Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T23:13:40.358Z Has data issue: false hasContentIssue false

5 - Functional brain imaging of acute pain in healthy humans

Published online by Cambridge University Press:  05 October 2010

Frederick A. Lenz
Affiliation:
The Johns Hopkins Hospital
Kenneth L. Casey
Affiliation:
University of Michigan, Ann Arbor
Edward G. Jones
Affiliation:
University of California, Davis
William D. Willis
Affiliation:
University of Texas Medical Branch, Galveston
Get access

Summary

Introduction

Before the introduction of computerized tomographic (CT) brain imaging, studying human brain mechanisms of pain was largely limited to clinical reports and the post-mortem analysis of brain lesions. Although this approach provided important information and established the background for current investigations, these studies were usually limited by clinical descriptions of each patient's condition. Somatosensory psychophysics seldom included studies of pain and even then it was not possible to relate these observations to brain function or physiology. Because the living brain was invisible (except in the neurosurgery operating suite), research on pain mechanisms focused almost exclusively on the peripheral nervous system.

Brain CT scans introduced the opportunity to apply quantitative sensory testing to the study of living patients with visible, localized brain lesions and to begin to test hypotheses about functional localization and brain mechanisms of pain. The introduction of functional imaging by positron emission tomography (PET) and magnetic resonance imaging (MRI; fMRI) launched a new investigational paradigm into the study of pain mechanisms. Now it is possible to go well beyond the lesion analysis method and to relate human experience, in this case using somatosensory psychophysics, directly to a surrogate measure of activity in groups of neurons at the level of visible, localized brain structure. Since the early 1990s, the number and technical sophistication of functional brain imaging studies, including those related to pain, has increased at a rate that makes it almost impossible to incorporate the results into a conceptual framework.

Type
Chapter
Information
The Human Pain System
Experimental and Clinical Perspectives
, pp. 329 - 422
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, R. F., Finch, D. M., Babb, T. L., Engel, J.. (1984) Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells. J Neurosci 4: 251–264.CrossRefGoogle Scholar
Adler, R. J., Hasofer, A. M. (1976) Level crossings for random fields. Ann Probabil 4: 1–12.CrossRefGoogle Scholar
Al-Chaer, E. D., Feng, Y., Willis, W. D. (1998) A role for the dorsal column in nociceptive visceral input into the thalamus of primates. J Neurophysiol 79: 3143–3150.CrossRefGoogle ScholarPubMed
Al Chaer, E. D., Feng, Y., Willis, W. D. (1999) Comparative study of viscerosomatic input onto postsynaptic dorsal column and spinothalamic tract neurons in the primate. J Neurophysiol 82: 1876–1882.CrossRefGoogle ScholarPubMed
Alkire, M. T., White, N. S., Hsieh, R., Haier, R. J. (2004) Dissociable brain activation responses to 5-Hz electrical pain stimulation: a high-field functional magnetic resonance imaging study. Anesthesiology 100: 939–946.CrossRefGoogle ScholarPubMed
Allen, E. A., Pasley, B. N., Duong, T., Freeman, R. D. (2007) Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science 317: 1918–1921.CrossRefGoogle ScholarPubMed
Andersson, J. L., Lilja, A., Hartvig, P.et al. (1997) Somatotopic organization along the central sulcus, for pain localization in humans, as revealed by positron emission tomography. Exp Brain Res 117: 192–199.CrossRefGoogle ScholarPubMed
Andreason, P. J., Zametkin, A. J., Guo, A. C., Baldwin, P., Cohen, R. M. (1994) Gender-related differences in regional cerebral glucose metabolism in normal volunteers. Psychiatry Res 51: 175–183.CrossRefGoogle ScholarPubMed
Andrew, D., Craig, A. D. (2001) Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nat Neurosci 4: 72–77.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Bushnell, M. C., Treede, R. D., Zubieta, J. K. (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9: 463–484.CrossRefGoogle ScholarPubMed
Arienzo, D., Babiloni, C., Ferretti, A.et al. (2006) Somatotopy of anterior cingulate cortex (ACC) and supplementary motor area (SMA) for electric stimulation of the median and tibial nerves: an fMRI study. Neuroimage 33: 700–705.CrossRefGoogle Scholar
Attwell, D., Iadecola, C. (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25: 621–625.CrossRefGoogle ScholarPubMed
Attwell, D.Laughlin, S. B. (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21: 1133–1145.CrossRefGoogle Scholar
Aziz, Q., Andersson, J. L., Valind, S.et al. (1997) Identification of human brain loci processing esophageal sensation using positron emission tomography. Gastroenterology. 113: 50–59.CrossRefGoogle ScholarPubMed
Aziz, Q., Thompson, D. G., Ng, V. W.et al. (2000) Cortical processing of human somatic and visceral sensation. J Neurosci 20: 2657–2663.CrossRefGoogle ScholarPubMed
Bagarinao, E., Nakai, T., Tanaka, Y. (2006) Real-time functional MRI: development and emerging applications. Magn Reson Med Sci 5: 157–165.CrossRefGoogle ScholarPubMed
Bantick, S. J., Wise, R. G., Ploghaus, A.et al. (2002) Imaging how attention modulates pain in humans using functional MRI. Brain 125: 310–319.CrossRefGoogle ScholarPubMed
Baumgartner, U., Tiede, W., Treede, R. D., Craig, A. D. (2006) Laser-evoked potentials are graded and somatotopically organized anteroposteriorly in the operculoinsular cortex of anesthetized monkeys. J Neurophysiol 96: 2802–2808.CrossRefGoogle ScholarPubMed
Becerra, L., Breiter, H. C., Wise, R., Gonzalez, R. G., Borsook, D. (2001) Reward circuitry activation by noxious thermal stimuli. Neuron 32: 927–946.CrossRefGoogle ScholarPubMed
Beecher, H. K. (1955) The powerful placebo. J Am Med Assoc 159: 1602–1606.CrossRefGoogle ScholarPubMed
Beecher, H. K. (1956) Relationship of significance of wound to pain experienced. J Am Med Assoc 161: 1609–1613.CrossRefGoogle ScholarPubMed
Beecher, H. K. (1960) Increased stress and effectiveness of placebos and “active” drugs. Science 132: 91–92.CrossRefGoogle ScholarPubMed
Beecher, H. K., Keats, A. S., Mosteller, F., Lasagna, L. (1953) The effectiveness of oral analgesics (morphine, codeine, acetylsalicylic acid) and the problem of placebo “reactors” and “non-reactors”. J Pharmacol Exp Ther 109: 393–400.Google ScholarPubMed
