized linear model. Journal of the American Statistical Association 79, 406–14CrossRefGoogle Scholar
Robinson, G. K. (1991). The estimation of random effects. Statistical Science 6, 15–51CrossRefGoogle Scholar
Searle, S. R., G. Casella, and C. E. McCulloch (1992). Variance Components. Wiley, New York
Self, S. G., and Liang, K. Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association 82, 605–10CrossRefGoogle Scholar
Stram, D. O., and Lee, J. W. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics 50, 1171–77CrossRefGoogle ScholarPubMed
Swallow, W. H., and Searle, S. R. (1978). Minimum variance quadratic unbiased estimation (MIVQUE) of variance components. Technometrics 20, 265–72CrossRefGoogle Scholar
Tsimikas, J. V., and Ledolter, J. (1994). REML and best linear unbiased prediction in state space models. Communications in Statistics: Theory and Methods 23, 2253–68CrossRefGoogle Scholar
Tsimikas, J. V., and Ledolter, J. (1997). Mixed model representations of state space models: New smoothing results and their application to REML estimation. Statistica Sinica 7, 973–91Google Scholar
Tsimikas, J. V., and Ledolter, J. (1998). Analysis of multi-unit variance components models with state space profiles. Annals of the Institute of Statist Math 50(1), 147–64CrossRefGoogle Scholar
Verbeke, G., and G. Molenberghs (2000). Linear Mixed Models for Longitudinal Data. Springer-Verlag, New York
Vonesh, E. F., and V. M. Chinchilli (1997). Linear and Nonlinear Models for the Analysis of Repeated Measurements. Marcel Dekker, New York
Ware, J. H. (1985). Linear models for the analysis of longitudinal studies. The American Statistician 39, 95–101Google Scholar
Wolfinger, R., Tobias, R., and Sall, J. (1994). Computing Gaussian likelihoods and their derivatives for general linear mixed models. SIAM Journal of Scientific Computing 15(6), 1294–310CrossRefGoogle Scholar
Zeger, S. L., and Karim, M. R. (1991). Generalized linear models with random effects: A Gibbs sampling approach. Journal of the American Statistical Association 86, 79–86CrossRefGoogle Scholar
Agresti, A. (2002). Categorical Data Analysis. Wiley, New York
Andersen, E. B. (1970). Asymptotic properties of conditional maximum-likelihood estimators. Journal of the Royal Statistical Society B 32, 283–301Google Scholar
Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York
Angrist, J. D., Imbens, G. W., and Rubin, D. B. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91, 444–72CrossRefGoogle Scholar
Becker, R. A., Cleveland, W. S., and Shyu, M.-J. (1996). The visual design and control of trellis graphics displays. Journal of Computational and Graphical Statistics 5, 123–56Google Scholar
Bickel, P. J., and Doksum, K. A. (1977). Mathematical Statistics. Holden-Day, San Francisco
Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In Robustness in Statistics, ed. R. Launer and G. Wilderson, pp. 201–236. Academic Press, New YorkCrossRef
Box, G. E. P., G. M. Jenkins, and G. Reinsel. (1994). Time Series Analysis. Prentice Hall, Englewood Cliffs, NJ.
Carroll, R. J., and D. Ruppert (1988). Transformation and Weighting in Regression. Chapman and Hall, London
Cleveland, W. S. (1993). Visualizing Data. Hobart Press, Summit, NJ.
Congdon, P. (2003). Applied Bayesian Modelling. Wiley, New York
Cook, D., and S. Weisberg (1982). Residuals and Influence in Regression. Chapman and Hall, London
Draper, N., and H. Smith (1981). Applied Regression Analysis, Second Edition. Wiley, New York
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 89, 517–25Google Scholar
Fuller, W. A., and Battese, G. E. (1973). Transformations for estimation of linear models with nested error structure. Journal of the American Statistical Association 68, 626–32CrossRefGoogle Scholar
Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2004). Bayesian Data Analysis, Second Edition. Chapman and Hall, New York
Gill, J. (2002). Bayesian Methods for the Social and Behavioral Sciences. Chapman and Hall, New York
Graybill, F. A. (1969). Matrices with Applications in Statistics, Second Edition. Wadsworth, Belmont CA
Hocking, R. (1985). The Analysis of Linear Models. Wadsworth and Brooks/Cole, Pacific Grove, CA.
Hosmer, D. W., and S. Lemeshow (2000). Applied Logistic Regression. Wiley, New York
Hougaard, P. (1987). Modelling multivariate survival. Scandinavian Journal of Statistics 14, 291–304Google Scholar
Huber, P. J. (1967). The behaviour of maximum likelihood estimators under non-standard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1, ed. L. M. LeCam and J. Neyman, pp. 221–33, University of California Press, Berkeley
Hutchinson, T. P., and C. D. Lai (1990). Continuous Bivariate Distributions, Emphasising Applications. Rumsby Scientific Publishing, Adelaide, Australia
Johnson, R. A., and D. Wichern (1999). Applied Multivariate Statistical Analysis. Prentice Hall, Englewood Cliffs, NJ.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82, 34–45CrossRefGoogle Scholar
Layard, M. W. (1973). Robust large sample tests for homogeneity of variance. Journal of the American Statistical Association 68, 195–198CrossRefGoogle Scholar
Lehmann, E. (1991). Theory of Point Estimation. Wadsworth and Brooks/Cole, Pacific Grove, CA.CrossRef
Little, R. J. (1995). Modelling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 1112–21CrossRefGoogle Scholar
Little, R. J., and D. B. Rubin (1987). Statistical Analysis with Missing Data. Wiley, New York
McCullagh, P., and J. A. Nelder (1989). Generalized Linear Models, Second Edition. Chapman and Hall, London
McCulloch, C. E., and S. R. Searle (2001). Generalized, Linear, and Mixed Models. Wiley, New York
Nelder, J. A., and Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society Ser. A 135, 370–84CrossRefGoogle Scholar
Neter, J., and W. Wasserman (1974). Applied Linear Statistical Models. Irwin, Homewood, IL.
