Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-02T19:32:31.930Z Has data issue: false hasContentIssue false

9 - Functional implications of spinal and forebrain procedures for the treatment of chronic pain

Published online by Cambridge University Press:  05 October 2010

Frederick A. Lenz
Affiliation:
The Johns Hopkins Hospital
Kenneth L. Casey
Affiliation:
University of Michigan, Ann Arbor
Edward G. Jones
Affiliation:
University of California, Davis
William D. Willis
Affiliation:
University of Texas Medical Branch, Galveston
Get access

Summary

The clinical descriptions of cordotomy played a major role in elucidating the function and the anatomy of the human spinothalamic tract (STT) (Chapter 1). There are a number of other examples of surgical interventions which have informed our understanding of the pain system. In particular, the pain-related role of the cingulate gyrus is suggested by imaging studies and by the effect of cingulotomy on experimental pain (Rainville et al., 1997; Gildenberg, 2004). Similarly the role of the motor cortex in these systems has suggested the effects of stimulation on activity throughout the pain system (Brown and Barbaro, 2003; Brown, 2004; Peyron et al., 2007). The purpose of this chapter is to examine these surgical interventions in terms of the anatomy and function of structures involved in these interventions. The inclusion of procedures in this chapter is arbitrary and many other such procedures which might have been included have been excluded.

Cordotomy and myelotomy

Percutaneous cordotomy produces relief of pain by interrupting the transmission of signals in the STT from below the level of intervention (Tasker, 1988; Tasker, 2004). The anterolateral quadrant of the spinal cord has long been recognized as the location of the STT (Chapter 1). Recent findings indicate that the dorsal column system also has an important role in visceral nociception (Nauta et al., 1997; Willis et al., 1999). The STT terminates in the primate thalamus, brainstem and other structures such as the hypothalamus and amygdala whereas the dorsal column system terminates in the dorsal column nuclei (Newman et al., 1996).

Type
Chapter
Information
The Human Pain System
Experimental and Clinical Perspectives
, pp. 590 - 623
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akil, H., Liebeskind, J. C. (1975) Monoaminergic mechanisms of stimulation-produced analgesia. Brain Res 94: 279–296.CrossRefGoogle ScholarPubMed
Akil, H., Richardson, D. E., Hughes, J., Barchas, J. D. (1978) Enkephalin-like material elevated in ventricular cerebrospinal fluid of pain patients after analgetic focal stimulation. Science 201: 463–465.CrossRefGoogle ScholarPubMed
Akil, H., Watson, S. J., Young, E.et al. (1984) Endogenous opioids: biology and function. Annu Rev Neurosci 7: 223–255.CrossRefGoogle ScholarPubMed
Al-Chaer, E. D., Westlund, K. N., Willis, W. D. (1997) Nucleus gracilis: an integrator for visceral and somatic information. J Neurophysiol 78: 521–527.CrossRefGoogle ScholarPubMed
Arner, S., Meyerson, B. A. (1988) Lack of analgesic effect of opioids on neuropathic and idiopathic forms of pain. Pain 33: 11–23.CrossRefGoogle Scholar
Backonja, M., Arndt, G., Gombar, K. A., Check, B., Zimmermann, M. (1994) Response of chronic neuropathic pain syndromes to ketamine: a preliminary study. Pain 56: 51–57.CrossRefGoogle ScholarPubMed
Bainton, T., Fox, M., Bowsher, D., Wells, C. (1992) A double-blind trial of naloxone in central post-stroke pain. Pain 48: 159–162.CrossRefGoogle ScholarPubMed
Ballantine, H. T., Giriunas, I. E. (1988) Treatment of intractable psychiatric illness and chronic pain by stereotactic cingulotomy. In Operative Neurosurgical Techniques. Indications, Methods, and Results (Schmidek, H. H., Sweet, W. H., eds), pp. 1069–1075. Philadelphia: W.B. Saunders.Google Scholar
Ballantine, H. T., Cassidy, W. L., Flanagan, N. B., Marino, R. (1967) Stereotaxic anterior cingulotomy for neuropsychiatric illness and intractable pain. J Neurosurg 26: 488–495.CrossRefGoogle ScholarPubMed
Basbaum, A. I., Fields, H. L. (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Ann Rev Neurosci 7: 309–338.CrossRefGoogle ScholarPubMed
Becerra, L. R., Breiter, H. C., Stojanovic, M.et al. (1999) Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magn Res Med 41: 1044–1057.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Benabid, A. L., Henriksen, S. J., McGinty, J. F., Bloom, F. E. (1983) Thalamic nucleus ventro-postero-lateralis inhibits nucleus parafascicularis response to noxious stimuli through a non-opioid pathway. Brain Res 280: 217–231.CrossRefGoogle ScholarPubMed
Benabid, A. L., Pollak, P., Gao, D.et al. (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84: 203–214.CrossRefGoogle ScholarPubMed
