Skip to main content Accessibility help
×
Home
Longitudinal and Panel Data
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 244
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This focuses on models and data that arise from repeated observations of a cross-section of individuals, households or companies. These models have found important applications within business, economics, education, political science and other social science disciplines. The author introduces the foundations of longitudinal and panel data analysis at a level suitable for quantitatively oriented graduate social science students as well as individual researchers. He emphasizes mathematical and statistical fundamentals but also describes substantive applications from across the social sciences, showing the breadth and scope that these models enjoy. The applications are enhanced by real-world data sets and software programs in SAS and Stata.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Biological Sciences Longitudinal Data References
Gibbons, R. D., and Hedeker, D. (1997). Random effects probit and logistic regression models for three-level data. Biometrics 53, 1527–37
Grizzle, J. E., and Allen, M. D. (1969). Analysis of growth and dose response curves. Biometrics 25, 357–81
Henderson, C. R. (1953). Estimation of variance components. Biometrics 9, 226–52
Henderson, C. R. (1973). Sire evaluation and genetic trends. In Proceedings of the Animal Breeding and Genetics Symposium in Honor of Dr. Jay L. Lush, 10–41. Amer. Soc. Animal Sci. – Amer. Dairy Sci. Assoc. Poultry Sci. Assoc., Champaign, IL.
Henderson, C. R. (1984). Applications of Linear Models in Animal Breeding, University of Guelph, Guelph, ON, Canada
Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer-Verlag, New York
Jennrich, R. I., and Schlucter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matirces. Biometrics 42, 805–20
Kenward, M. G., and Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983–97
Klein, J. P., and M. L. Moeschberger (1997). Survival Analysis: Techniques for Censored and Truncated Data. Springer-Verlag, New York
Laird, N. M. (1988). Missing data in longitudinal studies. Statistics in Medicine 7, 305–15
Laird, N. M., and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963–74
Liang, K.-Y., and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 12–22
Palta, M., and Yao, T.-J. (1991). Analysis of longitudinal data with unmeasured confounders. Biometrics 47, 1355–69
Palta, M., Yao, T.-J., and Velu, R. (1994). Testing for omitted variables and non-linearity in regression models for longitudinal data. Statistics in Medicine 13, 2219–31
Patterson, H. D., and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58, 545–54
Potthoff, R. F., and Roy, S. N. (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika 51, 313–26
Prentice, R. L. (1988). Correlated binary regression with covariates specific to each binary observation. Biometrics 44, 1033–48
Rao, C. R. (1965). The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. Biometrika 52, 447–58
Rao, C. R. (1987). Prediction of future observations in growth curve models. Statistical Science 2, 434–71
Stiratelli, R., Laird, N., and Ware, J. H. (1984). Random effects models for serial observations with binary responses. Biometrics 40, 961–71
Sullivan, L. M., Dukes, K. A., and Losina, E. (1999). An introduction to hierarchical linear modelling. Statistics in Medicine 18, 855–88
Wishart, J. (1938). Growth-rate determinations in nutrition studies with the bacon pig, and their analysis. Biometrka 30, 16–28
Wright, S. (1918). On the nature of size factors. Genetics 3, 367–74
Zeger, S. L., and Liang, K.-Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121–30
Zeger, S. L., Liang, K.-Y., and Albert, P. S. (1988). Models for longitudinal data: A generalized estimating equation approach. Biometrics 44, 1049–60
Econometrics Panel Data References
Amemiya, T. (1985). Advanced Econometrics. Harvard University Press, Cambridge, MA.
Anderson, T. W., and Hsiao, C. (1982). Formulation and estimation of dynamic models using panel data. Journal of Econometrics 18, 47–82
Andrews, D. W. K. (2001). Testing when a parameter is on the boundary of the maintained hypothesis. Econometrica 69, 683–734
Arellano, M. (1993). On the testing of correlated effects with panel data. Journal of Econometrics 59, 87–97
Arellano, M. (2003). Panel Data Econometrics. Oxford University Press, Oxford, UK.
