Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T13:54:38.403Z Has data issue: false hasContentIssue false

22 - Quantitative measures of immersion in cloud and the biogeography of cloud forests

from Part III - Hydrometeorology of tropical montane cloud forest

Published online by Cambridge University Press:  03 May 2011

R. O. Lawton
Affiliation:
University of Alabama in Huntsville, USA
U. S. Nair
Affiliation:
University of Alabama in Huntsville, USA
D. Ray
Affiliation:
Purdue University, USA
A. Regmi
Affiliation:
Purdue University, USA
J. A. Pounds
Affiliation:
Tropical Science Center, Costa Rica
R. M. Welch
Affiliation:
University of Alabama in Huntsville, USA
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
F. N. Scatena
Affiliation:
University of Pennsylvania
L. S. Hamilton
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Sites described as tropical montane cloud forests differ greatly, in part because observers tend to differ in their opinion as to what constitutes “frequent and prolonged” immersion in cloud. This definitional difficulty interferes with hydrological analyses, assessments of environmental impacts on ecosystems, and biogeographical analyses of cloud forest communities and species. Quantitative measurements of cloud immersion can be obtained on site, but the observations are necessarily spatially limited, although well-placed observers can examine 10–50 km of a mountain range under rainless conditions. Regional analyses, however, require observations at a broader scale. This chapter discusses remote sensing and modeling approaches that can provide quantitative measures of the spatio-temporal patterns of cloud cover and cloud immersion in tropical mountain ranges. These approaches integrate remote sensing tools of various spatial resolutions and frequencies of observation, digital elevation models, regional atmospheric models, and ground-based observations to provide measures of cloud cover, cloud base height, and the intersection of cloud and terrain. This combined approach was applied to the Monteverde region of northern Costa Rica to illustrate how the proportion of time the forest is immersed in cloud may vary spatially and temporally. The observed spatial variation was largely due to patterns of airflow over the mountains. The temporal variation reflected the diurnal rise and fall of the orographic cloud base, which was influenced in turn by synoptic weather conditions, the seasonal movement of the Intertropical Convergence Zone and the north-easterly trade winds. […]

Type
Chapter
Information
Tropical Montane Cloud Forests
Science for Conservation and Management
, pp. 217 - 227
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