Bendok, B., Levy, R. M. (1998) Brain stimulation for persistent pain management. In Textbook of Stereotactic and Functional Neurosurgery (Gildenberg, P. L., Tasker, R. R., eds), pp. 1539–1546. New York: McGraw-Hill.Google Scholar
Beric, A., Dimitrijevic, M. R., Lindblom, U. (1988) Central dysesthesia syndrome in spinal cord injury patients. Pain 34: 109–116.CrossRefGoogle ScholarPubMed
Bezard, E., Boraud, T., Nguyen, J. P. (1999) Cortical stimulation and epileptic seizure: a study of the potential risk in primates. Neurosurgery 45: 346–350.CrossRefGoogle ScholarPubMed
Boivie, J., Meyerson, B. A. (1982) A correlative anatomical and clinical study of pain suppression by deep brain stimulation. Pain 13: 113–126.CrossRefGoogle ScholarPubMed
Boivie, J., Leijon, G., Johansson, I. (1989) Central post-stroke pain – a study of the mechanisms through analyses of the sensory abnormalities. Pain 37: 173–185.CrossRefGoogle Scholar
Bromm, B., Treede, R. D. (1984) Nerve fibre discharges, cerebral potentials and sensations induced by CO2 laser stimulation. Hum Neurobiol 3: 33–40.Google ScholarPubMed
Brown, J. (2003) Guest editorial. Neurol Res 25: 115–117.CrossRefGoogle Scholar
Brown, J. A. (2004) Motor cortex stimulation. In Encyclopedia of Pain (Schmidt, R., Willis, W. D., eds). Berlin: Springer Verlag.Google Scholar
Brown, J. A., Barbaro, N. M. (2003) Motor cortex stimulation for central and neuropathic pain: current status. Pain 104: 431–435.CrossRefGoogle ScholarPubMed
Budd, K. (1985) The use of the opiate antagonist, naloxone, in the treatment of intractable pain 1. Neuropeptides 5: 419–422.CrossRefGoogle Scholar
Burchiel, K. J., Anderson, V. C., Wilson, B. J.et al. (1995) Prognostic factors of spinal cord stimulation for chronic back and leg pain. Neurosurgery 36: 1101–1110.CrossRefGoogle ScholarPubMed
Burchiel, K. J., Anderson, V. C., Brown, F. D.et al. (1996) Prospective, multicenter study of spinal cord stimulation for relief of chronic back and extremity pain. Spine 21: 2786–2794.CrossRefGoogle ScholarPubMed
Bushnell, M. C., Duncan, G. H. (1989) Sensory and affective aspects of pain perception: is medial thalamus restricted to emotional issues?Exp Brain Res 78: 415–418.CrossRefGoogle ScholarPubMed
Campbell, J. N. (2004) Pain, complex regional pain syndrome, and the sympathetic nervous system. In Encyclopedia of Pain (Schmidt, R., Willis, W. D., eds), p. 235. Berlin: Springer Verlag.Google Scholar
Carmon, A., Dotan, Y., Sarne, Y. (1978) Correlation of subjective pain experience with cerebral evoked responses to noxious thermal stimulations. Exp Brain Res 33: 445–453.CrossRefGoogle ScholarPubMed
Casey, K. L. (1966) Unit analysis of nociceptive mechanisms in the thalamus of the awake squirrel monkey. J Neurophysiol 29: 727–750.CrossRefGoogle ScholarPubMed
Casey, K. L., Minoshima, S., Berger, K. L.et al. (1994) Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol 71: 802–807.CrossRefGoogle ScholarPubMed
Casey, K. L., Minoshima, S., Morrow, T. J., Koeppe, R. A. (1996) Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. J Neurophysiol 76: 571–581.CrossRefGoogle ScholarPubMed
Chen, A. C. N., Bromm, B. (1995) Pain-related generators of laser-evoked brain potentials: brain mapping and dipole modeling. In Pain and the Brain: From Nociception to Cognition (Bromm, B., Desmedt, J. E., eds), pp. 245–266. New York: Raven Press.Google Scholar
Coffey, R. J., Lozano, A. M. (2006) Neurostimulation for chronic noncancer pain: an evaluation of the clinical evidence and recommendations for future trial designs. J Neurosurg 105: 175–189.CrossRefGoogle ScholarPubMed
Coghill, R. C., Talbot, J. D., Evans, A. C.et al. (1994) Distributed processing of pain and vibration by the human brain. J Neurosci 14: 4095–4108.CrossRefGoogle ScholarPubMed
Coghill, R. C., Sang, C. N., Maisog, J. M., Iadarola, M. J. (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82: 1934–1943.CrossRefGoogle ScholarPubMed
Cohen, R. A., Kaplan, R. F., Zuffante, P.et al. (1999) Alteration of intention and self-initiated action associated with bilateral anterior cingulotomy. J Neuropsychiatry Clin Neurosci 11: 444–453.CrossRefGoogle ScholarPubMed
Cosgrove, G. R., Rauch, S. L. (2003) Stereotactic cingulotomy. Neurosurg Clin N Am 14: 225–235.CrossRefGoogle ScholarPubMed
Craig, A. D., Reiman, E. M., Evans, A., Bushnell, M. C. (1996) Functional imaging of an illusion of pain. Nature 384: 258–260.CrossRefGoogle ScholarPubMed
Croom, J. E., Foreman, R. D., Chandler, M. J., Barron, K. W. (1997) Cutaneous vasodilation during dorsal column stimulation is mediated by dorsal roots and CGRP. Am J Physiol 272: H950–H957.Google ScholarPubMed
Cruccu, G., Aziz, T. Z., Garcia-Larrea, L.et al. (2007) EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol 14: 952–970.CrossRefGoogle ScholarPubMed