Arellano, M., and Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies 58, 277–97
Arellano, M., and Bover, O. (1995). Another look at the instrumental-variable estimation of error components models. Journal of Econometrics 68, 29–51
Arellano, M., and B. Honoré (2001). Panel data models: Some recent developments. In Handbook of Econometrics, Vol. 5, ed. J. J. Heckman and E. Leamer, pp. 3231–96. Elsevier, New York
Ashenfelter, O. (1978). Estimating the effect of training programs on earnings with longitudinal data. Review of Economics and Statistics 60, 47–57
Avery, R. B. (1977). Error components and seemingly unrelated regressions. Econometrica 45, 199–209
Balestra, P., and Nerlove, M. (1966). Pooling cross-section and time-series data in the estimation of a dynamic model: The demand for natural gas. Econometrica 34, 585–612
Baltagi, B. H. (1980). On seemingly unrelated regressions and error components. Econometrica 48, 1547–51
Baltagi, B. H. (2001). Econometric Analysis of Panel Data, Second Edition. Wiley, New York
Baltagi, B. H., and Chang, Y. J. (1994). Incomplete panels: A comparative study of alternative estimators for the unbalanced one-way error component regression model. Journal of Econometrics 62, 67
Baltagi, B. H., and Li, Q. (1990). A Lagrange multiplier test for the error components model with incomplete panels. Econometric Reviews 9, 103–107
Baltagi, B. H., and Li, Q. (1992). Prediction in the one-way error components model with serial correlation. Journal of Forecasting 11, 561–67
Becker, R., and Henderson, V. (2000). Effects of air quality regulations on polluting industries. Journal of Political Economy 108, 379–421
Bhargava, A., Franzini, L., and Narendranathan, W. (1982). Serial correlation and the fixed effects model. Review of Economic Studies 49, 533–49
Blundell, R., and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87, 115–43
Bound, J., Jaeger, D. A., and Baker, R. M. (1995). Problems with instrumental variables estimation when the correlation between the instruments and endogenous explanatory variables is weak. Journal of the American Statistical Assocication 90, 443–50
Breusch, T. S., and Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. Review of Economic Studies 47, 239–53
Cameron, A. C., and P. K. Trivedi (1998). Regresson Analysis of Count Data. Cambridge University Press, Cambridge, UK.
Card, D. (1995). Using geographic variation in college proximity to estimate the return to schooling. In Aspects of Labour Market Behavior: Essays in Honour of John Vanderkamp, ed. L. N. Christophides, E. K. Grant, and R. Swidinsky, pp. 201–222. University of Toronto Press, Toronto, Canada
Chamberlain, G. (1980). Analysis of covariance with qualitative data. Review of Economic Studies 47, 225–38
Chamberlain, G. (1982). Multivariate regression models for panel data. Journal of Econometrics 18, 5–46
Chamberlain, G. (1984). Panel data. In Handbook of Econometrics, ed. Z. Griliches and M. Intrilligator, pp. 1247–1318. North-Holland, Amsterdam
Chamberlain, G. (1992). Comment: Sequential moment restrictions in panel data. Journal of Business and Economic Statistics 10, 20–26
Chib, S., Greenberg, E., and Winkelman, R. (1998). Posterior simulation and Bayes factor in panel count data models. Journal of Econometrics 86, 33–54
Davidson, R., and MacKinnon, J. G. (1990). Specification tests based on artificial regressions. Journal of the American Statistical Association 85, 220–27
Engle, R. F., Hendry, D. F., and Richard, J. F. (1983). Exogeneity. Econometrica 51, 277–304
Feinberg, S. E., Keane, M. P., and Bognano, M. F. (1998). Trade liberalization and “delocalization”: New evidence from firm-level panel data. Canadian Journal of Economics 31, 749–77
Frees, E. W. (1995). Assessing cross-sectional correlations in longitudinal data. Journal of Econometrics 69, 393–414