Rubin, D. R. (1976). Inference and missing data. Biometrika 63, 581–92CrossRefGoogle Scholar
Rubin, D. R. (1978). Bayesian inference for causal effects. Annals of Statistics 6, 34–58CrossRefGoogle Scholar
Rubin, D. R. (1990). Comment: Neyman (1923) and causal inference in experiments and observational studies. Statistical Science 5, 472–80CrossRefGoogle Scholar
Scheffé, H. (1959). The Analysis of Variance. Wiley, New York
Searle, S. R. (1971). Linear Models. Wiley, New York
Searle, S. R. (1987). Linear Models for Unbalanced Data. Wiley, New York
Seber, G. A. (1977). Linear Regression Analysis. Wiley, New York
Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York
Stigler, S. M. (1986). The History of Statistics: The Measurement of Uncertainty before 1900. Harvard University Press, Cambridge, MA.
Tufte, E. R. (1997). Visual Explanations. Graphics Press, Cheshire, CT.
Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading, MA.
Venables, W. N., and B. D. Ripley (1999). Modern Applied Statistics with S-PLUS, Third Edition. Springer-Verlag, New York
Wachter, K. W., and Trusell, J. (1982). Estimating historical heights. Journal of the American Statistical Association 77, 279–301CrossRefGoogle Scholar
Wedderburn, R. W. (1974). Quasi-likelihood functions, generalized linear models and the Gaussian method. Biometrika 61, 439–47Google Scholar
Wong, W. H. (1986). Theory of partial likelihood. Annals of Statistics 14, 88–123CrossRefGoogle Scholar
Gibbons, R. D., and Hedeker, D. (1997). Random effects probit and logistic regression models for three-level data. Biometrics 53, 1527–37CrossRefGoogle ScholarPubMed
Grizzle, J. E., and Allen, M. D. (1969). Analysis of growth and dose response curves. Biometrics 25, 357–81CrossRefGoogle ScholarPubMed
Henderson, C. R. (1953). Estimation of variance components. Biometrics 9, 226–52CrossRefGoogle Scholar
Henderson, C. R. (1973). Sire evaluation and genetic trends. In Proceedings of the Animal Breeding and Genetics Symposium in Honor of Dr. Jay L. Lush, 10–41. Amer. Soc. Animal Sci. – Amer. Dairy Sci. Assoc. Poultry Sci. Assoc., Champaign, IL.CrossRef
Henderson, C. R. (1984). Applications of Linear Models in Animal Breeding, University of Guelph, Guelph, ON, Canada
Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer-Verlag, New York
Jennrich, R. I., and Schlucter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matirces. Biometrics 42, 805–20CrossRefGoogle Scholar
Kenward, M. G., and Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983–97CrossRefGoogle ScholarPubMed
Klein, J. P., and M. L. Moeschberger (1997). Survival Analysis: Techniques for Censored and Truncated Data. Springer-Verlag, New York
Laird, N. M. (1988). Missing data in longitudinal studies. Statistics in Medicine 7, 305–15CrossRefGoogle ScholarPubMed
Laird, N. M., and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963–74CrossRefGoogle ScholarPubMed
Liang, K.-Y., and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 12–22CrossRefGoogle Scholar
Palta, M., and Yao, T.-J. (1991). Analysis of longitudinal data with unmeasured confounders. Biometrics 47, 1355–69CrossRefGoogle ScholarPubMed
Palta, M., Yao, T.-J., and Velu, R. (1994). Testing for omitted variables and non-linearity in regression models for longitudinal data. Statistics in Medicine 13, 2219–31CrossRefGoogle ScholarPubMed
Patterson, H. D., and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58, 545–54CrossRefGoogle Scholar
Potthoff, R. F., and Roy, S. N. (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika 51, 313–26CrossRefGoogle Scholar
Prentice, R. L. (1988). Correlated binary regression with covariates specific to each binary observation. Biometrics 44, 1033–48CrossRefGoogle ScholarPubMed
Rao, C. R. (1965). The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. Biometrika 52, 447–58CrossRefGoogle ScholarPubMed
Rao, C. R. (1987). Prediction of future observations in growth curve models. Statistical Science 2, 434–71CrossRefGoogle Scholar
Stiratelli, R., Laird, N., and Ware, J. H. (1984). Random effects models for serial observations with binary responses. Biometrics 40, 961–71CrossRefGoogle Scholar
Sullivan, L. M., Dukes, K. A., and Losina, E. (1999). An introduction to hierarchical linear modelling. Statistics in Medicine 18, 855–883.0.CO;2-7>CrossRefGoogle ScholarPubMed
Wishart, J. (1938). Growth-rate determinations in nutrition studies with the bacon pig, and their analysis. Biometrka 30, 16–28CrossRefGoogle Scholar
Wright, S. (1918). On the nature of size factors. Genetics 3, 367–74Google ScholarPubMed
Zeger, S. L., and Liang, K.-Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121–30CrossRefGoogle ScholarPubMed
Zeger, S. L., Liang, K.-Y., and Albert, P. S. (1988). Models for longitudinal data: A generalized estimating equation approach. Biometrics 44, 1049–60CrossRefGoogle ScholarPubMed
Amemiya, T. (1985). Advanced Econometrics. Harvard University Press, Cambridge, MA.
