Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-11T22:37:00.222Z Has data issue: false hasContentIssue false

3 - Physiology of cells of origin of spinal cord and brainstem projections

Published online by Cambridge University Press:  05 October 2010

Frederick A. Lenz
Affiliation:
The Johns Hopkins Hospital
Kenneth L. Casey
Affiliation:
University of Michigan, Ann Arbor
Edward G. Jones
Affiliation:
University of California, Davis
William D. Willis
Affiliation:
University of Texas Medical Branch, Galveston
Get access

Summary

Introduction

As discussed in Chapter 2, several of the sensory pathways that ascend from the spinal cord or brainstem to higher levels of the monkey central nervous system have a nociceptive component and thus may contribute to pain sensation. Spinal cord projections with nociceptive components that ascend to the brain in the anterolateral quadrant of the spinal cord include the spinothalamic, spinoreticular, spinomesencephalic and spinohypothalamic tracts; nociceptive projections that ascend in the dorsolateral or dorsal funiculus are the spinocervical tract and the postsynaptic dorsal column pathway (see Willis and Coggeshall, 2004). Brainstem projections include the trigeminothalamic tract (Price et al., 1976).

To investigate the physiology of an individual spinal cord or brainstem neuron that belongs to one of the ascending nociceptive pathways, it is important to “identify” the neuron by showing that the axon of the individual neuron under investigation actually projects to the appropriate target (Willis and Coggeshall, 2004). Recordings from a neuron unidentified in terms of its projection can be misleading, since many unidentified neurons are likely to be interneurons, and these could be excitatory or inhibitory and might or might not influence the activity of sensory projection neurons. For instance, many spinal cord interneurons belong to neural circuits that function to control motor output (Jankowska et al., 1981; Rudomin et al., 1987).

Identification of a projection neuron is typically accomplished by demonstrating that the neuron can be activated antidromically in response to electrical stimulation in a region in which the axon of that projection neuron synapses (Trevino et al., 1973; Bryan et al., 1974; Haber et al., 1982; see Willis and Coggeshall, 2004).