Glaeser, E. L., and Maré, D. C. (2001). Cities and skills. Journal of Labor Economics 19, 316–42
Goldberger, A. S. (1962). Best linear unbiased prediction in the generalized linear regression model. Journal of the American Statistical Association 57, 369–75
Goldberger, A. S. (1972). Structural equation methods in the social sciences. Econometrica 40, 979–1001
Goldberger, A. S. (1991). A Course in Econometrics. Harvard University Press, Cambridge, MA
Gourieroux, C., Monfort, A., and Trognon, A. (1984). Pseudo-maximum likelihood methods: Theory. Econometrica 52, 681–700
Greene, W. H. (2002), Econometric Analysis, Fifth Edition. Prentice-Hall, Englewood Cliffs, NJ
Haavelmo, T. (1944). The probability approach to econometrics. Supplement to Econometrica 12, ⅲ–ⅵ, 1–115
Haisken-DeNew, J. P. (2001). A hitchhiker's guide to the world's household panel data sets. The Australian Economic Review 34(3), 356–66
Hausman, J. A. (1978). Specification tests in econometrics. Econometrica 46, 1251–71
Hausman, J. A., Hall, B. H., and Griliches, Z. (1984). Econometric models for count data with an application to the patents–R&D relationship. Econometrica 52, 909–38
Hausman, J. A., and Taylor, W. E. (1981). Panel data and unobservable individual effects. Econometrica 49, 1377–98
Hausman, J. A., and Wise, D. (1979). Attrition bias in experimental and panel data: The Gary income maintenance experiment. Econometrica 47, 455–73
Hayashi, F. (2000). Econometrics. Princeton University Press, Princeton, NJ.
Heckman, J. J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables, and a simple estimator for such models. Ann. Econ. Soc. Meas 5, 475–92
Heckman, J. J. (1981). Statistical models for discrete panel data. In Structural Analysis Of Discrete Data with Econometric Applications, ed. C. F. Manski and D. McFadden, pp. 114–78. MIT Press, Cambridge, MA.
Hoch, I. (1962). Estimation of production function parameters combining time-series and cross-section data. Econometrica 30, 34–53
Hsiao, C. (2002). Analysis of Panel Data, Second Edition. Cambridge University Press, Cambridge, UK.
Johnson, P. R. (1960). Land substitutes and changes in corn yields. Journal of Farm Economics 42, 294–306
Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lütkepohl, and T. C. Lee (1985). The Theory and Practice of Econometrics. Wiley, New York
Keane, M. P., and Runkle, D. E. (1992). On the estimation of panel data models with serial correlation when instruments are not strictly exogenous. Journal of Business and Economic Statistics 10, 1–9
Kiefer, N. M. (1980). Estimation of fixed effects models for time series of cross sections with arbitrary intertemporal covariance. Journal of Econometrics 14, 195–202
Kuh, E. (1959). The validity of cross-sectionally estimated behavior equation in time series application. Econometrica 27, 197–214
Lancaster, T. (1990). The Econometric Analysis of Transition Data. Cambridge University Press, New York
Maddala, G. S. (1971). The use of variance components models in pooling cross section and time series data. Econometrica 39, 341–58
Manski, C. (1992). Comment: The impact of sociological methodology on statistical methodology by C. C. Clogg. Statistical Science 7(2), 201–203
Mátyás, L., and, P. Sevestre eds. (1996). The Econometrics of Panel Data: Handbook of Theory and Applications. Kluwer Academic Publishers, Dordrecht
McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In Frontiers of Econometrics, ed. P. Zarembka, pp. 105–142. Academic Press, New York
McFadden, D. (1978). Modeling the choice of residential location. In Spatial Interaction Theory and Planning Models, ed. A Karlqvist et al., pp. 75–96. North-Holland, Amsterdam
McFadden, D. (1981). Econometric models of probabilistic choice. In Structural Analysis of Discrete Data with Econometric Applications, ed. C. Manski and D. McFadden, pp. 198–272. MIT Press, Cambridge, MA.