Anderson, T. W., and Hsiao, C. (1982). Formulation and estimation of dynamic models using panel data. Journal of Econometrics 18, 47–82CrossRefGoogle Scholar
Andrews, D. W. K. (2001). Testing when a parameter is on the boundary of the maintained hypothesis. Econometrica 69, 683–734CrossRefGoogle Scholar
Arellano, M. (1993). On the testing of correlated effects with panel data. Journal of Econometrics 59, 87–97CrossRefGoogle Scholar
Arellano, M. (2003). Panel Data Econometrics. Oxford University Press, Oxford, UK.CrossRef
Arellano, M., and Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies 58, 277–97CrossRefGoogle Scholar
Arellano, M., and Bover, O. (1995). Another look at the instrumental-variable estimation of error components models. Journal of Econometrics 68, 29–51CrossRefGoogle Scholar
Arellano, M., and B. Honoré (2001). Panel data models: Some recent developments. In Handbook of Econometrics, Vol. 5, ed. J. J. Heckman and E. Leamer, pp. 3231–96. Elsevier, New York
Ashenfelter, O. (1978). Estimating the effect of training programs on earnings with longitudinal data. Review of Economics and Statistics 60, 47–57CrossRefGoogle Scholar
Avery, R. B. (1977). Error components and seemingly unrelated regressions. Econometrica 45, 199–209CrossRefGoogle Scholar
Balestra, P., and Nerlove, M. (1966). Pooling cross-section and time-series data in the estimation of a dynamic model: The demand for natural gas. Econometrica 34, 585–612CrossRefGoogle Scholar
Baltagi, B. H. (1980). On seemingly unrelated regressions and error components. Econometrica 48, 1547–51CrossRefGoogle Scholar
Baltagi, B. H. (2001). Econometric Analysis of Panel Data, Second Edition. Wiley, New York
Baltagi, B. H., and Chang, Y. J. (1994). Incomplete panels: A comparative study of alternative estimators for the unbalanced one-way error component regression model. Journal of Econometrics 62, 67CrossRefGoogle Scholar
Baltagi, B. H., and Li, Q. (1990). A Lagrange multiplier test for the error components model with incomplete panels. Econometric Reviews 9, 103–107CrossRefGoogle Scholar
Baltagi, B. H., and Li, Q. (1992). Prediction in the one-way error components model with serial correlation. Journal of Forecasting 11, 561–67CrossRefGoogle Scholar
Becker, R., and Henderson, V. (2000). Effects of air quality regulations on polluting industries. Journal of Political Economy 108, 379–421CrossRefGoogle Scholar
Bhargava, A., Franzini, L., and Narendranathan, W. (1982). Serial correlation and the fixed effects model. Review of Economic Studies 49, 533–49CrossRefGoogle Scholar
Blundell, R., and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87, 115–43CrossRefGoogle Scholar
Bound, J., Jaeger, D. A., and Baker, R. M. (1995). Problems with instrumental variables estimation when the correlation between the instruments and endogenous explanatory variables is weak. Journal of the American Statistical Assocication 90, 443–50Google Scholar
Breusch, T. S., and Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. Review of Economic Studies 47, 239–53CrossRefGoogle Scholar
Cameron, A. C., and P. K. Trivedi (1998). Regresson Analysis of Count Data. Cambridge University Press, Cambridge, UK.
Card, D. (1995). Using geographic variation in college proximity to estimate the return to schooling. In Aspects of Labour Market Behavior: Essays in Honour of John Vanderkamp, ed. L. N. Christophides, E. K. Grant, and R. Swidinsky, pp. 201–222. University of Toronto Press, Toronto, Canada
Chamberlain, G. (1980). Analysis of covariance with qualitative data. Review of Economic Studies 47, 225–38CrossRefGoogle Scholar
Chamberlain, G. (1982). Multivariate regression models for panel data. Journal of Econometrics 18, 5–46CrossRefGoogle Scholar
Chamberlain, G. (1984). Panel data. In Handbook of Econometrics, ed. Z. Griliches and M. Intrilligator, pp. 1247–1318. North-Holland, AmsterdamCrossRef
Chamberlain, G. (1992). Comment: Sequential moment restrictions in panel data. Journal of Business and Economic Statistics 10, 20–26Google Scholar
Chib, S., Greenberg, E., and Winkelman, R. (1998). Posterior simulation and Bayes factor in panel count data models. Journal of Econometrics 86, 33–54CrossRefGoogle Scholar
Davidson, R., and MacKinnon, J. G. (1990). Specification tests based on artificial regressions. Journal of the American Statistical Association 85, 220–27CrossRefGoogle Scholar
Engle, R. F., Hendry, D. F., and Richard, J. F. (1983). Exogeneity. Econometrica 51, 277–304CrossRefGoogle Scholar
Feinberg, S. E., Keane, M. P., and Bognano, M. F. (1998). Trade liberalization and “delocalization”: New evidence from firm-level panel data. Canadian Journal of Economics 31, 749–77CrossRefGoogle Scholar
Frees, E. W. (1995). Assessing cross-sectional correlations in longitudinal data. Journal of Econometrics 69, 393–414CrossRefGoogle Scholar
Glaeser, E. L., and Maré, D. C. (2001). Cities and skills. Journal of Labor Economics 19, 316–42CrossRefGoogle Scholar
Goldberger, A. S. (1962). Best linear unbiased prediction in the generalized linear regression model. Journal of the American Statistical Association 57, 369–75CrossRefGoogle Scholar
Goldberger, A. S. (1972). Structural equation methods in the social sciences. Econometrica 40, 979–1001CrossRefGoogle Scholar
Goldberger, A. S. (1991). A Course in Econometrics. Harvard University Press, Cambridge, MA
Gourieroux, C., Monfort, A., and Trognon, A. (1984). Pseudo-maximum likelihood methods: Theory. Econometrica 52, 681–700CrossRefGoogle Scholar
Greene, W. H. (2002), Econometric Analysis, Fifth Edition. Prentice-Hall, Englewood Cliffs, NJ
Haavelmo, T. (1944). The probability approach to econometrics. Supplement to Econometrica 12, ⅲ–ⅵ, 1–115Google Scholar
Haisken-DeNew, J. P. (2001). A hitchhiker's guide to the world's household panel data sets. The Australian Economic Review 34(3), 356–66CrossRefGoogle Scholar
Hausman, J. A. (1978). Specification tests in econometrics. Econometrica 46, 1251–71CrossRefGoogle Scholar
Hausman, J. A., Hall, B. H., and Griliches, Z. (1984). Econometric models for count data with an application to the patents–R&D relationship. Econometrica 52, 909–38CrossRefGoogle Scholar
Hausman, J. A., and Taylor, W. E. (1981). Panel data and unobservable individual effects. Econometrica 49, 1377–98CrossRefGoogle Scholar
Hausman, J. A., and Wise, D. (1979). Attrition bias in experimental and panel data: The Gary income maintenance experiment. Econometrica 47, 455–73CrossRefGoogle Scholar
Hayashi, F. (2000). Econometrics. Princeton University Press, Princeton, NJ.