Davis, K. D., Hutchinson, W. D., Lozano, A. M., Dostrovsky, J. O. (1994) Altered pain and temperature perception following cingulotomy and capsulotomy in a patient with schizoaffective disorder. Pain 59: 189–199.CrossRefGoogle Scholar
Davis, K. D., Wood, M. L., Crawley, A. P., Mikulis, D. J. (1995) fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. Neuroreport 7: 321–325.CrossRefGoogle ScholarPubMed
Davis, K. D., Taylor, S. J., Crawley, A. P., Wood, M. L., Mikulis, D. J. (1997) Functional MRI of pain- and attention-related activation in the human cingulate cortex. J Neurophysiol 77: 3370–3380.CrossRefGoogle ScholarPubMed
Dellemijn, P. L., Vanneste, J. A. (1997) Randomised double-blind active-placebo-controlled crossover trial of intravenous fentanyl in neuropathic pain. Lancet 349: 753–758.CrossRefGoogle ScholarPubMed
Derbyshire, S. W., Jones, A. K. (1998) Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain 76: 127–135.CrossRefGoogle ScholarPubMed
Derbyshire, S. W. G., Jones, A. K. P., Gyulai, F.et al. (1997) Pain processing during three levels of noxious stimulation produces different pattern of central activity. Pain 73: 431–445.CrossRefGoogle Scholar
Derbyshire, S. W. G., Vogt, B. A., Jones, A. K. P. (1998) Pain and Stroop interference tasks activate separate processing modules in anterior cingulate cortex. Exp Brain Res 118: 52–60.CrossRefGoogle ScholarPubMed
Donahue, R. R., Lagraize, S. C., Fuchs, P. N. (2001) Electrolytic lesion of the anterior cingulate cortex decreases inflammatory, but not neuropathic nociceptive behavior in rats. Brain Res 897: 131–138.CrossRefGoogle Scholar
Dougherty, P. M., Staats, P. S. (1999) Intrathecal drug therapy for chronic pain: from basic science to clinical practice. Anesthesiology 91: 1891–1918.CrossRefGoogle ScholarPubMed
Eide, P. K., Stubhaug, A., Stenehjem, A. E. (1995) Central dysesthesia pain after traumatic spinal cord injury is dependent on N-methyl-D-aspartate receptor activation. Neurosurgery 37: 1080–1087.CrossRefGoogle ScholarPubMed
Fessler, R. G., Brown, F. D., Rachlin, J. R., Mullan, S. (1984) Elevated b-endorphin in cerebrospinal fluid after electrical brain stimulation: artifact of contrast infusion?Science 224: 1017–1019.CrossRefGoogle ScholarPubMed
Foltz, E. L., White, L. E. (1962) Pain “relief” by frontal cingulumotomy. J Neurosurg 19: 89–100.CrossRefGoogle ScholarPubMed
Foreman, R. D., Linderoth, B., Ardell, J. L.et al. (2000) Modulation of intrinsic cardiac neurons by spinal cord stimulation: implications for its therapeutic use in angina pectoris. Cardiovasc Res 47: 367–375.CrossRefGoogle ScholarPubMed
Gerhart, K. D., Yezierski, R. P., Fang, Z. R., Willis, W. D. (1983) Inhibition of primate spinothalamic tract neurons by stimulation in ventral posterior lateral (VPLc) thalamic nucleus: possible mechanisms. J Neurophysiol 49: 406–423.CrossRefGoogle ScholarPubMed
Gerhart, K. D., Yezierski, R. P., Wilcox, T. K., Willis, W. D. (1984) Inhibition of primate spinothalamic tract neurons by stimulation in periaqueductal gray or adjacent midbrain reticular formation. J Neurophysiol 51: 450–466.CrossRefGoogle ScholarPubMed
Gildenberg, P. L. (1974) Percutaneous cervical cordotomy. Clin Neurosurg 21: 246–256.CrossRefGoogle ScholarPubMed
Gildenberg, P. L. (2004) Intracranial ablative procedures. In Encyclopedia of Pain (Schmidt, R., Willis, W. D., eds), pp. 1741–1743. Berlin: Springer Verlag.Google Scholar
Gildenberg, P. L., DeVaul, R. A. (1985) The Chronic Pain Patient. Evaluation and Management. Basel: Karger.Google ScholarPubMed
Greenspan, J. D., Coghill, R. C., Gilron, I.et al. (2008) Quantitative somatic sensory testing and functional imaging of the response to painful stimuli before and after cingulotomy for obsessive compulsive disorder (OCD). Eur J Pain doi:10.1016/ejpain_2008.01.007.CrossRef
Hassenbusch, S. J., Pillay, P. K., Barnett, G. H. (1990) Radiofrequency cingulotomy for intractable cancer pain using stereotaxis guided by magnetic resonance imaging. Neurosurgery 27: 220–223.CrossRefGoogle ScholarPubMed
Hautvast, R. W., DeJongste, M. J., Staal, M. J., Gilst, W. H., Lie, K. I. (1998) Spinal cord stimulation in chronic intractable angina pectoris: a randomized, controlled efficacy study. Am Heart J 136: 1114–1120.CrossRefGoogle ScholarPubMed
Hitchcock, E. (1972) Electrophysiological exploration of the cervico-medullary region. In Neurophysiology Studied in Man (Somjen, G. G., ed.), pp. 237–245. Amsterdam: Excerpta Medica.Google Scholar
Hitchcock, E. (1974) Stereotactic myelotomy. Proc R Soc Med 67: 771–772.Google ScholarPubMed
Hitchcock, E., Tsukamoto, Y. (1973) Distal and proximal sensory responses during stereotactic spinal tractotomy in man. Ann Clin Res 5: 68–73.Google ScholarPubMed
Hosobuchi, Y. (1986) Subcortical electrical stimulation for control of intractable pain in humans. Report of 122 cases (1970–1984). J Neurosurg 64: 543–553.CrossRefGoogle ScholarPubMed