Mundlak, Y. (1961). Empirical production function free of management bias. Journal of Farm Economics 43, 44–56
Mundlak, Y. (1978a). On the pooling of time series and cross-section data. Econometrica 46, 69–85
Mundlak, Y. (1978b). Models with variable coefficients: Integration and extensions. Annales de L'Insee 30–31, 483–509
Neyman, J., and Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica 16, 1–32
Polachek, S. W., and Kim, M. (1994). Panel estimates of the gender earnings gap. Journal of Econometrics 61, 23–42
Swamy, P. A. V. B. (1970). Efficient inference in a random coefficient regression model. Econometrica 38, 311–23
Theil, H., and Goldberger, A. (1961). On pure and mixed estimation in economics. International Economic Review 2, 65–78
Valletta, R. G. (1999). Declining job security. Journal of Labor Economics 17, S170-S197
Wallace, T., and Hussain, A. (1969). The use of error components in combining cross section with time series data. Econometrica 37, 55–72
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 817–38
White, H. (1984). Asymptotic Theory for Econometricians. Academic Press, Orlando, FL.
Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge, MA.
Zellner, A. (1962). An efficient method of estimating seemingly unrelated regression and tests for aggregation bias. Journal of the American Statistical Association 57, 348–68
Educational Science and Psychology References
Baltes, P. B., and J. R. Nesselroade (1979). History and rational of longitudinal research. In Longitudinal Research in the Study of Behavior and Development, ed. J. R. Nesselroade and P. B. Baltes, pp. 1–39. Academic Press, New York
Bollen, K. A. (1989). Structural Equations with Latent Variables. Wiley, New York
de Leeuw, J., and I. Kreft (2001). Software for multilevel analysis. In Multilevel Modeling of Health Statistics ed. A. H. Leyland and H. Goldstein, pp. 187–204. Wiley, New York
Duncan, O. D. (1969). Some linear models for two wave, two variable panel analysis. Psychological Bulletin 72, 177–82
Duncan, T. E., S. C. Duncan, L. A. Stryakar, F. Li, and A. Alpert (1999). An Introduction to Latent Variable Growth Curve Modeling. Lawrence Erlbaum, Mahwah, NJ
Frees, E. W. and J.-S. Kim (2004). Multilevel model prediction. UW working paper, available at http://research.bus.wisc.edu/jFrees/
Goldstein, H. (2002). Multilevel Statistical Models, Third Edition. Edward Arnold, London
Guo, S., and Hussey, D. (1999). Analyzing longitudinal rating data: A three-level hierarchical linear model. Social Work Research 23(4), 258–68
Kreft, I., and J. de Leeuw (1998). Introducing Multilevel Modeling. Sage, New York
Lee, V. (2000). Using hierarchical linear modeling to study social contexts: The case of school effects. Educational Psychologist 35(2), 125–41
Lee, V., and Smith, J. B. (1997). High school size: Which works best and for whom? Educational Evaluation and Policy Analysis 19(3), 205–27
Longford, N. T. (1993). Random Coefficient Models. Clarendon Press, Oxford, UK.
Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proc. Fourth Berkeley Symposium 4, 434–58
Raudenbush, S. W., and A. S. Bryk (2002). Hierarchical Linear Models: Applications and Data Analysis Methods, Second Edition. Sage, London
Rubin, D. R. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66, 688–701
Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics 27, 323–55
Singer, J. D., and J. B. Willett (2003). Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford University Press, Oxford, UK.