Heckman, J. J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables, and a simple estimator for such models. Ann. Econ. Soc. Meas 5, 475–92Google Scholar
Heckman, J. J. (1981). Statistical models for discrete panel data. In Structural Analysis Of Discrete Data with Econometric Applications, ed. C. F. Manski and D. McFadden, pp. 114–78. MIT Press, Cambridge, MA.
Hoch, I. (1962). Estimation of production function parameters combining time-series and cross-section data. Econometrica 30, 34–53CrossRefGoogle Scholar
Hsiao, C. (2002). Analysis of Panel Data, Second Edition. Cambridge University Press, Cambridge, UK.
Johnson, P. R. (1960). Land substitutes and changes in corn yields. Journal of Farm Economics 42, 294–306CrossRefGoogle Scholar
Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lütkepohl, and T. C. Lee (1985). The Theory and Practice of Econometrics. Wiley, New York
Keane, M. P., and Runkle, D. E. (1992). On the estimation of panel data models with serial correlation when instruments are not strictly exogenous. Journal of Business and Economic Statistics 10, 1–9Google Scholar
Kiefer, N. M. (1980). Estimation of fixed effects models for time series of cross sections with arbitrary intertemporal covariance. Journal of Econometrics 14, 195–202CrossRefGoogle Scholar
Kuh, E. (1959). The validity of cross-sectionally estimated behavior equation in time series application. Econometrica 27, 197–214CrossRefGoogle Scholar
Lancaster, T. (1990). The Econometric Analysis of Transition Data. Cambridge University Press, New York
Maddala, G. S. (1971). The use of variance components models in pooling cross section and time series data. Econometrica 39, 341–58CrossRefGoogle Scholar
Manski, C. (1992). Comment: The impact of sociological methodology on statistical methodology by C. C. Clogg. Statistical Science 7(2), 201–203CrossRefGoogle Scholar
Mátyás, L., and, P. Sevestre eds. (1996). The Econometrics of Panel Data: Handbook of Theory and Applications. Kluwer Academic Publishers, Dordrecht
McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In Frontiers of Econometrics, ed. P. Zarembka, pp. 105–142. Academic Press, New York
McFadden, D. (1978). Modeling the choice of residential location. In Spatial Interaction Theory and Planning Models, ed. A Karlqvist et al., pp. 75–96. North-Holland, Amsterdam
McFadden, D. (1981). Econometric models of probabilistic choice. In Structural Analysis of Discrete Data with Econometric Applications, ed. C. Manski and D. McFadden, pp. 198–272. MIT Press, Cambridge, MA.
Mundlak, Y. (1961). Empirical production function free of management bias. Journal of Farm Economics 43, 44–56CrossRefGoogle Scholar
Mundlak, Y. (1978a). On the pooling of time series and cross-section data. Econometrica 46, 69–85CrossRefGoogle Scholar
Mundlak, Y. (1978b). Models with variable coefficients: Integration and extensions. Annales de L'Insee 30–31, 483–509CrossRefGoogle Scholar
Neyman, J., and Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica 16, 1–32CrossRefGoogle Scholar
Polachek, S. W., and Kim, M. (1994). Panel estimates of the gender earnings gap. Journal of Econometrics 61, 23–42CrossRefGoogle Scholar
Swamy, P. A. V. B. (1970). Efficient inference in a random coefficient regression model. Econometrica 38, 311–23CrossRefGoogle Scholar
Theil, H., and Goldberger, A. (1961). On pure and mixed estimation in economics. International Economic Review 2, 65–78CrossRefGoogle Scholar
Valletta, R. G. (1999). Declining job security. Journal of Labor Economics 17, S170-S197CrossRefGoogle Scholar
Wallace, T., and Hussain, A. (1969). The use of error components in combining cross section with time series data. Econometrica 37, 55–72CrossRefGoogle Scholar
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 817–38CrossRefGoogle Scholar
White, H. (1984). Asymptotic Theory for Econometricians. Academic Press, Orlando, FL.
Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge, MA.
Zellner, A. (1962). An efficient method of estimating seemingly unrelated regression and tests for aggregation bias. Journal of the American Statistical Association 57, 348–68CrossRefGoogle Scholar
Baltes, P. B., and J. R. Nesselroade (1979). History and rational of longitudinal research. In Longitudinal Research in the Study of Behavior and Development, ed. J. R. Nesselroade and P. B. Baltes, pp. 1–39. Academic Press, New York
Bollen, K. A. (1989). Structural Equations with Latent Variables. Wiley, New York
de Leeuw, J., and I. Kreft (2001). Software for multilevel analysis. In Multilevel Modeling of Health Statistics ed. A. H. Leyland and H. Goldstein, pp. 187–204. Wiley, New York
Duncan, O. D. (1969). Some linear models for two wave, two variable panel analysis. Psychological Bulletin 72, 177–82CrossRefGoogle Scholar
Duncan, T. E., S. C. Duncan, L. A. Stryakar, F. Li, and A. Alpert (1999). An Introduction to Latent Variable Growth Curve Modeling. Lawrence Erlbaum, Mahwah, NJ
Frees, E. W. and J.-S. Kim (2004). Multilevel model prediction. UW working paper, available at http://research.bus.wisc.edu/jFrees/
Goldstein, H. (2002). Multilevel Statistical Models, Third Edition. Edward Arnold, London
Guo, S., and Hussey, D. (1999). Analyzing longitudinal rating data: A three-level hierarchical linear model. Social Work Research 23(4), 258–68CrossRefGoogle Scholar
Kreft, I., and J. de Leeuw (1998). Introducing Multilevel Modeling. Sage, New York
Lee, V. (2000). Using hierarchical linear modeling to study social contexts: The case of school effects. Educational Psychologist 35(2), 125–41CrossRefGoogle Scholar
Lee, V., and Smith, J. B. (1997). High school size: Which works best and for whom? Educational Evaluation and Policy Analysis 19(3), 205–27CrossRefGoogle Scholar
Longford, N. T. (1993). Random Coefficient Models. Clarendon Press, Oxford, UK.
Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proc. Fourth Berkeley Symposium 4, 434–58Google Scholar
Raudenbush, S. W., and A. S. Bryk (2002). Hierarchical Linear Models: Applications and Data Analysis Methods, Second Edition. Sage, London
Rubin, D. R. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66, 688–701CrossRefGoogle Scholar
Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics 27, 323–55CrossRefGoogle Scholar
Singer, J. D., and J. B. Willett (2003). Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford University Press, Oxford, UK.CrossRef
Toon, T. J. (2000). A Primer in Longitudinal Data Analysis. Sage, London
Webb, N. L., W. H. Clune, D. Bolt, A. Gamoran, R. H. Meyer, E. Osthoff, and C. Thorn. (2002). Models for analysis of NSF's systemic initiative programs – The impact of the urban system initiatives on student achievement in Texas, 1994–2000. Wisconsin Center for Education Research Technical Report, July. Available at http://facstaff.wcer.wisc.edu/normw/technical_reports.htm
Willett, J. B., and Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin 116, 363–81CrossRefGoogle Scholar
Ashley, T., Liu, Y., and Chang, S. (1999). Estimating net lottery revenues for states. Atlantic Economics Journal 27, 170–78CrossRefGoogle Scholar
Bailey, A. (1950). Credibility procedures: LaPlace's generalization of Bayes' rule and the combination of collateral knowledge with observed data. Proceedings of the Casualty Actuarial Society 37, 7–23Google Scholar
Beck, N., and Katz, J. N. (1995). What to do (and not to do) with time-series cross-section data. American Political Science Review 89, 634–47CrossRefGoogle Scholar
Brader, T., and Tucker, J. A. (2001). The emergence of mass partisanship in Russia, 1993–1996. American Journal of Political Science 45, 69–83CrossRefGoogle Scholar
Bühlmann, H. (1967). Experience rating and credibility. ASTIN Bulletin 4, 199–207CrossRefGoogle Scholar
Bühlmann, H., and Straub, E. (1970). Glaubwürdigkeit für Schadensätze. Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker 70, 111–33Google Scholar
Dannenburg, D. R., R. Kaas, and M. J. Goovaerts (1996). Practical Actuarial Credibility Models. Institute of Actuarial Science and Econometrics, University of Amsterdam, Amsterdam
Dielman, T. E. (1989). Pooled Cross-Sectional and Time Series Data Analysis. Marcel Dekker, New York
Frees, E. W., and Miller, T. W. (2004). Sales forecasting using longitudinal data models. International Journal of Forecasting 20, 97–111CrossRefGoogle Scholar
Frees, E. W., Young, V., and Luo, Y. (1999). A longitudinal data analysis interpretation of credibility models. Insurance: Mathematics and Economics 24, 229–47Google Scholar
Frees, E. W., Young, V., and Luo, Y. (2001). Case studies using panel data models. North American Actuarial Journal 4(4), 24–42CrossRefGoogle Scholar
Frischmann, P. J., and Frees, E. W. (1999). Demand for services: Determinants of tax preparation fees. Journal of the American Taxation Association 21, Supplement 1–23CrossRefGoogle Scholar
Green, R. K., and S. Malpezzi (2003). A Primer on U.S. Housing Markets and Policy. Urban Institute Press, Washington, DC.