Bencherif, B., Fuchs, P. N., Sheth, R.et al. (2002) Pain activation of human supraspinal opioid pathways as demonstrated by [11C]-carfentanil and positron emission tomography (PET). Pain 99: 589–598.CrossRefGoogle Scholar
Berkley, K. J. (1997) Sex differences in pain. Behav Brain Sci 20: 371–380.CrossRefGoogle ScholarPubMed
Berkley, K. J., Hubscher, C. H. (1995) Are there separate central nervous system pathways for touch and pain?. Nat Med 1: 766–773.CrossRefGoogle ScholarPubMed
Berkley, K. J., Guilbaud, G., Benoist, J. M., Gautron, M. (1993) Responses of neurons in and near the thalamic ventrobasal complex of the rat to stimulation of uterus, cervix, vagina, colon, and skin. J Neurophysiol 69: 557–568.CrossRefGoogle ScholarPubMed
Bingel, U., Lorenz, J., Schoell, E., Weiller, C., Buchel, C. (2006) Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120: 8–15.CrossRefGoogle ScholarPubMed
Bingel, U., Schoell, E., Herken, W., Buchel, C., May, A. (2007) Habituation to painful stimulation involves the antinociceptive system. Pain 131: 21–30.CrossRefGoogle ScholarPubMed
Bjerring, P., Arendt-Nielsen, L. (1988) Argon laser induced single cortical responses: a new method to quantify pre-pain and pain perceptions. J Neurol Neurosurg Psychiatry 51: 43–49.CrossRefGoogle ScholarPubMed
Blomqvist, A., Zhang, E. T., Craig, A. D. (2000) Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain 123: 601–619.CrossRefGoogle ScholarPubMed
Bornhovd, K., Quante, M., Glauche, V.et al. (2002) Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125: 1326–1336.CrossRefGoogle ScholarPubMed
Bouhassira, D., Bars, D., Bolgert, F., Laplane, D., Willer, J.-C. (1993) Diffuse noxious inhibitory controls in humans: a neurophysiological investigation of a patient with a form of Brown-Sequard syndrome. Ann Neurol 34: 536–543.CrossRefGoogle ScholarPubMed
Boynton, G. M., Engel, S. A., Glover, G. H., Heeger, D. J. (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16: 4207–4221.CrossRefGoogle ScholarPubMed
Brooks, J., Tracey, I. (2005) From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat 207: 19–33.CrossRefGoogle ScholarPubMed
Brooks, J. C. W., Zambreanu, L., Godinez, A., Craig, A. D., Tracey, I. (2005) Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 27: 201–209.CrossRefGoogle ScholarPubMed
Brüggemann, J., Shi, T., Apkarian, A. V. (1994) Squirrel monkey lateral thalamus. II. Viscerosomatic convergent representation of urinary bladder, colon, and esophagus. J Neurosci 14: 6796–6814.CrossRefGoogle ScholarPubMed
Buchel, C., Bornhovd, K., Quante, M.et al. (2002) Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 22: 970.CrossRefGoogle ScholarPubMed
Buxton, R. B. (ed.) (2002) Introduction to Functional Magnetic Resonance Imaging. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Calhoun, V. D., Adali, T., Stevens, M. C., Kiehl, K. A., Pekar, J. J. (2005) Semi-blind ICA of fMRI: a method for utilizing hypothesis-derived time courses in a spatial ICA analysis. Neuroimage 25: 527–538.CrossRefGoogle Scholar
Casey, K. L. (1996) Match and mismatch: identifying the neuronal determinants of pain. Ann Intern Med 124: 995–998.CrossRefGoogle ScholarPubMed
Casey, K. L. (2000) Concepts of pain mechanisms: the contribution of functional imaging of the human brain. Progr Brain Res 129: 277–287.CrossRefGoogle ScholarPubMed
Casey, K. L. (2007) Cortical and limbic mechanisms mediating pain and pain-related behavior. In Encyclopedia of Pain, Vol. 1 (Schmidt, R. F.Willis, W. D. eds), pp. 465–477. Berlin: Springer.CrossRefGoogle Scholar
Casey, K. L., Bushnell, M. C. E. (eds) (2000) Pain Imaging. Seattle: IASP Press.Google ScholarPubMed
Casey, K. L., Tran, T. D. (2006) Cortical mechanisms mediating acute and chronic pain in humans. In Pain, Vol. 81 (Cervero, F., Jensen, T. S. eds), pp. 159–177. Edinburgh: Elsevier.CrossRefGoogle ScholarPubMed
Casey, K. L., Minoshima, S., Berger, K. L.et al. (1994) Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol 71: 802–807.CrossRefGoogle ScholarPubMed
Casey, K. L., Minoshima, S., Morrow, T. J., Koeppe, R. A. (1996) Comparison of human cerebral activation patterns during cutaneous warmth, heat pain, and deep cold pain. J Neurophysiol 76: 571–581.CrossRefGoogle Scholar
Casey, K. L., Svensson, P., Morrow, T. J.et al. (2000) Selective opiate modulation of nociceptive processing in the human brain. J Neurophysiol 84: 525–533.CrossRefGoogle ScholarPubMed
Casey, K. L., Morrow, T. J., Lorenz, J., Minoshima, S. (2001) Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. J Neurophysiol 85: 951–959.CrossRefGoogle ScholarPubMed
Chapman, C. R. (1978) Pain: the perception of noxious events. In The Psychology of Pain (Sternbach, R. A. ed.), pp. 169–202. New York: Raven Press.Google Scholar
Chapman, C. R., Casey, K. L., Dubner, R.et al. (1985) Pain measurement: an overview. Pain 22: 1–31.CrossRefGoogle ScholarPubMed
Chen, J. I., Ha, B., Bushnell, M. C., Pike, B., Duncan, G. H. (2002) Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI. J Neurophysiol 88: 464–474.CrossRefGoogle ScholarPubMed
Chen-Bee, C. H., Agoncillo, T., Xiong, Y., Frostig, R. D. (2007) The triphasic intrinsic signal: implications for functional imaging. J Neurosci 27: 4572–4586.CrossRefGoogle ScholarPubMed
Clark, W. C., Yang, J. C. (1983) Applications of sensory decision theory to problems in laboratory and clinical pain. In Pain Measurement and Assessment (Melzack, R. ed.), pp. 15–25. New York: Raven Press.Google Scholar
Coghill, R. C., Sang, C. N., Maisog, J. H., Iadarola, M. J. (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82: 1934–1943.CrossRefGoogle ScholarPubMed
Coghill, R. C., Gilron, I., Iadarola, M. J. (2001) Hemispheric lateralization of somatosensory processing. J Neurophysiol 85: 2602–2612.CrossRefGoogle ScholarPubMed
Coghill, R. C., McHaffie, J. G., Yen, Y. F. (2003) Neural correlates of interindividual differences in the subjective experience of pain. Proc Natl Acad Sci USA 100: 8538–8542.CrossRefGoogle Scholar
Craig, A. D. (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3: 655–666.CrossRefGoogle Scholar
Craig, A. D. (2003a) A new view of pain as a homeostatic emotion. Trends Neurosci 26: 303–307.CrossRefGoogle ScholarPubMed
Craig, A. D. (2003b) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13: 500–505.CrossRefGoogle Scholar
Craig, A. D., Reiman, E. M., Evans, A., Bushnell, M. C. (1996) Functional imaging of an illusion of pain. Nature 384: 258–260.CrossRefGoogle ScholarPubMed
Craig, A. D., Chen, K., Bandy, D., Reiman, E. M. (2000) Thermosensory activation of insular cortex. Nat Neurosci 3: 184–190.CrossRefGoogle ScholarPubMed