Toon, T. J. (2000). A Primer in Longitudinal Data Analysis. Sage, London
Webb, N. L., W. H. Clune, D. Bolt, A. Gamoran, R. H. Meyer, E. Osthoff, and C. Thorn. (2002). Models for analysis of NSF's systemic initiative programs – The impact of the urban system initiatives on student achievement in Texas, 1994–2000. Wisconsin Center for Education Research Technical Report, July. Available at http://facstaff.wcer.wisc.edu/normw/technical_reports.htm
Willett, J. B., and Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin 116, 363–81
Other Social Science References
Ashley, T., Liu, Y., and Chang, S. (1999). Estimating net lottery revenues for states. Atlantic Economics Journal 27, 170–78
Bailey, A. (1950). Credibility procedures: LaPlace's generalization of Bayes' rule and the combination of collateral knowledge with observed data. Proceedings of the Casualty Actuarial Society 37, 7–23
Beck, N., and Katz, J. N. (1995). What to do (and not to do) with time-series cross-section data. American Political Science Review 89, 634–47
Brader, T., and Tucker, J. A. (2001). The emergence of mass partisanship in Russia, 1993–1996. American Journal of Political Science 45, 69–83
Bühlmann, H. (1967). Experience rating and credibility. ASTIN Bulletin 4, 199–207
Bühlmann, H., and Straub, E. (1970). Glaubwürdigkeit für Schadensätze. Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker 70, 111–33
Dannenburg, D. R., R. Kaas, and M. J. Goovaerts (1996). Practical Actuarial Credibility Models. Institute of Actuarial Science and Econometrics, University of Amsterdam, Amsterdam
Dielman, T. E. (1989). Pooled Cross-Sectional and Time Series Data Analysis. Marcel Dekker, New York
Frees, E. W., and Miller, T. W. (2004). Sales forecasting using longitudinal data models. International Journal of Forecasting 20, 97–111
Frees, E. W., Young, V., and Luo, Y. (1999). A longitudinal data analysis interpretation of credibility models. Insurance: Mathematics and Economics 24, 229–47
Frees, E. W., Young, V., and Luo, Y. (2001). Case studies using panel data models. North American Actuarial Journal 4(4), 24–42
Frischmann, P. J., and Frees, E. W. (1999). Demand for services: Determinants of tax preparation fees. Journal of the American Taxation Association 21, Supplement 1–23
Green, R. K., and S. Malpezzi (2003). A Primer on U.S. Housing Markets and Policy. Urban Institute Press, Washington, DC.
Haberman, S., and E. Pitacco (1999). Actuarial Models for Disability Insurance. Chapman and Hall/CRC, Boca Raton
Hachemeister, C. A. (1975). Credibility for regression models with applications to trend. In Credibility: Theory and Applications, ed. P. M. Kahn, pp. 129–163 Academic Press, New York
Hickman, J. C., and Heacox, L. (1999). Credibility theory: The cornerstone of actuarial science. North American Actuarial Journal 3(2), 1–8
Jain, D. C., Vilcassim, N. J., and Chintagunta, P. K. (1994). A random-coefficients logit brand choice model applied to panel data. Journal of Business and Economic Statistics 12, 317–28
Jewell, W. S. (1975). The use of collateral data in credibility theory: A hierarchical model. Giornale dell'Istituto Italiano degli Attuari 38, 1–16. (Also, Research Memorandum 75–24 of the International Institute for Applied Systems Analysis, Laxenburg, Austria.)
Kim, Y.-D., Anderson, D. R., Amburgey, T. L., and Hickman, J. C. (1995). The use of event history analysis to examine insurance insolvencies. Journal of Risk and Insurance 62, 94–110
Klugman, S. A. (1992). Bayesian Statistics in Actuarial Science: With Emphasis on Credibility. Kluwer Academic, Boston
Klugman, S., H. Panjer, and G. Willmot (1998). Loss Models: From Data to Decisions. Wiley, New York
Kung, Y. (1996). Panel Data with Serial Correlation. Unpublished Ph. D. thesis, University of Wisconsin, Madison
Lazarsfeld, P. F., and Fiske, M. (1938). The panel as a new tool for measuring opinion. Public Opinion Quarterly 2, 596–612
Ledolter, J., Klugman, S., and Lee, C.-S. (1991). Credibility models with time-varying trend components. ASTIN Bulletin 21, 73–91
Lee, H. D. (1994). An Empirical Study of the Effects of Tort Reforms on the Rate of Tort Filings. Unpublished Ph. D. thesis, University of Wisconsin, Madison
Lee, H. D., Browne, M. J., and Schmit, J. T. (1994). How does joint and several tort reform affect the rate of tort filings? Evidence from the state courts. Journal of Risk and Insurance 61(2), 595–616
Lintner, J. (1965). The valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics 47, 13–37
Luo, Y., Young, V. R., and Frees, E. W. (2004). Credibility ratemaking using collateral information. To appear in Scandinavian Actuarial Journal