Haberman, S., and E. Pitacco (1999). Actuarial Models for Disability Insurance. Chapman and Hall/CRC, Boca Raton
Hachemeister, C. A. (1975). Credibility for regression models with applications to trend. In Credibility: Theory and Applications, ed. P. M. Kahn, pp. 129–163 Academic Press, New York
Hickman, J. C., and Heacox, L. (1999). Credibility theory: The cornerstone of actuarial science. North American Actuarial Journal 3(2), 1–8Google Scholar
Jain, D. C., Vilcassim, N. J., and Chintagunta, P. K. (1994). A random-coefficients logit brand choice model applied to panel data. Journal of Business and Economic Statistics 12, 317–28Google Scholar
Jewell, W. S. (1975). The use of collateral data in credibility theory: A hierarchical model. Giornale dell'Istituto Italiano degli Attuari 38, 1–16. (Also, Research Memorandum 75–24 of the International Institute for Applied Systems Analysis, Laxenburg, Austria.)Google Scholar
Kim, Y.-D., Anderson, D. R., Amburgey, T. L., and Hickman, J. C. (1995). The use of event history analysis to examine insurance insolvencies. Journal of Risk and Insurance 62, 94–110CrossRefGoogle Scholar
Klugman, S. A. (1992). Bayesian Statistics in Actuarial Science: With Emphasis on Credibility. Kluwer Academic, Boston
Klugman, S., H. Panjer, and G. Willmot (1998). Loss Models: From Data to Decisions. Wiley, New York
Kung, Y. (1996). Panel Data with Serial Correlation. Unpublished Ph. D. thesis, University of Wisconsin, Madison
Lazarsfeld, P. F., and Fiske, M. (1938). The panel as a new tool for measuring opinion. Public Opinion Quarterly 2, 596–612CrossRefGoogle Scholar
Ledolter, J., Klugman, S., and Lee, C.-S. (1991). Credibility models with time-varying trend components. ASTIN Bulletin 21, 73–91CrossRefGoogle Scholar
Lee, H. D. (1994). An Empirical Study of the Effects of Tort Reforms on the Rate of Tort Filings. Unpublished Ph. D. thesis, University of Wisconsin, Madison
Lee, H. D., Browne, M. J., and Schmit, J. T. (1994). How does joint and several tort reform affect the rate of tort filings? Evidence from the state courts. Journal of Risk and Insurance 61(2), 595–616CrossRefGoogle Scholar
Lintner, J. (1965). The valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics 47, 13–37CrossRefGoogle Scholar
Luo, Y., Young, V. R., and Frees, E. W. (2004). Credibility ratemaking using collateral information. To appear in Scandinavian Actuarial JournalCrossRefGoogle Scholar
Malpezzi, S. (1996). Housing prices, externalities, and regulation in U.S. metropolitan areas. Journal of Housing Research 7(2), 209–41Google Scholar
Markowitz, H. (1952). Portfolio selection. Journal of Finance 7, 77–91Google Scholar
Mowbray, A. H. (1914). How extensive a payroll exposure is necessary to give a dependable pure premium. Proceedings of the Casualty Actuarial Society 1, 24–30Google Scholar
Norberg, R. (1980). Empirical Bayes credibility. Scandinavian Actuarial Journal 1980, 177–94CrossRefGoogle Scholar
Norberg, R. (1986). Hierarchical credibility: Analysis of a random effect linear model with nested classification. Scandinavian Actuarial Journal 1986, 204–22CrossRefGoogle Scholar
Paker, B. S. (2000). Corporate Fund Raising and Capital Structure in Japan during the 1980s and 1990s. Unpublished Ph. D. thesis, University of Wisconsin, Madison
Pinquet, J. (1997). Allowance for cost of claims in bonus-malus systems. ASTIN Bulletin 27, 33–57CrossRefGoogle Scholar
Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under risk. Journal of Finance 19, 425–42Google Scholar
Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business 74, 101–24CrossRefGoogle Scholar
Stimson, J. (1985). Regression in space and time: A statistical essay. American Journal of Political Science 29, 914–47CrossRefGoogle Scholar
Stohs, M. H., and Mauer, D. C. (1996). The determinants of corporate debt maturity structure. Journal of Business 69(3), 279–312CrossRefGoogle Scholar
Taylor, G. C. (1977). Abstract credibility. Scandinavian Actuarial Journal 1977, 149–68CrossRefGoogle Scholar
Venter, G. (1996). Credibility. In Foundations of Casualty Actuarial Science, Third Edition, ed. I. K. Bass et al. Casualty Actuarial Society, Arlington, VA.
Zhou, X. (2000). Economic transformation and income inequality in urban China: Evidence from panel data. American Journal of Sociology 105, 1135–74CrossRefGoogle Scholar
Banerjee, M., and Frees, E. W. (1997). Influence diagnostics for linear longitudinal models. Journal of the American Statistical Association 92, 999–1005CrossRefGoogle Scholar
Chen, Z., and Kuo, L. (2001). A note on the estimation of multinomial logit model with random effects. American Statistician 55, 89–95CrossRefGoogle Scholar
Conaway, M. R. (1989). Analysis of repeated categorical measurements with conditional likelihood methods. Journal of the American Statistical Association 84, 53–62CrossRefGoogle Scholar
Corbeil, R. R., and Searle, S. R. (1976a). Restricted maximum likelihood (REML) estimation of variance components in the mixed model. Technometrics 18, 31–38CrossRefGoogle Scholar
Corbeil, R. R., and Searle, S. R. (1976b). A comparison of variance components estimators. Biometrics 32, 779–91CrossRefGoogle Scholar
Davidian, M., and D. M. Giltinan (1995). Nonlinear Models for Repeated Measurement Data. Chapman–Hall, London
Diggle, P. J., P. Heagarty, K.-Y. Liang, and S. L. Zeger (2002). Analysis of Longitudinal Data, Second Edition. Oxford University Press, Oxford, UK.