Craig, J. C. (1999) Somesthesis. Annu Rev Psychol 50: 305–331.CrossRef
Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., Dolan, R. J. (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7: 189–195.CrossRefGoogle ScholarPubMed
Damasio, A. R., Grabowski, T. J., Bechara, A.et al. (2000) Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 3: 1049–1056.CrossRefGoogle ScholarPubMed
Darsow, U., Drzezga, A., Frisch, M.et al. (2000) Processing of histamine-induced itch in the human cerebral cortex: a correlation analysis with dermal reactions. J Invest Dermatol 115: 1029–1033.CrossRefGoogle ScholarPubMed
Davis, K. D. (2003) Neurophysiological and anatomical considerations in functional imaging of pain. Pain 105: 1–3.CrossRefGoogle Scholar
Davis, K. D., Taylor, S. J., Crawley, A. P., Wood, M. L., Mikulis, D. J. (1997) Functional MRI of pain- and attention-related activations in the human cingulate cortex. J Neurophysiol 77: 3370–3380.CrossRefGoogle ScholarPubMed
Leeuw, R., Albuquerque, R. J. C., Andersen, A. H., Carlson, C. R. (2006) Influence of estrogen on brain activation during stimulation with painful heat. J Oral Maxillofacial Surg 64: 158–166.CrossRefGoogle ScholarPubMed
deCharms, R. C., Christoff, K., Glover, G. H.et al. (2004) Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage 21: 436–443.CrossRefGoogle ScholarPubMed
deCharms, R. C., Maehle, B., Glover, G. H.et al. (2005) Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci USA 102: 18626–18631.CrossRefGoogle ScholarPubMed
Derbyshire, S. W. (2000) Exploring the pain “neuromatrix”. Curr Rev Pain 4: 467–477.CrossRefGoogle ScholarPubMed
Derbyshire, S. W. G. (2003) A systematic review of neuroimaging data during visceral stimulation. Am J Gastroenterol 98: 12–20.CrossRefGoogle ScholarPubMed
Derbyshire, S. W., Jones, A. K. (1998) Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain 76: 127–135.CrossRefGoogle ScholarPubMed
Derbyshire, S. W. G., Nichols, T. E., Firestone, L., Townsend, D. W., Jones, A. K. P. (2002) Gender differences in patterns of cerebral activation during equal experience of painful laser stimulation*1. J Pain 3: 401–411.CrossRefGoogle Scholar
Devor, A., Dunn, A. K., Andermann, M. L.et al. (2003) Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron 39: 353–359.CrossRefGoogle ScholarPubMed
Drzezga, A., Darsow, U., Treede, R. D.et al. (2001) Central activation by histamine-induced itch: analogies to pain processing: a correlational analysis of O-15 H2O positron emission tomography studies. Pain 92: 295–305.CrossRefGoogle ScholarPubMed
Dunckley, P., Wise, R. G., Aziz, Q.et al. (2005a) Cortical processing of visceral and somatic stimulation: differentiating pain intensity from unpleasantness. Neuroscience 133: 533–542.CrossRefGoogle ScholarPubMed
Dunckley, P., Wise, R. G., Fairhurst, M. (2005b) A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. J Neurosci 25: 7333–7341.CrossRefGoogle ScholarPubMed
Ellermeier, W., Westphal, W. (1995) Gender differences in pain ratings and pupil reactions to painful pressure stimuli. Pain 61: 435–439.CrossRefGoogle ScholarPubMed
Engen, T. (1972a) Psychophysics I. Discrimination and detection. In Woodworth and Schlosberg's Experimental Psychology. Third edition (Kling, J. W., Riggs, L. A. eds), pp. 11–46. New York: Holt, Rinehart and Winston.Google Scholar
Engen, T. (1972b) Psychophysics II. Scaling methods. In Woodworth and Schlosberg's Experimental Psychology. Third edition (Kling, J. W., Riggs, L. A., eds), pp. 47–86. New York: Holt, Rinehart and Winston.Google Scholar
Ernst, T., Hennig, J. (2007) Observation of a fast response in functional MR. Magn Reson Med 32: 146–149.CrossRefGoogle Scholar
Evans, A. C., Marrett, S., Neelin, P.et al. (1992) Anatomical mapping of functional activation in stereotactic coordinate space. Neuroimage 1: 43–53.CrossRefGoogle ScholarPubMed
Fairhurst, M., Wiech, K., Dunckley, P., Tracey, I. (2007) Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128: 101–110.CrossRefGoogle ScholarPubMed
Fields, H. L. (1999) Pain: an unpleasant topic. Pain Suppl 6: S61–S69.CrossRefGoogle ScholarPubMed
Fillingim, R. B., Maixner, W., Girdler, S. S.et al. (1997) Ischemic but not thermal pain sensitivity varies across the menstrual cycle. Psychosom Med 59: 512–520.CrossRefGoogle Scholar
Fillingim, R. B., Maixner, W., Kincaid, S., Silva, S. (1998) Sex differences in temporal summation but not sensory-discriminative processing of thermal pain. Pain 75: 121–127.CrossRefGoogle Scholar
Foreman, R. D. (1999) Mechanisms of cardiac pain. Annu Rev Physiol 61: 143–167.CrossRefGoogle ScholarPubMed
Forman, S. D., Cohen, J. D., Fitzgerald, M.et al. (1995) Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33: 636–647.CrossRefGoogle ScholarPubMed
Fox, M. D., Raichle, M. E. (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700–711.CrossRefGoogle ScholarPubMed
Fox, M. D., Snyder, A. Z., Vincent, J. L.et al. (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673–9678.CrossRefGoogle ScholarPubMed
Fox, P. T., Raichle, M. E., Mintun, M. A., Dence, C. (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241: 462–464.CrossRefGoogle ScholarPubMed
France, C. R., Suchowiecki, S. (1999) A comparison of diffuse noxious inhibitory controls in men and women. Pain 81: 77–84.CrossRefGoogle ScholarPubMed
Friston, K. J., Frith, C. D., Liddle, P. F., Frackowiak, R. S. (1991) Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 11: 690–699.CrossRefGoogle ScholarPubMed
Friston, K. J., Jezzard, P., Turner, R. (1994) Analysis of functional MRI time-series. Hum Brain Map 1: 153–171.CrossRefGoogle Scholar
Friston, K. J., Holmes, A., Poline, J. B., Price, C. J., Frith, C. D. (1996a) Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4: 223–235.CrossRefGoogle ScholarPubMed
Friston, K. J., Price, C. J., Fletcher, P.et al. (1996b) The trouble with cognitive subtraction. Neuroimage 4: 97–104.CrossRefGoogle ScholarPubMed
Friston, K. J., Holmes, A. P., Price, C. J., Buchel, C., Worsley, K. J. (1999a) Multisubject fMRI studies and conjunction analyses. Neuroimage 10: 385–396.CrossRefGoogle ScholarPubMed
Friston, K. J., Zarahn, E., Josephs, O., Henson, R. N. A., Dale, A. M. (1999b) Stochastic designs in event-related fMRI. Neuroimage 10: 607–619.CrossRefGoogle ScholarPubMed
Friston, K. J., Penny, W. D., Glaser, D. E. (2005) Conjunction revisited. Neuroimage 25: 661–667.CrossRefGoogle ScholarPubMed
Frost, J. J., Wagner, H. N., Dannals, R. F. (1985) Imaging opiate receptors in the human brain by positron tomography. J Comput Assist Tomogr 9: 231–236.CrossRefGoogle ScholarPubMed