Malpezzi, S. (1996). Housing prices, externalities, and regulation in U.S. metropolitan areas. Journal of Housing Research 7(2), 209–41
Markowitz, H. (1952). Portfolio selection. Journal of Finance 7, 77–91
Mowbray, A. H. (1914). How extensive a payroll exposure is necessary to give a dependable pure premium. Proceedings of the Casualty Actuarial Society 1, 24–30
Norberg, R. (1980). Empirical Bayes credibility. Scandinavian Actuarial Journal 1980, 177–94
Norberg, R. (1986). Hierarchical credibility: Analysis of a random effect linear model with nested classification. Scandinavian Actuarial Journal 1986, 204–22
Paker, B. S. (2000). Corporate Fund Raising and Capital Structure in Japan during the 1980s and 1990s. Unpublished Ph. D. thesis, University of Wisconsin, Madison
Pinquet, J. (1997). Allowance for cost of claims in bonus-malus systems. ASTIN Bulletin 27, 33–57
Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under risk. Journal of Finance 19, 425–42
Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business 74, 101–24
Stimson, J. (1985). Regression in space and time: A statistical essay. American Journal of Political Science 29, 914–47
Stohs, M. H., and Mauer, D. C. (1996). The determinants of corporate debt maturity structure. Journal of Business 69(3), 279–312
Taylor, G. C. (1977). Abstract credibility. Scandinavian Actuarial Journal 1977, 149–68
Venter, G. (1996). Credibility. In Foundations of Casualty Actuarial Science, Third Edition, ed. I. K. Bass et al. Casualty Actuarial Society, Arlington, VA.
Zhou, X. (2000). Economic transformation and income inequality in urban China: Evidence from panel data. American Journal of Sociology 105, 1135–74
Statistical Longitudinal Data References
Banerjee, M., and Frees, E. W. (1997). Influence diagnostics for linear longitudinal models. Journal of the American Statistical Association 92, 999–1005
Chen, Z., and Kuo, L. (2001). A note on the estimation of multinomial logit model with random effects. American Statistician 55, 89–95
Conaway, M. R. (1989). Analysis of repeated categorical measurements with conditional likelihood methods. Journal of the American Statistical Association 84, 53–62
Corbeil, R. R., and Searle, S. R. (1976a). Restricted maximum likelihood (REML) estimation of variance components in the mixed model. Technometrics 18, 31–38
Corbeil, R. R., and Searle, S. R. (1976b). A comparison of variance components estimators. Biometrics 32, 779–91
Davidian, M., and D. M. Giltinan (1995). Nonlinear Models for Repeated Measurement Data. Chapman–Hall, London
Diggle, P. J., P. Heagarty, K.-Y. Liang, and S. L. Zeger (2002). Analysis of Longitudinal Data, Second Edition. Oxford University Press, Oxford, UK.
Fahrmeir, L., and G. Tutz (2001). Multivariate Statistical Modelling Based on Generalized Linear Models, Second Edition. Springer-Verlag, New York
Frees, E. W. (2001). Omitted variables in panel data models. Canadian Journal of Statistics 29(4), 1–23
Frees, E. W., and Jin, C. (2004). Empirical standard errors for longitudinal data mixed linear models. To appear in Computational Statistics
Ghosh, M., and Rao, J. N. K. (1994). Small area estimation: An appraisal. Statistical Science 9, 55–93
Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge, UK.
Harville, D. A. (1974). Bayesian inference for variance components using only error contrasts. Biometrika 61, 383–85
Harville, D. (1976). Extension of the Gauss–Markov theorem to include the estimation of random effects. Annals of Statistics 2, 384–95
Harville, D. (1977). Maximum likelihood estimation of variance components and related problems. Journal of the American Statistical Association 72, 320–40
Herbach, L. H. (1959). Properties of model II type analysis of variance tests, A: Optimum nature of the F-test for model II in the balanced case. Annals of Mathematical Statistics 30, 939–59
Hildreth, C., and Houck, C. (1968). Some estimators for a linear model with random coefficients. Journal of the American Statistical Association 63, 584–95
Jones, R. H. (1993). Longitudinal Data with Serial Correlation: A State-Space Approach. Chapman and Hall, London
Jöreskog, K. G., and Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association 70, 631–39
Kackar, R. N., and Harville, D. (1984). Approximations for standard errors of estimators of fixed and random effects in mixed linear models. Journal of the American Statistical Association 79, 853–62
Lin, X., and Breslow, N. E. (1996). Bias correction on generalized linear mixed models with multiple components of dispersion. Journal of the American Statistical Association 91, 1007–16
Littell, R. C, G. A. Milliken, W. W. Stroup, and R. D. Wolfinger (1996). SAS System for Mixed Models. SAS Institute, Cary, NC.