Hosobuchi, Y., Adams, J. E., Linchitz, R. (1977) Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 197: 183–186.CrossRefGoogle ScholarPubMed
Hosobuchi, Y., Rossier, J., Bloom, F. E., Guillemin, R. (1979) Stimulation of human periaqueductal gray for pain relief increases immunoreactive beta-endorphin in ventricular fluid. Science 203: 279–281.CrossRefGoogle ScholarPubMed
Hsieh, J. C., Belfrage, M., Stone-Elander, S., Hansson, P., Ingvar, M. (1995) Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 63: 225–236.CrossRefGoogle ScholarPubMed
Hutchison, W. D., Davis, K. D., Lozano, A. M., Tasker, R. R., Dostrovsky, J. O. (1999) Pain-related neurons in the human cingulate cortex. Nat Neurosci 2: 403–405.CrossRefGoogle ScholarPubMed
Ishijima, B., Yoshimasu, N., Fukushima, T.et al. (1975) Nociceptive neurons in the human thalamus. Confin Neurol 37: 99–106.CrossRefGoogle ScholarPubMed
Jeanmonod, D., Magnin, M., Morel, A. (1993) Thalamus and neurogenic pain: physiological, anatomical and clinical data. Neuroreport 4: 475–478.CrossRefGoogle ScholarPubMed
Jessurun, G. A., DeJongste, M. J., Blanksma, P. K. (1996) Current views on neurostimulation in the treatment of cardiac ischemic syndromes. Pain 66: 109–116.CrossRefGoogle ScholarPubMed
Jones, A. K., Brown, W. D., Friston, K. J., Qi, L. Y., Frackowiak, R. S. (1991) Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond B Biol Sci 244: 39–44.CrossRefGoogle ScholarPubMed
Kanpolat, Y. (2002) Percutaneous stereotactic pain procedures: percutaneous cordotomy, extralemniscal myelotomy, trigeminal tractotomy-nucleotomy. In Surgical Management of Pain (Burchiel, K. J., ed.), pp. 745–762. New York: Thieme.Google Scholar
Katayama, Y., Tsubokawa, T., Yamamoto, T. (1994) Chronic motor cortex stimulation for central deafferentation pain: experience with bulbar pain secondary to Wallenberg syndrome. Stereotact Funct Neurosurg 62: 295–299.CrossRefGoogle ScholarPubMed
Katayama, Y., Fukaya, C., Yamamoto, T. (1998) Poststroke pain control by chronic motor cortex stimulation: neurological characteristics predicting a favorable response. J Neurosurg 89: 585–591.CrossRefGoogle ScholarPubMed
Kemler, M. A., Barendse, G. A., Kleef, M.et al. (2000) Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. New Engl J Med 343: 618–624.CrossRefGoogle ScholarPubMed
Khedr, E. M., Kotb, H., Kamel, N. F.et al. (2005) Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain. J Neurol Neurosurg Psychiatry 76: 833–838.CrossRefGoogle ScholarPubMed
Kim, Y. S., Kwon, S. J. (2000) High thoracic midline dorsal column myelotomy for severe visceral pain due to advanced stomach cancer. Neurosurgery 46: 85–90.CrossRefGoogle ScholarPubMed
Kitamura, Y., Kakigi, R., Hoshiyama, M.et al. (1995) Pain-related somatosensory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 95: 463–474.CrossRefGoogle ScholarPubMed
Koyama, T., Tanaka, Y. Z., Mikami, A. (1998) Nociceptive neurons in the macaque anterior cingulate activate during anticipation of pain. Neuroreport 9: 2663–2667.CrossRefGoogle Scholar
Koyama, T., McHaffie, J. G., Laurienti, P. J., Coghill, R. C. (2005) The subjective experience of pain: where expectations become reality. Proc Natl Acad Sci USA 102: 12950–12955.CrossRefGoogle ScholarPubMed
Kozin, F., McCarty, D. J., Sims, J., Genant, H. (1976) The reflex sympathetic dystrophy syndrome. Am J Med 60: 321–331.CrossRefGoogle ScholarPubMed
Kupers, R., Gybels, J. (1992) Responsiveness of chronic pain to morphine. Lancet 340: 310–311.CrossRefGoogle Scholar
Lagraize, S. C., Labuda, C. J., Rutledge, M. A., Jackson, R. L., Fuchs, P. N. (2004) Differential effect of anterior cingulate cortex lesion on mechanical hypersensitivity and escape/avoidance behavior in an animal model of neuropathic pain. Exp Neurol 188: 139–148.CrossRefGoogle Scholar
Lenz, F. A., Rios, M., Zirh, A.et al. (1998) Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J Neurophysiol 79: 2231–2234.CrossRefGoogle ScholarPubMed
Levy, R. M., Lamb, S., Adams, J. E. (1987) Treatment of chronic pain by deep brain stimulation: long term follow-up and review of the literature. Neurosurgery 21: 885–893.CrossRefGoogle ScholarPubMed
Levy, R. M., Lamb, S., Adams, J. E. (1988) Deep brain stimulation for chronic pain: long-term results and complications. In Modern Stereotactic Neurosurgery (Lundsford, L. D., ed.), pp. 395–407. Amsterdam: Martinus Nijhoff.CrossRefGoogle Scholar
Lezak, M. D. (1995) Neuropsychological Assessment. New York: Oxford University Press.Google Scholar
Linderoth, B., Foreman, R. D. (1999) Physiology of spinal cord stimulation: review and update. Neuromodulation 2: 150–164.CrossRefGoogle ScholarPubMed
Lorenz, J., Cross, D., Minoshima, S., Morrow, T., Paulson, P., Casey, K. (2002) A unique representation of heat allodynia in the human brain. Neuron 35: 383–393.CrossRefGoogle ScholarPubMed
