Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T15:27:39.262Z Has data issue: false hasContentIssue false

20 - Hydrometeorological patterns in relation to montane forest types along an elevational gradient in the Yungas of Bolivia

from Part III - Hydrometeorology of tropical montane cloud forest

Published online by Cambridge University Press:  03 May 2011

M. Schawe
Affiliation:
University of Göttingen, Germany
G. Gerold
Affiliation:
University of Göttingen, Germany
K. Bach
Affiliation:
University of Göttingen, Germany
S. R. Gradstein
Affiliation:
University of Göttingen, Germany
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
F. N. Scatena
Affiliation:
University of Pennsylvania
L. S. Hamilton
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Floristic composition, structure, and functioning of tropical montane forests depend on various abiotic and biotic factors, although the precise nature of the interactions is still a matter of debate. As part of an interdisciplinary project aiming to understand the relationship between vegetation and abiotic factors in the montane forest belt in the Yungas of Bolivia (Eastern Andes), hydrometerological observations were made along an elevational gradient. Earlier studies had revealed a decrease in biodiversity and forest stature with altitude. Three weather stations were in operation: at 1850 m.a.s.l. (lower montane forest, LMF), 2600 m.a.s.l. (upper montane cloud forest, UMCF), and 3050 m.a.s.l. (sub-alpine cloud forest, SACF) between October 2001 and October 2002. Precipitation increased strongly with elevation from 2310 mm year−1 at 1850 m.a.s.l. to 5150 mm year−1 at 3050 m.a.s.l. Compared to clear-sky conditions, reductions in short-wave radiation inputs by fog and clouds were estimated at 37% at 1850 m.a.s.l. vs. 58– 62% at 2600 and 3050 m.a.s.l. However, intensities of photosynthetically active radiation (PAR) remained well above the light saturation point for local vegetation, and changes in PAR with elevation are therefore unlikely to control vegetation zonation. FAO reference evaporation rates decreased from 3.3 mm day−1 in the LMF zone to 1.4 and 1.3 mm day−1 in the UMCF and SACF zones, respectively. The present results suggest that the difference in forest stature between the LMF on the one hand, and the UMCF and SACF on the other, is dominated by a strong increase in precipitation excess, leading in turn to persistently saturated conditions, high acidity and leaching in the SACF.