Parks, R. (1967). Efficient estimation of a system of regression equations when disturbances are both serially and contemporaneously correlated. Journal of the American Statistical Association 62, 500–509
Pinheiro, J. C., and D. M. Bates (2000). Mixed-Effects Models in S and S-Plus. Springer-Verlag, New York
Rao, C. R. (1965). The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. Biometrika 52, 447–58
Rao, C. R. (1970). Estimation of variance and covariance components in linear models. Journal of the American Statistical Association 67, 112–15
Reinsel, G. C. (1982). Multivariate repeated-measurement or growth curve models with multivariate random-effects covariance structure. Journal of the American Statistical Association 77, 190–95
Reinsel, G. C. (1984). Estimation and prediction in a multivariate random effects generalized linear model. Journal of the American Statistical Association 79, 406–14
Robinson, G. K. (1991). The estimation of random effects. Statistical Science 6, 15–51
Searle, S. R., G. Casella, and C. E. McCulloch (1992). Variance Components. Wiley, New York
Self, S. G., and Liang, K. Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association 82, 605–10
Stram, D. O., and Lee, J. W. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics 50, 1171–77
Swallow, W. H., and Searle, S. R. (1978). Minimum variance quadratic unbiased estimation (MIVQUE) of variance components. Technometrics 20, 265–72
Tsimikas, J. V., and Ledolter, J. (1994). REML and best linear unbiased prediction in state space models. Communications in Statistics: Theory and Methods 23, 2253–68
Tsimikas, J. V., and Ledolter, J. (1997). Mixed model representations of state space models: New smoothing results and their application to REML estimation. Statistica Sinica 7, 973–91
Tsimikas, J. V., and Ledolter, J. (1998). Analysis of multi-unit variance components models with state space profiles. Annals of the Institute of Statist Math 50(1), 147–64
Verbeke, G., and G. Molenberghs (2000). Linear Mixed Models for Longitudinal Data. Springer-Verlag, New York
Vonesh, E. F., and V. M. Chinchilli (1997). Linear and Nonlinear Models for the Analysis of Repeated Measurements. Marcel Dekker, New York
Ware, J. H. (1985). Linear models for the analysis of longitudinal studies. The American Statistician 39, 95–101
Wolfinger, R., Tobias, R., and Sall, J. (1994). Computing Gaussian likelihoods and their derivatives for general linear mixed models. SIAM Journal of Scientific Computing 15(6), 1294–310
Zeger, S. L., and Karim, M. R. (1991). Generalized linear models with random effects: A Gibbs sampling approach. Journal of the American Statistical Association 86, 79–86
General Statistics References
Agresti, A. (2002). Categorical Data Analysis. Wiley, New York
Andersen, E. B. (1970). Asymptotic properties of conditional maximum-likelihood estimators. Journal of the Royal Statistical Society B 32, 283–301
Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York
Angrist, J. D., Imbens, G. W., and Rubin, D. B. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91, 444–72
Becker, R. A., Cleveland, W. S., and Shyu, M.-J. (1996). The visual design and control of trellis graphics displays. Journal of Computational and Graphical Statistics 5, 123–56
Bickel, P. J., and Doksum, K. A. (1977). Mathematical Statistics. Holden-Day, San Francisco
Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In Robustness in Statistics, ed. R. Launer and G. Wilderson, pp. 201–236. Academic Press, New York
Box, G. E. P., G. M. Jenkins, and G. Reinsel. (1994). Time Series Analysis. Prentice Hall, Englewood Cliffs, NJ.