,Anonymous (2007). GOES Imager Tutorial. Niwot, CO: Regional and Mesoscale Meteorology Branch, Cooperative Institute for Research in the Atmosphere, Colorado State University. Also available at http://rammb.cira.colostate.edu/training/goes_8/table_of_contents.asp.Google Scholar
Avissar, R., and Pielke, R. A. (1989). A parameterization of heterogeneous land surfaces for atmospheric models and its impact on regional meteorology. Monthly Weather Review 117: 2113–2136.2.0.CO;2>CrossRefGoogle Scholar
Bendix, J., Rollenbeck, R., and Palacios, W. E. (2004). Cloud detection in the tropics: a suitable tool for climate ecological studies in the high mountains of Ecuador. International Journal of Remote Sensing 25: 4521–4540.CrossRefGoogle Scholar
Berendes, T., Sengupta, S. K., Welch, R. M., Wielicki, B. A., and Navar, M. (1992). Cumulus cloud base height estimation from high spatial resolution Landsat data: a Hough transform approach. IEEE Transactions in Geosciences and Remote Sensing 30: 430–443.CrossRefGoogle Scholar
Brenguier, J. L., Pawlowska, H., Schuller, L., et al. (2000). Radiative properties of boundary layer clouds: droplet effective radius versus number concentration. Journal of Atmospheric Science 57: 803–821.2.0.CO;2>CrossRefGoogle Scholar
Bruijnzeel, L. A. (2001). Hydrology of tropical montane cloud forests: a reassessment. Land Use and Water Resources Research 1: 1–18.Google Scholar
Bubb, P., May, I., Miles, L., and Sayer, J. (2004). Cloud Forest Agenda. Cambridge, UK: UNEP–WCMC. Also available at: http://sea.unep-wcmc.org/forest/cloudforest/index.cfm.Google Scholar
Cavelier, J. (1988). The ecology of elfin cloud forests in Northern South America. Dissertation submitted for the annual research fellowship competition, Trinity College, University of Cambridge, Cambridge, UK.Google Scholar
Chernykh, I. V., and Eskridge, R. E. (1996). Determination of cloud amount and level from radiosonde soundings. Journal of Applied Meteorology 35: 1362–1369.2.0.CO;2>CrossRefGoogle Scholar
Chou, J., Weger, R. C., Ligtenberg, J. M., et al. (1994). Segmentation of polar scenes using multispectral texture measures and morphological filtering. International Journal of Remote Sensing 15: 1019–1036.CrossRefGoogle Scholar
Clark, K. L., Lawton, R. O., and Butler, P. R. (2000). The physical environment. In Monteverde: Ecology and Conservation of a Tropical Cloud Forest, eds. Nadkarni, N. and Wheelwright, N., pp. 15–38. New York: Oxford University Press.Google Scholar
Eugster, W., Burkard, R., Holwerda, F., Scatena, F. N., and Bruijnzeel, L. A. (2006). Characteristics of fog and fog-water fluxes in a Puerto Rican elfin cloud forest. Agricultural and Forest Meteorology 139: 288–306.CrossRefGoogle Scholar
Frahm, J. -P., and Gradstein, S. R. (1991). An altitudinal zonation of the tropical rain forest using bryophytes. Journal of Biogeography 18: 669–678.CrossRefGoogle Scholar
GeoEye, (2007). IKONOS Product Guide, Version 17. Dulles, VA: GeoEye Corporation. Also available at http://geoeye.com/whitepapers_pdfs/GeoEye_IKONOS_Products_Guide_v17.pdf.Google Scholar
Han, Q., Rossow, W. B., and Lacis, A. A. (1994). Near-global survey of effective droplet radii. I. Liquid water clouds using ISCCP data. Journal of Climate 7: 465–497.2.0.CO;2>CrossRefGoogle Scholar
Holder, C. D. (2003). Fog precipitation in the Sierra de las Minas Biosphere Reserve, Guatemala. Hydrological Processes 17: 2001–2010.CrossRefGoogle Scholar
Holwerda, F., Burkard, R., Eugster, W. E., et al. (2006). Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methods. Hydrological Processes 20: 2669–2692.CrossRefGoogle Scholar
Hutchinson, K. D. (2002). The retrieval of cloud base height from MODIS and three-dimensional cloud fields from NASA's EOS Aqua mission. International Journal of Remote Sensing 23: 5249–5265.CrossRefGoogle Scholar
Hutchinson, K. D., and Huang, A. (2001). Cloud Base Height Visible Infrared Imager/Radiometer Suite Algorithm Theoretical Basis Document, v. 4. Lanham, MD: Raytheon Systems Co.Google Scholar
Kalnay, E., Kanamatsu, M., Kistler, R., et al. (1996). The NCEP/ NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77: 437–471.2.0.CO;2>CrossRefGoogle Scholar
Kappelle, M. (1996). Los bosques de roble (Quercus) de la Cordillera de Talamanca, Costa Rica. Heredia, Costa Rica: INBio.Google Scholar
Kappelle, M., and Brown, A. D. (eds.) (2001). Bosques nublados del neotropico. Santo Domingo de Heredia, Costa Rica: INBio.Google Scholar
Karmalkar, A. V., Bradley, R. S., and Diaz, H. F. (2008). Climate change scenario for Costa Rican montane forests. Geophysical Research Letters 25, L11702, doi: 10.1029/2008GL033940.CrossRefGoogle Scholar
Kuo, K. S., Welch, R. M., and Weger, R. C. (1993). The three-dimensional structure of cumulus clouds over the ocean. I. Structural analysis. Journal of Geophysical Research 98: 20 685–20 711.CrossRefGoogle Scholar
Lawton, R. O. (1990). Canopy gaps and light penetration into a wind-exposed tropical lower montane rain forest. Canadian Journal of Forest Research 20: 659–667.CrossRefGoogle Scholar
Lawton, R. O., and Dryer, V. (1980). The vegetation of the Monteverde Cloud Forest Preserve. Brenesia 18: 101–116.Google Scholar
Lawton, R. O., Nair, U. S., Pielke, R. A., and Welch, R. M. (2001). Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294: 584–587.Google ScholarPubMed
Levine, M. D., and Shaheen, S. I. (1978). A modular computer vision system for picture segmentation and interpretation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3: 540–556.Google Scholar