Type
Chapter
Information
Tropical Montane Cloud Forests
Science for Conservation and Management
, pp. 199 - 207
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aylett, G. P. (1985). Irradiance interception, leaf conductance and photosynthesis in Jamaican upper montane rain forest trees. Photosynthetica 19: 323–337.Google Scholar
Bach, K. (2004). Vegetationskundliche Untersuchungen zur Höhenzonierung tropischer Bergregenwälder in den Anden Boliviens. Ph.D. thesis, University of Göttingen, Göttingen, Germany.Google Scholar
Bach, K., Schawe, M., Beck, S., et al. (2003). Vegetación, suelos y clima en los diferentes pisos altitudinales de un bosque montano de Yungas, Bolivia: primeros resultados. Ecología en Bolivia 38: 3–14.Google Scholar
Bendix, J., Rollenbeck, R., Richter, M., Fabian, P., and Emck, P. (2008). Climate. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 63–73. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Böhner, J., Köthe, R., and Trachinow, C. (1997). Weiterentwicklung der automatischen Reliefanalyse auf der Basis von digitalen Geländemodellen. Göttinger geographische Abhandlungen 100: 3–21.Google Scholar
Bruijnzeel, , L. A. (2005). Tropical montane cloud forests: a unique hydrological case. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 462–483. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Bruijnzeel, L. A., and Proctor, J. (1995). Hydrology and biogeochemistry of tropical montane cloud forests: what do we really know? In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 38–78. New York: Springer-Verlag.CrossRefGoogle Scholar
Bruijnzeel, L. A., and Veneklaas, E. J. (1998). Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79: 3–9.CrossRefGoogle Scholar
Bruijnzeel, L. A., Waterloo, M. L., Proctor, J., Kuiters, A. T., and Kotterink, B. (1993). Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia, with special reference to the 'Massenerhebung' effect. Journal of Ecology 81: 145–167.CrossRefGoogle Scholar
Cavelier, J., and Mejia, C. (1990). Climatic factors and tree stature in the elfin cloud forest of Serrania de Macuira, Colombia. Agricultural and Forest Meteorology 53: 105–123.CrossRefGoogle Scholar
Doorenbos, J., and Pruitt, W. O. (1988). Yield Response to Water, FAO Irrigation and Drainage Paper No. 33. Rome: FAO.Google Scholar
Frahm, J. P., and Gradstein, S. R. (1991). An altitudinal zonation of tropical rain forests using bryophytes. Journal of Biogeography 18: 669–678.CrossRefGoogle Scholar
Garcia-Nunez, C., Azocar, A., and Rada, F. (1995). Photosynthetic acclimation to light in juveniles of two cloud forest tree species. Trees 10: 114–124.CrossRefGoogle Scholar
Gentry, A. H. (1995). Patterns of diversity and floristic composition in Neotropical montane forests. In Biodiversity and Conservation of Neotropical Montane Forests, eds. Churchill, S. P., Balslev, H., Forero, E., and Luteyn, J. L., pp. 103–126. New York: New York Botanical Garden.Google Scholar
Gerold, G., Schawe, M., and Joachim, L. (2003). Pedoökologische hypsometrische Varianz in ungestörten Bergregenwäldern der Anden (Yungas). Geoökologie 24: 153–162.Google Scholar
Gill, A. M. (1969). The ecology of an elfin forest in Puerto Rico. VI. Aerial roots. Journal of Arnold Arboretum 50: 197–209.Google Scholar
Gradstein, S. R., and Zanten, B. O. (1999). High-altitude dispersal of spores: an experimental approach. Abstract, XVI International Botanical Congress. St. Louis, MO: Missouri Botanical Garden.Google Scholar
Grubb, P. J. (1974). Factors controlling the distribution of forest-types on tropical mountains: new facts and a new perspective. In Altitudinal Zonation in Malaysia, Transactions of the 3rd Aberdeen–Hull Symposium on Malaysian Ecology, ed. Flenley, J. R., pp. 13–46. Hull, UK: Department of Geography, University of Hull.Google Scholar
Grubb, P. J. (1977). Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8: 83–107.CrossRefGoogle Scholar
Hafkenscheid, , R. R. L. J. (2000). Hydrology and biogeochemistry of tropical montane rain forests of contrasting stature in the Blue Mountains, Jamaica. Ph.D. thesis, VU University Amsterdam, Amsterdam, the Netherlands. Available at http://dare.ubvu.vu.nl/bitstream/1871/12734/1/tekst.pdf.Google Scholar
Hetsch, W., and Hoheisel, H. (1976). Standorts- und Vegetationsgliederung in einem tropischen Nebelwald. Allgemeine Forst- und Jagdzeitschrift 147: 200–209.Google Scholar
Herrmann, R. (1971). Die zeitliche Änderung der Wasserbindung im Boden unter verschiedenen Vegetationsformationen der Höhenstufen eines tropischen Hochgebirges (Sierra Nevada de Sta Maria/Kolumbien). Erdkunde 25: 90–112.CrossRefGoogle Scholar
Holwerda, F. (2005). Water and energy budgets of rain forests along an elevation gradient under maritime tropical conditions. Ph.D. thesis, VU University Amsterdam, Amsterdam, the Netherlands. Available at www.falw.vu.nl/nl/onderzoek/earth-sciences/geo-environmental-science-and-hydrology/hydrology-dissertations/index.asp.Google Scholar