Carroll, R. J., and D. Ruppert (1988). Transformation and Weighting in Regression. Chapman and Hall, London
Cleveland, W. S. (1993). Visualizing Data. Hobart Press, Summit, NJ.
Congdon, P. (2003). Applied Bayesian Modelling. Wiley, New York
Cook, D., and S. Weisberg (1982). Residuals and Influence in Regression. Chapman and Hall, London
Draper, N., and H. Smith (1981). Applied Regression Analysis, Second Edition. Wiley, New York
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 89, 517–25
Fuller, W. A., and Battese, G. E. (1973). Transformations for estimation of linear models with nested error structure. Journal of the American Statistical Association 68, 626–32
Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2004). Bayesian Data Analysis, Second Edition. Chapman and Hall, New York
Gill, J. (2002). Bayesian Methods for the Social and Behavioral Sciences. Chapman and Hall, New York
Graybill, F. A. (1969). Matrices with Applications in Statistics, Second Edition. Wadsworth, Belmont CA
Hocking, R. (1985). The Analysis of Linear Models. Wadsworth and Brooks/Cole, Pacific Grove, CA.
Hosmer, D. W., and S. Lemeshow (2000). Applied Logistic Regression. Wiley, New York
Hougaard, P. (1987). Modelling multivariate survival. Scandinavian Journal of Statistics 14, 291–304
Huber, P. J. (1967). The behaviour of maximum likelihood estimators under non-standard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1, ed. L. M. LeCam and J. Neyman, pp. 221–33, University of California Press, Berkeley
Hutchinson, T. P., and C. D. Lai (1990). Continuous Bivariate Distributions, Emphasising Applications. Rumsby Scientific Publishing, Adelaide, Australia
Johnson, R. A., and D. Wichern (1999). Applied Multivariate Statistical Analysis. Prentice Hall, Englewood Cliffs, NJ.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82, 34–45
Layard, M. W. (1973). Robust large sample tests for homogeneity of variance. Journal of the American Statistical Association 68, 195–198
Lehmann, E. (1991). Theory of Point Estimation. Wadsworth and Brooks/Cole, Pacific Grove, CA.
Little, R. J. (1995). Modelling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 1112–21
Little, R. J., and D. B. Rubin (1987). Statistical Analysis with Missing Data. Wiley, New York
McCullagh, P., and J. A. Nelder (1989). Generalized Linear Models, Second Edition. Chapman and Hall, London
McCulloch, C. E., and S. R. Searle (2001). Generalized, Linear, and Mixed Models. Wiley, New York
Nelder, J. A., and Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society Ser. A 135, 370–84
Neter, J., and W. Wasserman (1974). Applied Linear Statistical Models. Irwin, Homewood, IL.
Rubin, D. R. (1976). Inference and missing data. Biometrika 63, 581–92
Rubin, D. R. (1978). Bayesian inference for causal effects. Annals of Statistics 6, 34–58
Rubin, D. R. (1990). Comment: Neyman (1923) and causal inference in experiments and observational studies. Statistical Science 5, 472–80
Scheffé, H. (1959). The Analysis of Variance. Wiley, New York
Searle, S. R. (1971). Linear Models. Wiley, New York
Searle, S. R. (1987). Linear Models for Unbalanced Data. Wiley, New York
Seber, G. A. (1977). Linear Regression Analysis. Wiley, New York
Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York
Stigler, S. M. (1986). The History of Statistics: The Measurement of Uncertainty before 1900. Harvard University Press, Cambridge, MA.
Tufte, E. R. (1997). Visual Explanations. Graphics Press, Cheshire, CT.
Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading, MA.
Venables, W. N., and B. D. Ripley (1999). Modern Applied Statistics with S-PLUS, Third Edition. Springer-Verlag, New York
Wachter, K. W., and Trusell, J. (1982). Estimating historical heights. Journal of the American Statistical Association 77, 279–301
Wedderburn, R. W. (1974). Quasi-likelihood functions, generalized linear models and the Gaussian method. Biometrika 61, 439–47
Wong, W. H. (1986). Theory of partial likelihood. Annals of Statistics 14, 88–123

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.