Fahrmeir, L., and G. Tutz (2001). Multivariate Statistical Modelling Based on Generalized Linear Models, Second Edition. Springer-Verlag, New York
Frees, E. W. (2001). Omitted variables in panel data models. Canadian Journal of Statistics 29(4), 1–23CrossRefGoogle Scholar
Frees, E. W., and Jin, C. (2004). Empirical standard errors for longitudinal data mixed linear models. To appear in Computational StatisticsCrossRefGoogle Scholar
Ghosh, M., and Rao, J. N. K. (1994). Small area estimation: An appraisal. Statistical Science 9, 55–93CrossRefGoogle Scholar
Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge, UK.
Harville, D. A. (1974). Bayesian inference for variance components using only error contrasts. Biometrika 61, 383–85CrossRefGoogle Scholar
Harville, D. (1976). Extension of the Gauss–Markov theorem to include the estimation of random effects. Annals of Statistics 2, 384–95CrossRefGoogle Scholar
Harville, D. (1977). Maximum likelihood estimation of variance components and related problems. Journal of the American Statistical Association 72, 320–40CrossRefGoogle Scholar
Herbach, L. H. (1959). Properties of model II type analysis of variance tests, A: Optimum nature of the F-test for model II in the balanced case. Annals of Mathematical Statistics 30, 939–59CrossRefGoogle Scholar
Hildreth, C., and Houck, C. (1968). Some estimators for a linear model with random coefficients. Journal of the American Statistical Association 63, 584–95Google Scholar
Jones, R. H. (1993). Longitudinal Data with Serial Correlation: A State-Space Approach. Chapman and Hall, London
Jöreskog, K. G., and Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association 70, 631–39Google Scholar
Kackar, R. N., and Harville, D. (1984). Approximations for standard errors of estimators of fixed and random effects in mixed linear models. Journal of the American Statistical Association 79, 853–62Google Scholar
Lin, X., and Breslow, N. E. (1996). Bias correction on generalized linear mixed models with multiple components of dispersion. Journal of the American Statistical Association 91, 1007–16CrossRefGoogle Scholar
Littell, R. C, G. A. Milliken, W. W. Stroup, and R. D. Wolfinger (1996). SAS System for Mixed Models. SAS Institute, Cary, NC.
Parks, R. (1967). Efficient estimation of a system of regression equations when disturbances are both serially and contemporaneously correlated. Journal of the American Statistical Association 62, 500–509CrossRefGoogle Scholar
Pinheiro, J. C., and D. M. Bates (2000). Mixed-Effects Models in S and S-Plus. Springer-Verlag, New York
Rao, C. R. (1965). The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. Biometrika 52, 447–58CrossRefGoogle ScholarPubMed
Rao, C. R. (1970). Estimation of variance and covariance components in linear models. Journal of the American Statistical Association 67, 112–15CrossRefGoogle Scholar
Reinsel, G. C. (1982). Multivariate repeated-measurement or growth curve models with multivariate random-effects covariance structure. Journal of the American Statistical Association 77, 190–95CrossRefGoogle Scholar
Reinsel, G. C. (1984). Estimation and prediction in a multivariate random effects generalized linear model. Journal of the American Statistical Association 79, 406–14CrossRefGoogle Scholar
Robinson, G. K. (1991). The estimation of random effects. Statistical Science 6, 15–51CrossRefGoogle Scholar
Searle, S. R., G. Casella, and C. E. McCulloch (1992). Variance Components. Wiley, New York
Self, S. G., and Liang, K. Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association 82, 605–10CrossRefGoogle Scholar
Stram, D. O., and Lee, J. W. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics 50, 1171–77CrossRefGoogle ScholarPubMed
Swallow, W. H., and Searle, S. R. (1978). Minimum variance quadratic unbiased estimation (MIVQUE) of variance components. Technometrics 20, 265–72CrossRefGoogle Scholar
Tsimikas, J. V., and Ledolter, J. (1994). REML and best linear unbiased prediction in state space models. Communications in Statistics: Theory and Methods 23, 2253–68CrossRefGoogle Scholar
Tsimikas, J. V., and Ledolter, J. (1997). Mixed model representations of state space models: New smoothing results and their application to REML estimation. Statistica Sinica 7, 973–91Google Scholar
Tsimikas, J. V., and Ledolter, J. (1998). Analysis of multi-unit variance components models with state space profiles. Annals of the Institute of Statist Math 50(1), 147–64CrossRefGoogle Scholar
Verbeke, G., and G. Molenberghs (2000). Linear Mixed Models for Longitudinal Data. Springer-Verlag, New York
Vonesh, E. F., and V. M. Chinchilli (1997). Linear and Nonlinear Models for the Analysis of Repeated Measurements. Marcel Dekker, New York
Ware, J. H. (1985). Linear models for the analysis of longitudinal studies. The American Statistician 39, 95–101Google Scholar
Wolfinger, R., Tobias, R., and Sall, J. (1994). Computing Gaussian likelihoods and their derivatives for general linear mixed models. SIAM Journal of Scientific Computing 15(6), 1294–310CrossRefGoogle Scholar
Zeger, S. L., and Karim, M. R. (1991). Generalized linear models with random effects: A Gibbs sampling approach. Journal of the American Statistical Association 86, 79–86CrossRefGoogle Scholar
Agresti, A. (2002). Categorical Data Analysis. Wiley, New York
Andersen, E. B. (1970). Asymptotic properties of conditional maximum-likelihood estimators. Journal of the Royal Statistical Society B 32, 283–301Google Scholar
Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York
Angrist, J. D., Imbens, G. W., and Rubin, D. B. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91, 444–72CrossRefGoogle Scholar
Becker, R. A., Cleveland, W. S., and Shyu, M.-J. (1996). The visual design and control of trellis graphics displays. Journal of Computational and Graphical Statistics 5, 123–56Google Scholar
Bickel, P. J., and Doksum, K. A. (1977). Mathematical Statistics. Holden-Day, San Francisco
Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In Robustness in Statistics, ed. R. Launer and G. Wilderson, pp. 201–236. Academic Press, New YorkCrossRef
Box, G. E. P., G. M. Jenkins, and G. Reinsel. (1994). Time Series Analysis. Prentice Hall, Englewood Cliffs, NJ.