Garnsworthy, R. K., Gully, R. L., Kenins, P., Westerman, R. A. (1988) Transcutaneous electrical stimulation and the sensation of prickle. J Neurophysiol 59: 1116–1127.CrossRefGoogle ScholarPubMed
Gescheider, G. A. (1997) Psychophysics: The Fundamentals. Third edition. Mahwah: Lawrence Erlbaum Associates, Inc.Google Scholar
Giamberardino, M. A., Dragani, L., Vecchiet, L. (1988) Measurement of sensory and pain thresholds in the subcutaneous tissue by means of electrical stimulation. Pain Clin 2: 41–44.Google Scholar
Girouard, H.Iadecola, C. (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100: 328–335.CrossRefGoogle ScholarPubMed
Gracely, R. H. (1999) Pain measurement. Acta Anaesthesiol Scand 43: 897–908.CrossRefGoogle ScholarPubMed
Gracely, R. H., Dubner, R., Wolskee, P. J., Deeter, W. R. (1983) Placebo and naloxone can alter post-surgical pain by separate mechanisms. Nature 306: 264–265.CrossRefGoogle ScholarPubMed
Graven-Nielsen, T., Arendt-Nielsen, L., Svensson, P., Jensen, T. S. (1997a) Quantification of local and referred muscle pain in humans after sequential im injections of hypertonic saline. Pain 69: 111–117.CrossRefGoogle ScholarPubMed
Graven-Nielsen, T., McArdle, A., Phoenix, J.et al. (1997b) In vivo model of muscle pain: quantification of intramuscular chemical, electrical, and pressure changes associated with saline-induced muscle pain in humans. Pain 69: 137–143.CrossRefGoogle ScholarPubMed
Graven-Nielsen, T., Babenko, V., Svensson, P., Arendt-Nielsen, L. (1998) Experimentally induced muscle pain induces hypoalgesia in heterotopic deep tissues, but not in homotopic deep tissues. Brain Res 787: 203–210.CrossRefGoogle Scholar
Green, B. G. (2004) Temperature perception and nociception. J Neurobiol 61: 13–29.CrossRefGoogle ScholarPubMed
Green, B. G., Pope, J. V. (2003) Innocuous cooling can produce nociceptive sensations that are inhibited during dynamic mechanical contact. Exp Brain Res 148: 290–299.CrossRefGoogle ScholarPubMed
Green, B. G., Roman, C., Schoen, K., Collins, H. (2008) Nociceptive sensations evoked from “spots” in the skin by mild cooling and heating. Pain 135: 196–208.CrossRefGoogle ScholarPubMed
Greenspan, J. D., McGillis, S. L. B. (1994) Thresholds for the perception of pressure, sharpness, and mechanically evoked cutaneous pain: effects of laterality and repeated testing. Somatosens Mot Res 11: 311–317.CrossRefGoogle ScholarPubMed
Greffrath, W., Baumgartner, U., Treede, R. D. (2007) Peripheral and central components of habituation of heat pain perception and evoked potentials in humans. Pain 132: 301–311.CrossRefGoogle ScholarPubMed
Greicius, M. D., Krasnow, B., Reiss, A. L., Menon, V. (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253–258.CrossRefGoogle ScholarPubMed
Gruener, G., Dyck, P. J. (1994) Quantitative sensory testing: methodology, applications, and future directions. J Clin Neurophysiol 11: 568–583.CrossRefGoogle ScholarPubMed
Gupta, A., Wang, Y., Markram, H. (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287: 273–278.CrossRefGoogle ScholarPubMed
Gur, R. C., Mozley, L. H., Mozley, P. D.et al. (1995) Sex differences in regional cerebral glucose metabolism during a resting state. Science 267: 528–531.CrossRefGoogle ScholarPubMed
Hagelberg, N., Martikainen, I. K., Mansikka, H.et al. (2002) Dopamine D2 receptor binding in the human brain is associated with the response to painful stimulation and pain modulatory capacity. Pain 99: 273–279.CrossRefGoogle ScholarPubMed
Hagelberg, N., Jääskeläinen, S. K., Martikainen, I. K.et al. (2004) Striatal dopamine D2 receptors in modulation of pain in humans: a review. Eur J Pharmacol 500: 187–192.CrossRefGoogle ScholarPubMed
Hagmann, P., Cammoun, L., Gigandet, X.et al. (2008) Mapping the structural core of the human cerebral cortex. PLoS Biology 6: 0001 (e159)–0015 (e159).CrossRefGoogle ScholarPubMed
Hammers, A., Allom, R., Koepp, M. J.et al. (2003) Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 19: 224–247.CrossRefGoogle ScholarPubMed
Handwerker, H. O., Kobal, G. (1993) Psychophysiology of experimentally induced pain. Physiol Rev 73: 639–671.CrossRefGoogle ScholarPubMed
Handwerker, H. O., Forster, C., Kirchhoff, C. (1991) Discharge patterns of human C-fibers induced by itching and burning stimuli. J Neurophysiol 66: 307–315.CrossRefGoogle ScholarPubMed
Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., Malach, R. (2004) Intersubject synchronization of cortical activity during natural vision. Science 303: 1634–1640.CrossRefGoogle ScholarPubMed
Haydon, P. G., Carmignoto, G. (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86: 1009–1031.CrossRefGoogle ScholarPubMed
Heeger, D. J., Huk, A. C., Geisler, W. S., Albrecht, D. G. (2000) Spikes versus BOLD: what does neuroimaging tell us about neuronal activity?Nat Neurosci 3: 631–633.CrossRefGoogle ScholarPubMed
Heilman, K. M., Valenstein, E. (1972) Frontal lobe neglect in man. Neurology 22: 660–664.CrossRefGoogle ScholarPubMed
Heiss, W. D., Herholz, K. (2006) Brain receptor imaging. J Nucl Med 47: 302–312.Google ScholarPubMed
Henderson, L. A., Bandler, R., Gandevia, S. C., Macefield, V. G. (2006) Distinct forebrain activity patterns during deep versus superficial pain. Pain 120: 286–296.CrossRefGoogle ScholarPubMed
Henderson, L. A., Gandevia, S. C., Macefield, V. G. (2007) Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: a single-trial fMRI study. Pain 128: 20–30.CrossRefGoogle ScholarPubMed
Herde, L., Forster, C., Strupf, M., Handwerker, H. O. (2007) Itch induced by a novel method leads to limbic deactivations – a functional MRI study. J Neurophysiol 98: 2347–2356.CrossRefGoogle ScholarPubMed
Hofbauer, R. K., Rainville, P., Duncan, G. H., Bushnell, M. C. (2001) Cortical representation of the sensory dimension of pain. J Neurophysiol 86: 402–411.CrossRefGoogle Scholar
Hoffman, H. G., Doctor, J. N., Patterson, D. R., Carrougher, G. J., Furness, T. A. (2000) Virtual reality as an adjunctive pain control during burn wound care in adolescent patients. Pain 85: 305–309.CrossRefGoogle ScholarPubMed
Hoffman, H. G., Richards, T. L., Coda, B.et al. (2004) Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI. Neur Rep 15: 1245–1248.Google ScholarPubMed
Hoogenraad, F. G. C., Hofman, M. B. M., Pouwels, P. J. W.et al. (1999) Sub-millimeter fMRI at 1.5 tesla: correlation of high resolution with low resolution measurements. J Magn Reson Imaging 9: 475–482.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Hrobjartsson, A., Gotzsche, P. C. (2001) Is the placebo powerless? An analysis of clinical trials comparing placebo with no treatment. New Engl J Med 344: 1594–1602.CrossRefGoogle ScholarPubMed