Lorenz, J., Minoshima, S., Casey, K. L. (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126: 1079–1091.CrossRefGoogle ScholarPubMed
Maarrawi, J., Peyron, R., Mertens, P.et al. (2007) Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 69: 827–834.CrossRefGoogle ScholarPubMed
Maciewicz, R., Fields, H. L. (1986) Pain pathways. In Diseases of the Nervous System. Clinical Neurobiology (Asbury, A. K., McKhann, G. M., McDonald, W. I., eds), pp. 930–940. Philadelphia: W.B. Saunders.Google Scholar
Mailis, A., Amani, N., Umana, M., Basur, R., Roe, S. (1997) Effect of intravenous sodium amytal on cutaneous sensory abnormalities, spontaneous pain and algometric pain pressure thresholds in neuropathic pain patients: a placebo-controlled study. II. Pain 70: 69–81.CrossRefGoogle ScholarPubMed
Mannheimer, C., Eliasson, T., Andersson, B.et al. (1993) Effects of spinal cord stimulation in angina pectoris induced by pacing and possible mechanisms of action. Br Med J 307: 477–480.CrossRefGoogle ScholarPubMed
Marchand, S., Bushnell, M. C., Molina-Negro, P., Martinez, S. N., Duncan, G. H. (1991) The effects of dorsal column stimulation on measures of clinical and experimental pain in man. Pain 45: 249–257.CrossRefGoogle ScholarPubMed
Marchand, S., Kupers, R. C., Bushnell, M. C., Duncan, G. H. (2003) Analgesic and placebo effects of thalamic stimulation. Pain 105: 481–488.CrossRefGoogle ScholarPubMed
Mayer, D. J., Wolfle, T. L., Akil, H., Carder, B., Liebeskind, J. C. (1971) Analgesia from electrical stimulation in the brainstem of the rat. Science 174: 1351–1354.CrossRefGoogle ScholarPubMed
Mayer, D. J., Price, D. D., Becker, D. P. (1975) Neurophysiological characterization of the anterolateral spinal cord neurons contributing to pain perception in man. Pain 1: 51–58.CrossRefGoogle ScholarPubMed
Mehler, W. R. (1974) Central pain and the spinothalamic tract. In Advances in Neurology (Bonica, J. J., ed.), pp. 127–146. New York: Raven Press.Google Scholar
Melzack, R., Wall, P. (1965) Pain mechanisms: a new theory. Science 150: 971–979.CrossRefGoogle ScholarPubMed
Meyer, R. A., Campbell, J. N., Raja, S. N. (1994) Peripheral neural mechanisms of nociception. In Textbook of Pain (Wall, P. D., Melzack, R., eds), pp. 13–44. Edinburgh: Churchill Livingstone.Google Scholar
Meyerson, B. A., Linderoth, B. (2003) Spinal cord stimulation: mechanisms of action in neuropathic and ischemic pain. In Electrical Stimulation and the Relief of Pain (Simpson, B., ed.). Amsterdam: Elsevier Science.Google Scholar
Meyerson, B. A., Lindblom, U., Linderoth, B., Lind, G., Herregodts, P. (1993) Motor cortex stimulation as treatment of trigeminal neuropathic pain. Acta Neurochir Suppl (Wien) 58: 150–153.Google ScholarPubMed
Moulton, E. A., Keaser, M. L., Gullapalli, R. P., Greenspan, J. D. (2005) Regional intensive and temporal patterns of functional MRI activation distinguishing noxious and innocuous contact heat. J Neurophysiol 93: 2183–2193.CrossRefGoogle ScholarPubMed
Mullan, S., Hekmatpanah, J., Dobben, G., Beckman, F. (1965) Percutaneous, intramedullary cordotomy utilizing the unipolar anodal electrolytic lesion. J Neurosurg 22: 548–553.CrossRefGoogle ScholarPubMed
Nachbur, B., Gersbach, P., Hasdemir, M. (1994) Spinal cord stimulation for unreconstructible chronic limb ischaemia. Eur J Vasc Surg 8: 383–388.CrossRefGoogle ScholarPubMed
Nathan, P. W., Smith, M. C., Cook, A. W. (1986) Sensory effects in man of lesions of the posterior columns and of some other afferent pathways. Brain 109: 1003–1041.CrossRefGoogle ScholarPubMed
Nathan, P. W., Smith, M., Deacon, P. (2001) The crossing of the spinothalamic tract. Brain 124: 793–803.CrossRefGoogle ScholarPubMed
Nauta, H. J., Hewitt, E., Westlund, K. N., Willis, W. D. (1997) Surgical interruption of a midline dorsal column visceral pain pathway. Case report and review of the literature. J Neurosurg 86: 538–542.CrossRefGoogle ScholarPubMed
Nauta, H. J., Soukup, V. M., Fabian, R. H.et al. (2000) Punctate midline myelotomy for the relief of visceral cancer pain. J Neurosurg 92: 125–130.Google ScholarPubMed
Newman, H. M., Stevens, R. T., Apkarian, A. V. (1996) Direct spinal projections to limbic and striatal areas: anterograde transport studies from the upper cervical spinal cord and the cervical enlargement in squirrel monkey and rat. J Comp Neurol 365: 640–658.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Nguyen, J. P., Lefaucher, J. P., Guerinel, C.et al. (2000a) Motor cortex stimulation in the treatment of central and neuropathic pain. Arch Med Res 31: 263–265.CrossRefGoogle ScholarPubMed
Nguyen, J. P., Lefaucheur, J. P., Guerinel, C.et al. (2000b) Treatment of central and neuropathic facial pain by chronic stimulation of the motor cortex: value of neuronavigation guidance systems for the localization of the motor cortex. Neurochirurgie 46: 483–491.Google ScholarPubMed