Carroll, R. J., and D. Ruppert (1988). Transformation and Weighting in Regression. Chapman and Hall, London
Cleveland, W. S. (1993). Visualizing Data. Hobart Press, Summit, NJ.
Congdon, P. (2003). Applied Bayesian Modelling. Wiley, New York
Cook, D., and S. Weisberg (1982). Residuals and Influence in Regression. Chapman and Hall, London
Draper, N., and H. Smith (1981). Applied Regression Analysis, Second Edition. Wiley, New York
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 89, 517–25Google Scholar
Fuller, W. A., and Battese, G. E. (1973). Transformations for estimation of linear models with nested error structure. Journal of the American Statistical Association 68, 626–32CrossRefGoogle Scholar
Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2004). Bayesian Data Analysis, Second Edition. Chapman and Hall, New York
Gill, J. (2002). Bayesian Methods for the Social and Behavioral Sciences. Chapman and Hall, New York
Graybill, F. A. (1969). Matrices with Applications in Statistics, Second Edition. Wadsworth, Belmont CA
Hocking, R. (1985). The Analysis of Linear Models. Wadsworth and Brooks/Cole, Pacific Grove, CA.
Hosmer, D. W., and S. Lemeshow (2000). Applied Logistic Regression. Wiley, New York
Hougaard, P. (1987). Modelling multivariate survival. Scandinavian Journal of Statistics 14, 291–304Google Scholar
Huber, P. J. (1967). The behaviour of maximum likelihood estimators under non-standard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1, ed. L. M. LeCam and J. Neyman, pp. 221–33, University of California Press, Berkeley
Hutchinson, T. P., and C. D. Lai (1990). Continuous Bivariate Distributions, Emphasising Applications. Rumsby Scientific Publishing, Adelaide, Australia
Johnson, R. A., and D. Wichern (1999). Applied Multivariate Statistical Analysis. Prentice Hall, Englewood Cliffs, NJ.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82, 34–45CrossRefGoogle Scholar
Layard, M. W. (1973). Robust large sample tests for homogeneity of variance. Journal of the American Statistical Association 68, 195–198CrossRefGoogle Scholar
Lehmann, E. (1991). Theory of Point Estimation. Wadsworth and Brooks/Cole, Pacific Grove, CA.CrossRef
Little, R. J. (1995). Modelling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 1112–21CrossRefGoogle Scholar
Little, R. J., and D. B. Rubin (1987). Statistical Analysis with Missing Data. Wiley, New York
McCullagh, P., and J. A. Nelder (1989). Generalized Linear Models, Second Edition. Chapman and Hall, London
McCulloch, C. E., and S. R. Searle (2001). Generalized, Linear, and Mixed Models. Wiley, New York
Nelder, J. A., and Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society Ser. A 135, 370–84CrossRefGoogle Scholar
Neter, J., and W. Wasserman (1974). Applied Linear Statistical Models. Irwin, Homewood, IL.
Rubin, D. R. (1976). Inference and missing data. Biometrika 63, 581–92CrossRefGoogle Scholar
Rubin, D. R. (1978). Bayesian inference for causal effects. Annals of Statistics 6, 34–58CrossRefGoogle Scholar
Rubin, D. R. (1990). Comment: Neyman (1923) and causal inference in experiments and observational studies. Statistical Science 5, 472–80CrossRefGoogle Scholar
Scheffé, H. (1959). The Analysis of Variance. Wiley, New York
Searle, S. R. (1971). Linear Models. Wiley, New York
Searle, S. R. (1987). Linear Models for Unbalanced Data. Wiley, New York
Seber, G. A. (1977). Linear Regression Analysis. Wiley, New York
Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York
Stigler, S. M. (1986). The History of Statistics: The Measurement of Uncertainty before 1900. Harvard University Press, Cambridge, MA.
Tufte, E. R. (1997). Visual Explanations. Graphics Press, Cheshire, CT.
Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading, MA.
Venables, W. N., and B. D. Ripley (1999). Modern Applied Statistics with S-PLUS, Third Edition. Springer-Verlag, New York
Wachter, K. W., and Trusell, J. (1982). Estimating historical heights. Journal of the American Statistical Association 77, 279–301CrossRefGoogle Scholar
Wedderburn, R. W. (1974). Quasi-likelihood functions, generalized linear models and the Gaussian method. Biometrika 61, 439–47Google Scholar
Wong, W. H. (1986). Theory of partial likelihood. Annals of Statistics 14, 88–123CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edward W. Frees, University of Wisconsin, Madison
  • Book: Longitudinal and Panel Data
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511790928.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edward W. Frees, University of Wisconsin, Madison
  • Book: Longitudinal and Panel Data
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511790928.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edward W. Frees, University of Wisconsin, Madison
  • Book: Longitudinal and Panel Data
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511790928.019
Available formats
×