Hsieh, J.-C., Hagermark, O., Stahle-Backdahl, M.et al. (1994) Urge to scratch represented in the human cerebral cortex during itch. J Neurophysiol 72: 3004–3008.CrossRefGoogle ScholarPubMed
Iadecola, C. (2004) Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 5: 347–360.CrossRefGoogle ScholarPubMed
Jantsch, H. H. F., Kemppainen, P., Ringler, R., Handwerker, H. O., Forster, C. (2005) Cortical representation of experimental tooth pain in humans. Pain 118: 390–399.CrossRefGoogle ScholarPubMed
Jones, A. K., Brown, W. D., Friston, K. J., Qi, L. Y., Frackowiak, R. S. (1991) Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond (Biol) 244: 39–44.CrossRefGoogle ScholarPubMed
Jones, E. G. (1993) GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex 3: 361–372.CrossRefGoogle ScholarPubMed
Jones, E. G. (2002) Thalamic circuitry and thalamocortical synchrony. Phil Trans R Soc Lond B 357: 1659–1673.CrossRefGoogle ScholarPubMed
Juergens, E., Guettler, A., Eckhorn, R. (1999) Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG. Exp Brain Res 129: 247–259.CrossRefGoogle ScholarPubMed
Katz, J., Melzack, R. (1999) Measurement of pain. Surg Clin N Am 79: 231–252.CrossRefGoogle Scholar
Kellgren, J. H. (1938) Observations on referred pain arising from muscle. Clin Sci 3: 175–190.Google Scholar
Keltner, J. R., Furst, A., Fan, C.et al. (2006) Isolating the modulatory effect of expectation on pain transmission: a functional magnetic resonance imaging study. J Neurosci 26: 4437–4443.CrossRefGoogle ScholarPubMed
Kennedy, C., Des Rosiers, M. H., Jehle, J. W.et al. (1975) Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with (14C) deoxyglucose. Science 187: 850–853.CrossRefGoogle ScholarPubMed
Koechlin, E., Ody, C., Kouneiher, F. (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302: 1181–1185.CrossRefGoogle ScholarPubMed
Kong, J., White, N. S., Kwong, K. K.et al. (2006) Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity. Hum Brain Mapp 27: 715–721.CrossRefGoogle ScholarPubMed
Koyama, T., McHaffie, J. G., Laurienti, P. J., Coghill, R. C. (2005) The subjective experience of pain: where expectations become reality. Proc Natl Acad Sci USA 102: 12950–12955.CrossRefGoogle ScholarPubMed
Kupers, R. C., Svensson, P., Jensen, T. S. (2004) Central representation of muscle pain and mechanical hyperesthesia in the orofacial region: a positron emission tomography study. Pain 108: 284–293.CrossRefGoogle ScholarPubMed
LaMotte, C. C., Snowman, A., Pert, C. B., Snyder, S. H. (1978) Opiate receptor binding in Rhesus monkey brain: association with limbic structures. Brain Res 155: 374–379.CrossRefGoogle ScholarPubMed
Lauritzen, M. (2005) Reading vascular changes in brain imaging: is dendritic calcium the key?Nat Rev Neurosci 6: 77–85.CrossRefGoogle ScholarPubMed
Lautenbacher, S., Rollman, G. B. (1993) Sex differences in responsiveness to painful and non-painful stimuli are dependent upon the stimulation method. Pain 53: 255–264.CrossRefGoogle ScholarPubMed
Lautenbacher, S., Nielsen, J., Andersen, T., Arendt-Nielsen, L. (2001) Spatial summation of heat pain in males and females. Somatosens Mot Res 18: 101–105.CrossRefGoogle ScholarPubMed
Bars, D., Dickenson, A. H., Besson, J.-M. (1979a) Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain 6: 305–327.CrossRefGoogle ScholarPubMed
Bars, D., Dickenson, A. H., Besson, J. M. (1979b) Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain 6: 283–304.CrossRefGoogle ScholarPubMed
Leknes, S. G., Bantick, S., Willis, C. M.et al. (2007) Itch and motivation to scratch: an investigation of the central and peripheral correlates of allergen- and histamine-induced itch in humans. J Neurophysiol 97: 415–422.CrossRefGoogle ScholarPubMed
Lenz, F. A., Gracely, R. H., Zirh, T. A.et al. (1997) Human thalamic nucleus mediating taste and multiple other sensations related to ingestive behavior. J Neurophysiol 77: 3406–3409.CrossRefGoogle ScholarPubMed
Lever, J. R. (2007) PET and SPECT imaging of the opioid system: receptors, radioligands and avenues for drug discovery and development. Curr Pharm Design 13: 33–49.CrossRefGoogle ScholarPubMed
Levine, J. D., Gordon, N. C., Jones, R. T., Fields, H. L. (1978) The narcotic antagonist naloxone enhances clinical pain. Nature 272: 826–827.CrossRefGoogle ScholarPubMed
Logan, J., Fowler, J. S., Volkow, N. D.et al. (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to[N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10: 740–747.CrossRefGoogle Scholar
Logothetis, N. K. (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23: 3963–3971.CrossRefGoogle ScholarPubMed
Logothetis, N. K. (2008) What we can do and what we cannot do with fMRI. Nature 453: 869–878.CrossRefGoogle Scholar
Logothetis, N. K., Wandell, B. A. (2004) Interpreting the BOLD signal. Annu Rev Physiol 66: 735–769.CrossRefGoogle ScholarPubMed
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., Oeltermann A. (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412: 150–157.Google Scholar
Lorenz, J., Cross, D., Minoshima, S.et al. (2002) A unique representation of heat allodynia in the human brain. Neuron 35: 383–393.CrossRefGoogle ScholarPubMed
Lorenz, J., Minoshima, S., Casey, K. L. (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126: 1079–1091.CrossRefGoogle ScholarPubMed
Maihofner, C., Handwerker, H. O. (2005) Differential coding of hyperalgesia in the human brain: a functional MRI study. Neuroimage 28: 996–1006.CrossRefGoogle ScholarPubMed
Marchettini, P., Simone, D. A., Caputi, G., Ochoa, J. L. (1996) Pain from excitation of identified muscle nociceptors in humans. Brain Res 740: 109–116.CrossRefGoogle ScholarPubMed
Mata, M., Fink, D. J., Gainer, H.et al. (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34: 213–215.CrossRefGoogle ScholarPubMed
Mathiesen, C., Caesar, K., Akgoren, N., Lauritzen, M. (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol 512: 555–566.CrossRefGoogle ScholarPubMed
McBain, C. J., Fisahn, A. (2001) Interneurons unbound. Nat Rev Neurosci 2: 11–23.CrossRefGoogle ScholarPubMed
McKeown, M. J., Sejnowski, T. J. (1998) Independent component analysis of fMRI data: examining the assumptions. Hum Brain Mapp 6: 368–372.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
McKeown, M. J., Makeig, S., Brown, G. G.et al. (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6: 160–188.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
McLaughlin, D. F., Kelly, E. F. (1993) Evoked potentials as indices of adaptation in the somatosensory system in humans: a review and prospectus. Brain Res Rev 18: 151–206.CrossRefGoogle ScholarPubMed