Noordenbos, W. (1959) Pain: Problems Pertaining to the Transmission of Nerve Impulses which give Rise to Pain. Amsterdam: Elsevier.Google Scholar
North, R. B., Kidd, D. H., Farrokhi, F., Piantadosi, S. A. (2005) Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial. Neurosurgery 56: 98–107.CrossRefGoogle ScholarPubMed
Ohara, S., Crone, N. E., Weiss, N., Lenz, F. A. (2004a) Attention to a painful cutaneous laser stimulus modulates electrocorticographic event-related desynchronization in humans. Clin Neurophysiol 115: 1641–1652.CrossRefGoogle ScholarPubMed
Ohara, S., Crone, N. E., Weiss, N.et al. (2004b) Attention to pain is processed at multiple cortical sites in man. Exp Brain Res 156: 513–517.CrossRefGoogle ScholarPubMed
Onofrio, B. M. (1971) Cervical spinal cord and dentate delineation in percutaneous radiofrequency cordotomy at the level of the first to second cervical vertebrae. Surg Gynecol Obstet 133: 30–34.Google ScholarPubMed
Perl, E. R., Whitlock, D. G. (1961) Somatic stimuli exciting spinothalamic projections to thalamic neurons in cat and monkey. Exp Neurol 3: 256–296.CrossRefGoogle ScholarPubMed
Peyron, R., Faillenot, I., Mertens, P., Laurent, B., Garcia-Larrea, L. (2007) Motor cortex stimulation in neuropathic pain. Correlations between analgesic effect and hemodynamic changes in the brain. A PET study. Neuroimage 34: 310–321.CrossRefGoogle Scholar
Pillay, P. K., Hassenbusch, S. J. (1992) Bilateral MRI-guided stereotactic cingulotomy for intractable pain. Stereotact Funct Neurosurg 59: 33–38.CrossRefGoogle ScholarPubMed
Ploghaus, A., Tracey, I., Gati, J. S.et al. (1999) Dissociating pain from its anticipation in the human brain. Science 284: 1979–1981.CrossRefGoogle ScholarPubMed
Ploghaus, A., Narain, C., Beckmann, C. F.et al. (2001) Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci 21: 9896–9903.CrossRefGoogle Scholar
Pool, J. L., Clark, W. K., Hudson, P., Lombardo, M. (1956) Hypothalamic-hypophysial dysfunction in man. Laboratory and clinical assessment. In Hypothalamic-hypophysial Interrelationships (Guillemin, R., Carton, C. A., eds), pp. 114–124. Springfield: Thomas.Google Scholar
Porro, C. A., Baraldi, P., Pagnoni, G.et al. (2002) Does anticipation of pain affect cortical nociceptive systems?J Neurosci 22: 3206–3214.CrossRefGoogle ScholarPubMed
Portenoy, R. K., Foley, K. M., Inturrisi, C. E. (1990) The nature of opioid responsiveness and its implications for neuropathic pain: new hypotheses derived from studies of opioid infusions. Pain 43: 273–286.CrossRefGoogle ScholarPubMed
Pribram, K. H., Fulton, J. F. (1954) An experimental critique of the effects of anterior cingulate ablations in monkey. Brain 77: 34–44.CrossRefGoogle ScholarPubMed
Price, D. D., Dubner, R. (1977) Neurons that subserve the sensory-discriminative aspects of pain. Pain 3: 307–338.CrossRefGoogle Scholar
Price, D. D., Mayer, D. J. (1975) Neurophysiological characterization of the anterolateral quadrant neurons subserving pain in M. mulatta. Pain 1: 59–72.Google Scholar
Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., Bushnell, M. C. (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277: 968–971.CrossRefGoogle Scholar
Rasche, D., Rinaldi, P. C., Young, R. F., Tronnier, V. M. (2006a) Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg Focus 21: E8.CrossRefGoogle ScholarPubMed
Rasche, D., Ruppolt, M., Stippich, C., Unterberg, A., Tronnier, V. M. (2006b) Motor cortex stimulation for long-term relief of chronic neuropathic pain: a 10 year experience. Pain 121: 43–52.CrossRefGoogle ScholarPubMed
Reynolds, D. V. (1969) Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164: 444–445.CrossRefGoogle ScholarPubMed
Richardson, D. E. (1985) Deep brain stimulation for pain relief. In Neurosurgery (Wilkins, R. H., Rengachary, S. S., eds), pp. 2421–2426. New York: McGraw-Hill Book Company.Google Scholar
Richardson, D. E., Akil, H. (1977) Pain reduction by electrical brain stimulation in man. Part 1: Acute administration in periaqueductal and periventricular sites. J Neurosurg 47: 178–183.CrossRefGoogle ScholarPubMed
Rinaldi, P. C., Young, R. F., Albe-Fessard, D. G., Chodakiewitz, J. (1991) Spontaneous neuronal hyperactivity in the medial and intralaminar thalamic nuclei in patients with deafferentation pain. J Neurosurg 74: 415–421.CrossRefGoogle ScholarPubMed
Rosomoff, H. L., Brown, C. J., Sheptak, P. (1965) Percutaneous radiofrequency cervical cordotomy: technique. J Neurosurg 23: 639–644.CrossRefGoogle ScholarPubMed
Rowbotham, M. C., Twilling, L., Davies, P. S.et al. (2003) Oral opioid therapy for chronic peripheral and central neuropathic pain. New Engl J Med 348: 1223–1232.CrossRefGoogle ScholarPubMed
Rustioni, A., Hayes, N. L., O'Neill, S. (1979) Dorsal column nuclei and ascending spinal afferents in macaques. Brain 102: 95–125.CrossRefGoogle ScholarPubMed