MacArthur, R. H., and Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Maccharone, B. (2007). MODIS Web. Data. http://modis.gsfc.nasa.gov/data/
Malkus, J. S. (1955). The effects of a large island upon the trade-wind air stream. Quarterly Journal of the Royal Meteorological Society 81: 538–550.CrossRefGoogle Scholar
Menzel, W. P., Baum, B. A., Strabala, K. I., and Frey, R. A. (2002). Cloud Top Properties and Cloud Phase Algorithm Theoretical Basis Document, MODIS Algorithm Theoretical Basis Document No. ATBD-MOD-04. NASA. Available at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod04.pdf.
Minnis, P., Young, D. F., Kratz, D. P., et al. (1997). Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document: Cloud Optical Property Retrieval, Subsystem 4.3. Pasadena, CA: NASA. Available at http://asd-www.larc.nasa.gov/ATBD/pdf_docs/r2_2/ceres-atbd2.2-s4.3.pdf.Google Scholar
Mulligan, M., and Burke, S. M. (2005). FIESTA: Fog Interception for the Enhancement of Streamflow in Tropical Areas, Final Technical Report for AMBIOTEK contribution to DfID-FRP project R7991. Leigh-on-Sea, UK: AMBIOTEK. Also available at www.ambiotek.com/fiesta.Google Scholar
Myers, C. W. (1969). The ecological geography of cloud forest in Panamá. American Museum Novitates 396: 1–52.Google Scholar
Nadkarni, N., and Wheelwright, N. (eds.) (2000). Monteverde: Ecology and Conservation of a Tropical Cloud Forest. New York: Oxford University Press.Google Scholar
Nair, U. S., Rushing, J. A., Ramachandran, R., et al. (1999). Detection of cumulus cloud fields in satellite imagery. Earth Observing Systems IV, Proceedings of SPIE 3(750): 345–355.CrossRefGoogle Scholar
Nair, U. S., Lawton, R. O., Welch, R. M., and Pielke, R. A.. (2003). Impact of land use on tropical montane cloud forests: sensitivity of cumulus cloud field characteristics to lowland deforestation. Journal of Geophysical Research 108: 4206–4218.CrossRefGoogle Scholar
Nair, U. S., Asefi, S., Welch, R. M., et al. (2008). Biogeography of tropical montane cloud forests. II. Mapping of orographic cloud immersion. Journal of Applied Meteorology and Climatology 47: 2183–2197.CrossRefGoogle Scholar
Pielke, R. A., Cotton, W. R., Walko, R. L., et al. (1992). A comprehensive meteorological modeling system: RAMS. Meteorological and Atmospheric Physics 49: 69–91.CrossRefGoogle Scholar
Pounds, J. A., Fogden, M. P. L., and Campbell, J. H. (1999). Biological response to climate change on tropical mountain. Nature 389: 611–614.CrossRefGoogle Scholar
Pounds, J. A., Bustamante, M., Coloma, L. A., et al. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439: 161–167.CrossRefGoogle ScholarPubMed
Ray, D. K., Nair, U. S., Lawton, R. O., Welch, R. M., and Pielke, R. A.. (2006). Impact of land use on Costa Rican tropical montane cloud forests: sensitivity of orographic cloud formation to deforestation in the plains. J. Geophysical Research 111: D02108, doi: 10.1029/2005JD006096.CrossRefGoogle Scholar
Rhodes, A. L., Guswa, A. J., and Newell, S. E. (2006). Seasonal variation in the stable isotopic composition of precipitation in the tropical montane forests of Monteverde, Costa Rica. Water Resources Research 42, W11402, doi:10.1029/2005WR004535.CrossRefGoogle Scholar
Richardson, A. D., Denny, E. G., Siccama, T. G., and Lee, X. (2002). Evidence for a rising cloud ceiling in eastern North America. Journal of Climate 16: 2093–2098.2.0.CO;2>CrossRefGoogle Scholar
Rocchio, L. (2007). The Landsat Program. Available at http://landsat.gsfc.nasa.gov.
Silver, W. L., Marin-Spiotta, E., and Lugo, A. E. (2001). El Caribe. In Bosques nublados del neotropico, eds. Kappelle, M. and Brown, A. D., pp. 155–181. Santo Domingo de Heredia, Costa Rica: INBio.Google Scholar
Stadtmüller, T. (1987). Cloud Forests in the Humid Tropics: A Bibliographic Review. Tokyo: The United Nations University, and Turrialba, Costa Rica: Centro Agronomico Tropical de Investigacion y Ensenanza.Google Scholar
Still, C. J., Foster, P. N., and Schneider, S. H. (1999). Simulating the effects of climate change on tropical montane cloud forests. Nature 389: 608–610.CrossRefGoogle Scholar
Sugden, A. (1982a). The vegetation of the Serranía de Macuira, Guajira, Colombia: a contrast of arid lowlands and an isolated cloud forest. Journal of the Arnold Arboretum 63: 1–30.Google Scholar
Sugden, A. (1982b). The ecological, geographic and taxonomic relationships of an isolated Colombian cloud forest, with implications for island biogeography. Journal of the Arnold Arboretum 63: 31–61.Google Scholar
Tremback, C. J., and Kessler, R. (1985). A surface temperature and moisture parameterization for use in mesoscale numerical models. In Proceedings of 7th AMS Conference on Numerical Weather Prediction, June 17–20, Montreal, Quebec, Canada, pp. 355–358. Boston, MA: American Meteorological Society.Google Scholar
Molen, M. K., Dolman, A. J., Waterloo, M. J., and Bruijnzeel, L. A. (2006). Climate is affected more by maritime than by continental land use change: a multiple-scale analysis. Global and Planetary Change 54: 128–149.Google Scholar
Steenis, C. G. G. J. (1972). The Mountain Flora of Java. Leiden, the Netherlands: E. J. Brill.Google Scholar
Vázquez-García, J. A. (1995). Cloud forest archipelagos: preservation of fragmented montane ecosystems in tropical America. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 314–332. New York: Springer-Verlag.Google Scholar
Welch, R. M., Asefi, S., Zeng, J., et al. (2008). Biogeography of tropical montane cloud forests. I. Remote sensing of cloud base heights. Journal of Applied Meterology and Climatology 47: 960–975.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×