Melzack, R., Casey, K. L. (1968) Sensory, motivational and central control determinants of pain. In The Skin Senses (Kenshalo, D. R., ed.), pp. 423–439. Springfield: C.C Thomas.Google Scholar
Merskey, H., Bogduk, N. (eds) (1994) Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms. Seattle: IASP Press.Google Scholar
Minoshima, S., Berger, K. L., Lee, K. S., Mintun, M. A. (1992) An automated method for rotational correction and centering of three-dimensional functional brain images. J Nucl Med 33: 1579–1585.Google ScholarPubMed
Minoshima, S., Koeppe, R. A., Mintun, M. A.et al. (1993) Automated detection of the intercommissural line for stereotactic localization of functional brain images. J Nucl Med 34: 322–329.Google ScholarPubMed
Minoshima, S., Koeppe, R. A., Frey, K. A., Kuhl, D. E. (1994) Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med 35: 1528–1536.Google ScholarPubMed
Mochizuki, H., Tashiro, M., Kano, M.et al. (2003) Imaging of central itch modulation in the human brain using positron emission tomography. Pain 105: 339–346.CrossRefGoogle ScholarPubMed
Mochizuki, H., Sadato, N., Saito, D. N.et al. (2007) Neural correlates of perceptual difference between itching and pain: a human fMRI study. Neuroimage 36: 706–717.CrossRefGoogle ScholarPubMed
Moore, C. I., Stern, C. E., Corkin, S.et al. (2000) Segregation of somatosensory activation in the human rolandic cortex using fMRI. J Neurophysiol 84: 558–569.CrossRefGoogle ScholarPubMed
Morrow, T. J., Paulson, P. E., Danneman, P. J., Casey, K. L. (1998) Regional changes in forebrain activation during the early and late phase of formalin nociception: analysis using cerebral blood flow in the rat. Pain 75: 355–365.CrossRefGoogle ScholarPubMed
Moulton, E. A., Keaser, M. L., Gullapalli, R. P., Greenspan, J. D. (2005) Regional intensive and temporal patterns of functional MRI activation distinguishing noxious and innocuous contact heat. J Neurophysiol 93: 2183–2193.CrossRefGoogle ScholarPubMed
Moulton, E. A., Keaser, M. L., Gullapalli, R. P., Maitra, R., Greenspan, J. D. (2006) Sex differences in the cerebral BOLD signal response to painful heat stimuli. Am J Physiol Regul Integr Comp Physiol 291: R257–R267.CrossRefGoogle ScholarPubMed
Mukamel, R., Arieli, A., Gelbard, H.et al. (2005) Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science 309: 951–954.CrossRefGoogle ScholarPubMed
Ness, T. J., Metcalf, A. M., Gebhart, G. F. (1990) A psychophysiological study in humans using phasic colonic distension as a noxious visceral stimulus. Pain 43: 377–386.CrossRefGoogle ScholarPubMed
Nichols, T., Brett, M., Andersson, J., Wager, T., Poline, J. B. (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25: 653–660.CrossRefGoogle ScholarPubMed
Nichols, T. E., Holmes, A. P. (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15: 1–25.CrossRefGoogle ScholarPubMed
Nielsen, F. A., Hansen, L. K. (2004) Finding related functional neuroimaging volumes. Art Intell Med 30: 141–151.CrossRefGoogle ScholarPubMed
Ogawa, S., Lee, T.-M., Kay, A. R., Tank, D. (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868–9872.CrossRefGoogle ScholarPubMed
Ogawa, S., Tank, D. W., Menon, R.et al. (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89: 5951–5955.CrossRefGoogle ScholarPubMed
Ohara, S., Crone, N. E., Weiss, N., Treede, R. D., Lenz, F. A. (2004) Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans. J Neurophysiol 91: 2734–2746.CrossRefGoogle ScholarPubMed
Oshiro, Y., Quevedo, A. S., McHaffie, J. G., Kraft, R. A., Coghill, R. C. (2007) Brain mechanisms supporting spatial discrimination of pain. J Neurosci 27: 3388–3394.CrossRefGoogle Scholar
Paulson, P. E., Minoshima, S., Morrow, T. J., Casey, K. L. (1998) Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76: 223–229.CrossRefGoogle ScholarPubMed
Peltier, S. J., Polk, T. A., Noll, D. C. (2006) Detecting low-frequency functional connectivity in fMRI using a self-organizing map (SOM) algorithm. Hum Brain Mapp 20: 220–226.CrossRefGoogle Scholar
Pert, C. B., Snyder, S. H. (1973) Opiate receptor: demonstration in nervous tissue. Science 179: 1011–1014.CrossRefGoogle ScholarPubMed
Pertovaara, A., Martikainen, I. K., Hagelberg, N.et al. (2008) Striatal dopamine D2/D3 receptor availability correlates with individual response characteristics to pain. Eur J Neurosci 20: 1587–1592.CrossRefGoogle Scholar
Petrovic, P., Petersson, K. M., Ghatan, P. H., Stone-Elander, S., Ingvar, M. (2000) Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85: 19–30.CrossRefGoogle ScholarPubMed
Petrovic, P., Kalso, E., Petersson, K. M., Ingvar, M. (2002) Placebo and opioid analgesia – imaging a shared neuronal network. Science 295: 1737–1740.CrossRefGoogle ScholarPubMed
Peyron, R., Laurent, B., Garcia-Larrea, L. (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin 30: 263–288.CrossRefGoogle Scholar
Pike, G. B., Hoge, R. D. (2000) Functional magnetic resonance imaging: technical aspects. In Pain Imaging, Vol. 18 (Casey, K. L., Bushnell, M. C., eds), pp. 157–194. Seattle: IASP Press.Google Scholar
Ploghaus, A., Tracey, I., Gati, J. S.et al. (1999) Dissociating pain from its anticipation in the human brain. Science 284: 1979–1981.CrossRefGoogle ScholarPubMed
Ploghaus, A., Narain, C., Beckmann, C. F.et al. (2001) Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci 21: 9896–9903.CrossRefGoogle Scholar
Ploner, M., Freund, H. J., Schnitzler, A. (1999) Pain affect without pain sensation in a patient with a postcentral lesion. Pain 81: 211–214.CrossRefGoogle Scholar
Ploner, M., Schmitz, F., Freund, H. J., Schnitzler, A. (2000) Differential organization of touch and pain in human primary somatosensory cortex. J Neurophysiol 83: 1770–1776.CrossRefGoogle ScholarPubMed
Ploner, M., Gross, J., Timmermann, L., Schnitzler, A. (2002) Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci USA 99: 12444–12448.CrossRefGoogle ScholarPubMed
Porro, C. A. (2003) Functional imaging and pain: behavior, perception, and modulation. Neuroscientist 9: 354–369.CrossRefGoogle ScholarPubMed
Porro, C. A., Cettolo, V., Francescato, M. P., Baraldi, P. (1998) Temporal and intensity coding of pain in human cortex. J Neurophysiol 80: 3312–3320.CrossRefGoogle ScholarPubMed
Porter, J. T., McCarthy, K. D. (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16: 5073–5081.CrossRefGoogle ScholarPubMed
Price, C. J., Friston, K. J. (1997) Cognitive conjunction: a new approach to brain activation experiments. Neuroimage 5: 261–270.CrossRefGoogle ScholarPubMed