Sano, K. (1979) Stereotaxic thalamolaminotomy and posteromedial hypothalamotomy for the relief of intractable pain. In Advances in Pain Research and Therapy, Vol. 2 (Bonica, J. J., Ventrafridda, V., eds), pp. 475–485. New York: Raven Press.Google Scholar
Sano, K., Yoshioka, M., Sekino, H., Mayanagi, Y., Yoshimasu, N. (1970) Functional organization of the internal medullary lamina in man. Confin Neurol 32: 374–380.CrossRefGoogle ScholarPubMed
Santo, J. L., Arias, L. M., Barolat, G., Schwartzman, R. J., Grossman, K. (1990) Bilateral cingulumotomy in the treatment of reflex sympathetic dystrophy. Pain 41: 55–59.CrossRefGoogle ScholarPubMed
Schwartz, H. G., O'Leary, J. L. (1941) Section of the spinothalamic tract in the medulla with observations on the pathway for pain. Surgery 9: 183–193.Google Scholar
Schwartz, H. G., O'Leary, J. L. (1942) Section of the spinothalamic tract at the level of the inferior olive. Arch Neurol Psychiatr 47: 293–304.CrossRefGoogle Scholar
Scott, T. R., Yaxley, S., Sienkiewicz, Z. J., Rolls, E. T. (1986) Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J Neurophysiol 56: 876–890.CrossRefGoogle ScholarPubMed
Senapati, A. K., Lagraize, S. C., Huntington, P. J.et al. (2005) Electrical stimulation of the anterior cingulate cortex reduces responses of rat dorsal horn neurons to mechanical stimuli. J Neurophysiol 94: 845–851.CrossRefGoogle ScholarPubMed
Siddall, P. J., Molloy, A. R., Walker, S.et al. (2000) The efficacy of intrathecal morphine and clonidine in the treatment of pain after spinal cord injury. Anesth Analg 91: 1493–1498.CrossRefGoogle ScholarPubMed
Sikes, R. W., Vogt, B. A. (1992) Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol 68: 1720–1732.CrossRefGoogle ScholarPubMed
Simpson, B. A. (1994) Spinal cord stimulation. Pain Rev 1: 199–230.Google Scholar
Sorkin, L. S., McAdoo, D. J., Willis, W. D. (1992) Stimulation in the ventral posterior lateral nucleus of the primate thalamus leads to release of serotonin in the lumbar spinal cord. Brain Res 581: 307–310.CrossRefGoogle ScholarPubMed
Sugita, K., Mutsuga, N., Takaoka, Y., Doi, T. (1972) Stereotaxic thalamotomy for pain. Confin Neurol 34: 265–274.CrossRefGoogle ScholarPubMed
Talbot, J. D., Marrett, S., Evans, A. C.et al. (1991) Multiple representations of pain in human cerebral cortex. Science 251: 1355–1358.CrossRefGoogle ScholarPubMed
Talbot, J. D., Villemure, J. G., Bushnell, M. C., Duncan, G. H. (1995) Evaluation of pain perception after anterior capsulotomy: a case report. Somatosens Mot Res 12: 115–126.CrossRefGoogle ScholarPubMed
Taren, J. A., Davis, R., Crosby, E. C. (1969) Target physiologic corroboration in cervical cordotomy. J Neurosurg 30: 569–584.CrossRefGoogle ScholarPubMed
Tarkka, I. M., Treede, R. D. (1993) Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10: 513–519.CrossRefGoogle ScholarPubMed
Tasker, R. R. (1976) The human spinothalamic tract. Stimulation mapping in spinal cord and brainstem. In Advances in Pain Research and Therapy (Bonica, J. J., Albe-Fessard, D., eds), pp. 251–257. New York: Raven Press.Google Scholar
Tasker, R. R. (1984) Deafferentation. In Textbook of Pain (Wall, P. D., Melzack, R., eds), pp. 119–132. Edinburgh: Churchill Livingstone.Google Scholar
Tasker, R. R. (1988) Percutaneous cordotomy: the lateral high cervical technique. In Operative Neurosurgical Techniques. Indications, Methods, and Results (Schmidek, H. H., Sweet, W. H., eds), pp. 1191–1205. Philadelphia: W.B. Saunders.Google Scholar
Tasker, R. R. (2004) Percutaneous cordotomy. In Encyclopedia of Pain (Schmidt, R., Willis, W. D., eds), p. 461. Berlin: Springer Verlag.Google Scholar
Tasker, R. R., Dostrovsky, J. O. (1989) Deafferentation and central pain. In Textbook of Pain (Wall, P. D., Melzack, R., eds), pp. 154–180. Edinburgh: Churchill Livingstone.Google Scholar
Tasker, R. R., Organ, L. W., Smith, K. C. (1974) Physiological guidelines for the localization of lesions by percutaneous cordotomy. Acta Neurochir (Wien) Suppl 21: 111–117.Google ScholarPubMed
Tasker, R. R., Organ, L. W., Hawrylyshyn, P. (1977) The sensory organization of the human thalamus. Appl Neurophysiol 39: 139–153.Google Scholar
Tasker, R. R., Organ, L. W., Hawrylyshyn, P. (1982) The Thalamus and Midbrain in Man: A Physiologic Atlas using Electrical Stimulation. Springfield: Charles Thomas.Google Scholar
Tasker, R. R., DeCarvalho, G. T., Dolan, E. J. (1992) Intractable pain of spinal cord origin: clinical features and implications for surgery. J Neurosurg 77: 373–378.CrossRefGoogle ScholarPubMed
TenVaarwerk, I. A., Jessurun, G. A., DeJongste, M. J.et al. (1999). Clinical outcome of patients treated with spinal cord stimulation for therapeutically refractory angina pectoris. The Working Group on Neurocardiology. Heart 82: 82–88.CrossRefGoogle Scholar