Kappelle, M., Uffelen, J. G., and Cleef, A. M. (1995). Altitudinal zonation of montane Quercus forests along two transects in the Chirripó National Park, Costa Rica. Vegetatio 119: 119–154.CrossRefGoogle Scholar
Keig, G., Flemming, P. M., and McAlpine, J. R. (1979). Evaporation in Papua New Guinea. Journal of Tropical Geography 48: 19–30.Google Scholar
Kessler, M. (2000). Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology 149: 181–193.CrossRefGoogle Scholar
Kitayama, K. (1992). An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102: 149–171.CrossRefGoogle Scholar
Kitayama, K. (1995). Biophysical conditions of the montane cloud forests of Mount Kinabalu, Sabah, Malaysia. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. M., pp. 115–125. New York: Springer-Verlag.Google Scholar
Kitayama, K., and Müller- Dombois, D. (1994). An altitudinal transect analysis of the windward vegetation on Haleakala, a Hawaiian island mountain. II. Vegetation zonation. Phytocoenologia 24: 135–154.CrossRefGoogle Scholar
Körner, C (1982). CO2 exchange in the alpine sedge Carex curvula as influenced by canopy structure, light and temperature. Oecologia 53: 98–104.CrossRefGoogle ScholarPubMed
Körner, C., Allison, A., and Hilscher, H. (1983). Altitudinal variation of leaf diffusive conductance and leaf anatomy in Heliophytes of montane New Guinea and their interrelation with microclimate. Flora 174: 91–135.CrossRefGoogle Scholar
Lauer, W. (1975). Klimatische Grundzüge der Höhenstufung tropischer Gebirge. Tagungsbericht und Wissenschaftliche Abhandlungen 40: 76–90.Google Scholar
Lauscher, F. (1976). Weltweite Typen der Höhenabhängigkeit des Niederschlags. Wetter Leben 28: 89–90.Google Scholar
Leuschner, C h., Moser, G., Bertsch, C., Röderstain, M., and Hertel, D. (2007). Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology 8: 219–230.CrossRefGoogle Scholar
Lyford, W. H. (1969). The Ecology of an elfin forest in Puerto Rico: soil, root, and earthworm relationships. Journal of Arnold Arboretum 50: 210–224.Google Scholar
McJannet, M., Wallace, J. S., Fitch, P., Disher, M., and Reddell, P. (2007). Water balance of tropical rainforest canopies in north Queensland. Hydrological Processes 21: 3473–3784.CrossRefGoogle Scholar
Moser, G., Hertel, D., and Leuschner, C h. (2007). Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10: 924–935.CrossRefGoogle Scholar
Odum, H. T. (1970). Rain forest structure and mineral cycling homeostasis. In A Tropical Rain Forest: A Study of Irradiation and Ecology at El Verde, Puerto Rico, eds. Odum, H. T. and Pidgeon, R. F., pp. H3–H52. Oak Ridge, TN: U.S. Atomic Energy Commission.Google Scholar
Pendry, C. A., and Proctor, J. (1996). The causes of altitudinal zonation of rain forests on Bukit Belalong, Brunei. Journal of Ecology 84: 407–418.CrossRefGoogle Scholar
Santiago, L. S., Goldstein, G., Meinzer, F. C., Fownes, J. H., and Müller-Dombois, D. (2000). Transpiration and forest structure in relation to soil waterlogging in a Hawaiian montane cloud forest. Tree Physiology 20: 673–681.CrossRefGoogle Scholar
Schawe, M. (2005). Hypsometerischer Klima- und Bodenwandel in Bergregenwaldökosystemen Boliviens. Ph.D. thesis, University of Göttingen, Göttingen, Germany.Google Scholar
Schawe, M., Glatzel, S., and Gerold, G. (2007). Soil development along an altitudinal transect in a Bolivian tropical montane rainforest: podzolization vs. hydromorphy. Catena 69: 83–90.CrossRefGoogle Scholar
Silver, W., Lugo, A. E., and Keller, M. (1999). Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44: 301–328.CrossRefGoogle Scholar
Soethe, N., Lehmann, J., and Engels, C. (2008a). Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology 24: 397–406.CrossRefGoogle Scholar
Soethe, N., Wilcke, W., Homeier, J., Lehmann, J., and Engels, C. (2008b). Plant growth along the altitudinal gradient: role of plant nutritional status, fine root activity, and soil properties. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 259–266. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Tanner, W., and Beevers, H. (1990). Does transpiration have an essential function in long-distance ion transport in plants?Plant, Cell and Environment 13: 745–750.CrossRefGoogle Scholar
Veneklaas, E. J., and Ek, R. (1990). Rainfall interception in two tropical montane rain forests, Colombia. Hydrological Processes 4: 311–326.CrossRefGoogle Scholar
Vis, M. (1986). Interception, drop size distributions and rainfall kinetic energy in four Colombian forest ecosystems. Earth Surface Processes and Landforms 11: 591–570.CrossRefGoogle Scholar
Weischet, W. (1969). Klimatologische Regeln zur Vertikalverteilung der Niederschläge in Tropengebirgen. Die Erde 100: 287–306.Google Scholar
Wolf, J. H. D. (1993). Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Annals of the Missouri Botanical Garden 90: 928–960.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×