Price, D. D. (ed.) (1999) Psychological Mechanisms of Pain and Analgesia. Seattle: IASP Press.Google Scholar
Price, D. D. (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288: 1769–1772.CrossRefGoogle ScholarPubMed
Price, D. D., Verne, G. N. (2002) Does the spinothalamic tract to ventroposterior lateral thalamus and somatosensory cortex have roles in both pain sensation and pain-related emotions?J Pain 3: 105–108.CrossRefGoogle ScholarPubMed
Price, D. D., Milling, L. S., Kirsch, I.et al. (1999) An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm. Pain 83: 147–156.CrossRefGoogle Scholar
Price, D. D., Craggs, J., Verne, G. N., Perlstein, W. M., Robinson, M. E. (2007) Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable bowel syndrome patients. Pain 127: 63–72.CrossRefGoogle ScholarPubMed
Quevedo, A. S., Coghill, R. C. (2007) Attentional modulation of spatial integration of pain: evidence for dynamic spatial tuning. J Neurosci 27: 11635–11640.CrossRefGoogle ScholarPubMed
Raichle, M. E. (1998) Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci USA 95: 765–772.CrossRefGoogle ScholarPubMed
Raichle, M. E. (2006) Neuroscience: the brain's dark energy. Science 314: 1249–1250.CrossRefGoogle ScholarPubMed
Raichle, M. E., Mintun, M. A. (2006) Brain work and brain imaging. Annu Rev Neurosci 29: 449–476.CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z.et al. (2001) A default mode of brain function. Proc Natl Acad Sci USA 98: 676–682.CrossRefGoogle ScholarPubMed
Rainville, P. (2002) Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol 12: 195–204.CrossRefGoogle ScholarPubMed
Rainville, P., Duncan, G. H., Price, D. D., Carrier, M., Bushnell, M. C. (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277: 968–971.CrossRefGoogle Scholar
Reiman, E. M., Lane, R. D., Ahern, G. L.et al. (1997) Neuroanatomical correlates of externally and internally generated human emotion. Am J Psychiatry 154: 918–925.Google ScholarPubMed
Riley III, J. L., Robinson, M. E., Wise, E. A., Myers, C. D., Fillingim, R. B. (1998) Sex differences in the perception of noxious experimental stimuli: a meta-analysis. Pain 74: 181–187.CrossRefGoogle Scholar
Rolls, E. T. (2000) The orbitofrontal cortex and reward. Cereb Cortex 10: 284–294.CrossRefGoogle ScholarPubMed
Rolls, E. T., O'Doherty, J., Kringelbach, M. L.et al. (2003) Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb Cortex 13: 308–317.CrossRefGoogle ScholarPubMed
Rosen, S. D., Camici, P. G. (2000) The brain-heart axis in the perception of cardiac pain: the elusive link between ischaemia and pain. Ann Med 32: 350–364.CrossRefGoogle ScholarPubMed
Rosen, S. D., Paulesu, E., Frith, C. D.et al. (1994) Central nervous pathways mediating angina pectoris. Lancet 344: 147–150.CrossRefGoogle ScholarPubMed
Rosen, S. D., Paulesu, E., Nihoyannopoulos, P.et al. (1996) Silent ischemia as a central problem: regional brain activation compared in silent and painful myocardial ischemia. Ann Intern Med 124: 939–949.CrossRefGoogle ScholarPubMed
Roy, C. S., Sherrington, C. S. (1890) On the regulation of the blood-supply of the brain. J Physiol (Lond) 11: 85–108.CrossRefGoogle Scholar
Sadzot, B., Frost, J. J. (1990) Pain and opiate receptors: considerations for the design of positron emission tomography studies. Anesth Prog 37: 113–120.Google ScholarPubMed
Sadzot, B., Mayberg, H. S., Frost, J. J. (1990) Detection and quantification of opiate receptors in man by positron emission tomography. Potential applications to the study of pain. Neurophysiol Clin 20: 323–334.CrossRefGoogle Scholar
Sarlani, E., Farooq, N., Greenspan, J. D. (2003) Gender and laterality differences in thermosensation throughout the perceptible range. Pain 106: 9–18.CrossRefGoogle ScholarPubMed
Sawamoto, N., Honda, M., Okada, T.et al. (2000) Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. J Neurosci 20: 7438–7445.CrossRefGoogle Scholar
Schlereth, T., Magerl, W., Treede, R. (2001) Spatial discrimination thresholds for pain and touch in human hairy skin. Pain 92: 187–194.CrossRefGoogle ScholarPubMed
Schmelz, M., Schmidt, R., Bickel, A., Handwerker, H. O., Torebjörk, H. E. (1997) Specific C-receptors for itch in human skin. J Neurosci 17: 8003–8008.
Schnitzler, A., Ploner, M. (2000) Neurophysiology and functional neuroanatomy of pain perception. J Clin Neurophysiol 17: 592–603.CrossRefGoogle ScholarPubMed
Schnitzler, A., Volkmann, J., Enck, P.et al. (1999) Different cortical organization of visceral and somatic sensation in humans. Eur J Neurosci 11: 305–315.CrossRefGoogle ScholarPubMed
Schreckenberger, M., Siessmeier, T., Viertmann, A.et al. (2005) The unpleasantness of tonic pain is encoded by the insular cortex. Neurology 64: 1175–1183.CrossRefGoogle ScholarPubMed
Schwartz, W. J., Smith, C. B., Davidsen, L.et al. (1979) Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science 205: 723–725.CrossRefGoogle ScholarPubMed
Sheth, S. A., Nemoto, M., Guiou, M.et al. (2004) Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron 42: 347–355.CrossRefGoogle ScholarPubMed
Shoham, D., Grinvald, A. (2001) The cortical representation of the hand in macaque and human area S-I: high resolution optical imaging. J Neurosci 21: 6820–6835.CrossRefGoogle ScholarPubMed
Shulman, G. L., Fiez, J. A., Corbetta, M.et al. (1997) Decreases in cerebral cortex (common blood flow changes across visual tasks). J Cogn Neurosci 9: 648–663.CrossRefGoogle Scholar
Shulman, R. G., Rothman, D. L., Behar, K. L., Hyder, F. (2004) Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 27: 489–495.CrossRefGoogle ScholarPubMed
Simone, D. A., Marchettini, P., Caputi, G., Ochoa, J. L. (1994) Identification of muscle afferents subserving sensation of deep pain in humans. J Neurophysiol 72: 883–889.CrossRefGoogle ScholarPubMed
Snyder, S. H. (1977) Opiate receptors in the brain. New Engl J Med 296: 266–271.CrossRefGoogle Scholar
Staud, R., Craggs, J. G., Robinson, M. E., Perlstein, W. M., Price, D. D. (2007) Brain activity related to temporal summation of C-fiber evoked pain. Pain 129: 130–142.CrossRefGoogle ScholarPubMed
Stein, S., Volpe, B. T. (1983) Classical “parietal” neglect syndrome after subcortical right frontal lobe infarction. Neurology 33: 797–799.CrossRefGoogle ScholarPubMed
Stevens, S. S. (1971) Issues in psychophysical measurement. Psychol Rev 78: 426–450.CrossRefGoogle Scholar
Stohler, C. S., Kowalski, C. J. (1999) Spatial and temporal summation of sensory and affective dimensions of deep somatic pain. Pain 79: 165–173.CrossRefGoogle ScholarPubMed