Torgerson, W. S., BenDebba, M., Mason, K. J. (1988) Varieties of pain. In Proceedings of the Vth World Congress on Pain (Dubner, R., Gebhart, G. F., Bond, M. R., eds), pp. 368–374. Amsterdam: Elsevier.Google Scholar
Tsubokawa, T., Moriyasu, N. (1975) Follow-up results of centre median thalamotomy for relief of intractable pain. A method of evaluating the effectiveness during operation. Confin Neurol 37: 280–284.CrossRefGoogle ScholarPubMed
Tsubokawa, T., Katayama, Y., Hirayama, T. (1987) Effects of thalamic sensory relay nucleus stimulation on trigeminal subnucleus caudalis neurons in the cat – abnormal bursting hyperactivity after trigeminal rhizotomy. Neurol Med Chir (Tokyo) 27: 601–606.CrossRefGoogle ScholarPubMed
Tsubokawa, T., Katayama, Y., Yamamoto, T., Hirayama, T., Koyama, S. (1991) Treatment of thalamic pain by chronic motor cortex stimulation. Pacing Clin Electrophysiol 14: 131–134.CrossRefGoogle ScholarPubMed
Turner, J. A., Loeser, J. D., Bell, K. G. (1995) Spinal cord stimulation for chronic low back pain: a systematic literature synthesis. Neurosurgery 37: 1008–1096.CrossRefGoogle ScholarPubMed
Turner, J. A., Loeser, J. D., Deyo, R. A., Sanders, S. B. (2004) Spinal cord stimulation for patients with failed back surgery syndrome or complex regional pain syndrome: a systematic review of effectiveness and complications. Pain 108: 137–147.CrossRefGoogle ScholarPubMed
Uddenberg, N. (1968) Functional organization of long, second-order afferents in the dorsal funiculus. Exp Brain Res 4: 377–382.CrossRefGoogle ScholarPubMed
Vestergaard, K., Nielsen, J., Andersen, G.et al. (1995) Sensory abnormalities in consecutive unselected patients with central post-stroke pain. Pain 61: 177–186.CrossRefGoogle ScholarPubMed
Vogt, B. A., Derbyshire, S., Jones, A. K. (1996) Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. Eur J Neurosci 8: 1461–1473.CrossRefGoogle ScholarPubMed
Wagner, K. J., Willoch, F., Kochs, E. F.et al. (2001) Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans: a positron emission tomography study. Anesthesiology 94: 732–739.CrossRefGoogle ScholarPubMed
Wall, P. D., Noordenbos, W. (1977) Sensory functions which remain in man after complete transection of dorsal columns. Brain 100: 641–653.CrossRefGoogle ScholarPubMed
Weiss, N., Garonzik, I. M., Samdani, A., Ohara, S., Lenz, F. A. (2004) Deep brain stimulation. In Encyclopedia of Pain (Schmidt, R., Willis, W. D., eds), pp. 529–531. Berlin: Springer Verlag.Google Scholar
White, J. C., Sweet, W. H. (1955) Pain. Its Mechanisms and Neurosurgical Control. Springfield: Charles Thomas.Google Scholar
White, J. C., Sweet, W. H. (1969) Pain and the Neurosurgeon. A Forty Year Experience.Springfield: Charles C. Thomas.Google Scholar
Wilkinson, H. A., Davidson, K. M., Davidson, R. I. (1999) Bilateral anterior cingulotomy for chronic noncancer pain. Neurosurgery 45: 1129–1134.CrossRefGoogle ScholarPubMed
Willis, W. D., Coggeshall, R. E. (1991) Sensory Mechanisms of the Spinal Cord. New York: Plenum Press.CrossRefGoogle Scholar
Willis, W. D., Al Chaer, E. D., Quast, M. J., Westlund, K. N. (1999) A visceral pain pathway in the dorsal column of the spinal cord. Proc Natl Acad Sci USA 96: 7675–7679.CrossRefGoogle ScholarPubMed
Wong, E. T., Gunes, S., Gaughan, E.et al. (1997) Palliation of intractable cancer pain by MRI-guided cingulotomy. Clin J Pain 13: 260–263.CrossRefGoogle ScholarPubMed
Yaksh, T. L. (1981) Spinal opiate analgesia: characteristics and principles of action. Pain 11: 293–346.CrossRefGoogle Scholar
Yamamoto, T., Katayama, Y., Hirayama, T., Tsubokawa, T. (1997) Pharmacological classification of central post-stroke pain: comparison with the results of chronic motor cortex stimulation therapy. Pain 72: 5–12.CrossRefGoogle ScholarPubMed
Yamamura, H., Iwata, K., Tsuboi, Y.et al. (1996) Morphological and electrophysiological properties of ACCx nociceptive neurons in rats. Brain Res 735: 83–92.CrossRefGoogle ScholarPubMed
Yezierski, R. P., Gerhart, K. D., Schrock, B. J., Willis, W. D. (1983) A further examination of effects of cortical stimulation on primate spinothalamic tract cells. J Neurophysiol 49: 424–441.CrossRefGoogle ScholarPubMed
Young, R. F., Chambi, V. I. (1987) Pain relief by electrical stimulation of the periaqueductal and periventricular gray matter. Evidence for a non-opioid mechanism. J Neurosurg 66: 364–371.CrossRefGoogle ScholarPubMed
Young, R. F., Rinaldi, P. C. (1997) Brain stimulation. In Neurosurgical Management of Pain (North, R. B., Levy, R. M., eds), pp. 283–301. New York: Springer-Verlag.Google Scholar
Young, R. F., Kroening, R., Fulton, W., Feldman, R. A., Chambi, I. (1985) Electrical stimulation of the brain in treatment of chronic pain. Experience over 5 years. J Neurosurg 62: 389–396.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×