Strigo, I. A., Bushnell, M. C., Boivin, M., Duncan, G. H. (2002) Psychophysical analysis of visceral and cutaneous pain in human subjects. Pain 97: 235–246.CrossRefGoogle ScholarPubMed
Strigo, I. A., Duncan, G. H., Boivin, M., Bushnell, M. C. (2003) Differentiation of visceral and cutaneous pain in the human brain. J Neurophysiol 89: 3294–3303.CrossRefGoogle ScholarPubMed
Strigo, I. A., Albanese, M. C., Bushnell, M. C., Duncan, G. H. (2005) Visceral and cutaneous pain representation in parasylvian cortex. Neurosci Lett 384: 54–59.CrossRefGoogle ScholarPubMed
Svensson, P., Beydoun, A., Morrow, T. J., Casey, K. L. (1997a) Non-painful and painful stimulation of human skin and muscle: analysis of cerebral evoked potentials. EEG Clin Neurophysiol 104: 343–350.Google ScholarPubMed
Svensson, P., Minoshima, S., Beydoun, A., Morrow, T. J., Casey, K. L. (1997b) Cerebral processing of acute skin and muscle pain in humans. J Neurophysiol 78: 450–460.CrossRefGoogle ScholarPubMed
Svensson, P., Rosenberg, B., Beydoun, A., Morrow, T. J., Casey, K. L. (1997c) Comparative psychophysical characteristics of cutaneous CO2 laser and contact heat stimulation. Somatosens Mot Res 14: 113–118.CrossRefGoogle ScholarPubMed
Svensson, P., Hashikawa, C. H., Casey, K. L. (1999) Site- and modality-specific modulation of experimental muscle pain in humans. Brain Res 851: 32–38.CrossRefGoogle ScholarPubMed
Talairach, J., Tournoux, A. (eds) (1988) A Coplanar Stereotaxic Atlas of the Human Brain. New York: Thieme Medical Publishers.Google Scholar
Talbot, J. D., Marrett, S., Evans, A. C.et al. (1991) Multiple representations of pain in human cerebral cortex. Science 251: 1355–1358.CrossRefGoogle ScholarPubMed
Ter-Pogossian, M. M., Eichling, J. O., Davis, D. O. (1969) The determination of regional cerebral blood flow by means of water labeled with radioactive oxygen. Radiology 93: 31–40.CrossRefGoogle ScholarPubMed
Thompson, J. K., Peterson, M. R., Freeman, R. D. (2003) Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299: 1070–1072.CrossRefGoogle ScholarPubMed
Thomsen, K., Offenhauser, N., Lauritzen, M. (2004) Principal neuron spiking: neither necessary nor sufficient for cerebral blood flow in rat cerebellum. J Physiol 560: 181–189.CrossRefGoogle ScholarPubMed
Tolias, A. S., Smirnakis, S. M., Augath, M. A., Trinath, T., Logothetis, N. K. (2001) Motion processing in the macaque: revisited with functional magnetic resonance imaging. J Neurosci 21: 8594–8601.CrossRefGoogle ScholarPubMed
Tolle, T. R., Kaufmann, T., Siessmeier, T.et al. (1999) Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 45: 40–47.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Tracey, I., Ploghaus, A., Gati, J. S.et al. (2002) Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 22: 2748–2752.CrossRefGoogle ScholarPubMed
Treede, R. D., Kenshalo, D. R., Gracely, R. H., Jones, A. K. (1999) The cortical representation of pain. Pain. 79: 105–111.CrossRefGoogle Scholar
Valet, M., Sprenger, T., Boecker, H.et al. (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain 109: 399–408.CrossRefGoogle ScholarPubMed
Valet, M., Pfab, F., Sprenger, T.et al. (2008) Cerebral processing of histamine-induced itch using short-term alternating temperature modulation – an FMRI study. J Invest Dermatol 128: 426–433.CrossRefGoogle ScholarPubMed
Hees, J., Gybels, J. (1981) C nociceptor activity in human nerve during painful and non painful skin stimulation. J Neurol Neurosurg Psychiatry 44: 600–607.CrossRefGoogle ScholarPubMed
Vecchiet, L., Galletti, R., Giamberardino, M. A., Dragani, L., Marini, F. (1988) Modifications of cutaneous, subcutaneous, and muscular sensory and pain thresholds after the induction of an experimental algogenic focus in the skeletal muscle. Clin J Pain 4: 59.CrossRefGoogle Scholar
Vogt, B. A. (2005) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6: 533–544.CrossRefGoogle ScholarPubMed
Vogt, B. A., Berger, G. R., Derbyshire, S. W. (2003) Structural and functional dichotomy of human midcingulate cortex. Eur J Neurosci 18: 3134–3144.CrossRefGoogle ScholarPubMed
Wade, J. B., Dougherty, L. M., Archer, C. R., Price, D. D. (1996) Assessing the stages of pain processing: a multivariate analytical approach. Pain 68: 157–167.CrossRefGoogle ScholarPubMed
Wager, T. D., Phan, K. L., Liberzon, I., Taylor, S. F. (2003) Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. Neuroimage 19: 513–531.CrossRefGoogle ScholarPubMed
Wager, T. D., Rilling, J. K., Smith, E. E.et al. (2004) Placebo-induced changes in fMRI in the anticipation and experience of pain. Science 303: 1162–1167.CrossRefGoogle Scholar
Wager, T. D., Scott, D. J., Zubieta, J. K. (2007) Placebo effects on human mu-opioid activity during pain. Proc Natl Acad Sci USA 104: 11056–11061.CrossRefGoogle ScholarPubMed
Watson, R. T., Heilman, K. M. (1979) Thalamic neglect. Neurology 29: 690–694.CrossRefGoogle ScholarPubMed
Willis, W. D., Al-Chaer, E. D., Quast, M. J., Westlund, K. N. (1999) A visceral pain pathway in the dorsal column of the spinal cord. Proc Natl Acad Sci USA 96: 7675–7679.CrossRefGoogle ScholarPubMed
Winship, I. R., Plaa, N., Murphy, T. H. (2007) Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J Neurosci 27: 6268–6272.CrossRefGoogle ScholarPubMed
Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R., Mazziotta, J. C. (1998a) Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22: 139–152.CrossRefGoogle ScholarPubMed
Woods, R. P., Grafton, S. T., Watson, J. D., Sicotte, N. L., Mazziotta, J. C. (1998b) Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 22: 153–165.CrossRefGoogle ScholarPubMed
Worsley, K. J., Evans, A. C., Marrett, S., Neelin, P. (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12: 900–918.CrossRefGoogle ScholarPubMed
Zhang, H. Q., Al Chaer, E. D., Willis, W. D. J. (2002) Effect of tactile inputs on thalamic responses to noxious colorectal distension in rat. J Neurophysiol 88: 1185–1196.CrossRefGoogle ScholarPubMed
Zhang, X., Ashton-Miller, J. A., Stohler, C. S. (1993) A closed-loop system for maintaining constant experimental muscle pain in man. IEEE Trans Biomed Eng 40: 344–352.CrossRefGoogle ScholarPubMed
Zubieta, J. K., Smith, Y. R., Bueller, J. A.et al. (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293: 311–315.CrossRefGoogle Scholar
Zubieta, J. K., Smith, Y. R., Bueller, J. A.et al. (2002) μ−Opioid receptor-mediated antinociceptive responses differ in men and women. J Neurosci 22: 5100–5107.CrossRefGoogle ScholarPubMed
Zubieta, J. K., Bueller, J. A., Jackson, L. R.et al. (2005) Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. J Neurosci 25: 7754–7762.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×