Type
Chapter
Information
The Human Pain System
Experimental and Clinical Perspectives
, pp. 196 - 236
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albe-Fessard, D., Levante, A., Lamour, Y. (1974a) Origin of spinothalamic and spinoreticular pathways in cats and monkeys. Adv Neurol 4: 157–166.Google Scholar
Albe-Fessard, D., Levante, A., Lamour, Y. (1974b) Origin of spino-thalamic tract in monkeys. Brain Res 65: 503–509.CrossRefGoogle ScholarPubMed
Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., Willis, W. D. (1996a) Visceral nociceptive input into the ventral posterolateral nucleus of the thalamus: a new function for the dorsal column pathway. J Neurophysiol 76: 2661–2674.CrossRefGoogle ScholarPubMed
Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., Willis, W. D. (1996b) Pelvic visceral input into the nucleus gracilis is largely mediated by the postsynaptic dorsal column pathway. J Neurophysiol 76: 2675–2690.CrossRefGoogle ScholarPubMed
Al-Chaer, E. D., Westlund, K. N., Willis, W. D. (1997) Nucleus gracilis: an integrator for visceral and somatic information. J Neurophysiol 78: 521–527.CrossRefGoogle ScholarPubMed
Al-Chaer, E. D., Feng, Y., Willis, W. D. (1998) A role for the dorsal column in nociceptive visceral input into the thalamus of primates. J Neurophysiol 79: 3143–3150.CrossRefGoogle ScholarPubMed
Al-Chaer, E. D., Feng, Y., Willis, W. D. (1999) Comparative study of viscerosomatic input onto postsynaptic dorsal column and spinothalamic tract neurons in the primate. J Neurophysiol 82: 1876–1882.CrossRefGoogle ScholarPubMed
Amassian, V. E. (1951) Fiber groups and spinal pathways of cortically represented visceral afferents. J Neurophysiol 14: 445–460.CrossRefGoogle ScholarPubMed
Ammons, W. S. (1989) Electrophysiological characteristics of primate spinothalamic neurons with renal and somatic inputs. J Neurophysiol 61: 1121–1130.CrossRefGoogle ScholarPubMed
Ammons, W. S., Blair, R. W., Foreman, R. D. (1984) Responses of primate T1-T5 spinothalamic neurons to gallbladder distension. Am J Physiol 247: 995–1002.Google ScholarPubMed
Ammons, W. S., Girardot, M. N., Foreman, R. D. (1985a) Characteristics of T2-T5 spinothalamic neurons with viscerosomatic convergent inputs projecting to medial thalamus. J Neurophysiol 54: 73–89.CrossRefGoogle Scholar
Ammons, W. S., Girardot, M. N., Foreman, R. D. (1985b) Effects of intracardiac bradykinin on T2-T5 medial spinothalamic cells. Am J Physiol 249: 147–152.Google ScholarPubMed
Angaut-Petit, D. (1975) The dorsal column system: I. Existence of long ascending postsynaptic fibres in the cat's fasciculus gracilis. Exp Brain Res 22: 457–470.Google ScholarPubMed
Angaut-Petit, D. (1975b) The dorsal column system: II. Functional properties and bulbar relay of the postsynaptic fibres of the cat's fasciculus gracilis. Exp Brain Res 22: 471–493.Google ScholarPubMed
Applebaum, A. E., Beall, J. E., Foreman, R. D., Willis, W. D. (1975) Organization and receptive fields of primate spinothalamic tract neurons. J Neurophysiol 38: 572–586.CrossRefGoogle ScholarPubMed
Beall, J. E., Applebaum, A. E., Foreman, R. D., Willis, W. D. (1977) Spinal cord potentials evoked by cutaneous afferents in the monkey. J Neurophysiol 40: 199–211.CrossRefGoogle ScholarPubMed
Becker, R., Sure, U., Bertalanffy, H. (1999) Punctate midline myelotomy. A new approach in the management of visceral pain. Acta Neurochir 141: 881–883.CrossRefGoogle ScholarPubMed
Bennett, G. J., Nishikawa, N., Lu, G. W., Hoffert, M. J., Dubner, R. (1984) The morphology of dorsal column postsynaptic spinomedullary neurons in the cat. J Comp Neurol 224: 568–578.CrossRefGoogle ScholarPubMed
Bernard, J. F., Besson, J. M. (1990) The spino(trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 63: 473–490.CrossRefGoogle ScholarPubMed
Blair, R. W., Weber, R. N., Foreman, R. D. (1981) Characteristics of primate spinothalamic tract neurons receiving viscerosomatic convergent inputs in T3-T5 segments. J Neurophysiol 46: 797–811.CrossRefGoogle ScholarPubMed
Blair, R. W., Weber, R. N., Foreman, R. D. (1982) Responses of thoracic spinothalamic neurons to intracardiac injection of bradykinin in the monkey. Circ Res 51: 83–94.CrossRefGoogle ScholarPubMed
Blair, R. W., Ammons, W. S., Foreman, R. D. (1984) Responses of thoracic spinothalamic and spinoreticular cells to coronary artery occlusion. J Neurophysiol 51: 636–648.CrossRefGoogle ScholarPubMed
Brennan, T. J., Oh, U. T., Hobbs, S. F., Garrison, D. W., Foreman, R. D. (1989) Urinary bladder and hindlimb afferent input inhibits activity of primate T2-T5 spinothalamic tract neurons. J Neurophysiol 61: 573–588.CrossRefGoogle ScholarPubMed
Brown, A. G., Franz, D. N. (1969) Responses of spinocervical tract neurons to natural stimulation of identified cutaneous receptors. Exp Brain Res 7: 231–249.CrossRefGoogle ScholarPubMed
Brown, A. G., Franz, D. N. (1970) Patterns of response in spinocervical tract neurones to different stimuli of long duration. Brain Res 17: 156–160.CrossRefGoogle ScholarPubMed
Brown, A. G., Fyffe, R. E. W. (1981) Form and function of dorsal horn neurones with axons ascending the dorsal columns in cat. J Physiol 321: 31–47.CrossRefGoogle ScholarPubMed
Brown, A. G., Noble, R. (1982) Connexions between hair follicle afferent fibres and spinocervical tract neurones in the cat: the synthesis of receptive fields. J Physiol 323: 77–91.CrossRefGoogle ScholarPubMed
Brown, A. G., Rose, P. K., Snow, P. J. (1980) Dendritic trees and cutaneous receptive fields of adjacent spinocervical tract neurones in the cat. J Physiol 300: 429–440.CrossRefGoogle ScholarPubMed
Brown, A. G., Brown, P. B., Fyffe, R. E. W., Pubols, L. M. (1983) Receptive field organization and response properties of spinal neurones with axons ascending the dorsal columns in the cat. J Physiol 337: 575–588.CrossRefGoogle ScholarPubMed
Brown, A. G., Noble, R., Rowe, M. J. (1986) Receptive field profiles and integrative properties of spinocervical tract cells in the cat. J Physiol 374: 335–348.CrossRefGoogle ScholarPubMed
Brown, A. G., Koerber, H. R., Noble, R. (1987a) Excitatory actions of single impulses in single hair follicle afferent fibres on spinocervical neurones in the cat. J Physiol 382: 291–312.CrossRefGoogle ScholarPubMed
Brown, A. G., Koerber, H. R., Noble, R. (1987b) Action of trains and pairs of impulses from single primary afferent fibres on single spinocevical tract cells in cat. J Physiol 382: 313–329.CrossRefGoogle ScholarPubMed
Brown, A. G., Koerber, H. R., Noble, R. (1987c) An intracellular study of spinocervical tract cell responses to natural stimuli and single hair follicle afferent fibres in cats. J Physiol 382: 331–354.CrossRefGoogle ScholarPubMed
Brown, P. B., Fuchs, J. L. (1975) Somatotopic representation of hindlimb skin in cat dorsal horn. J Neurophysiol 38: 1–9.CrossRefGoogle ScholarPubMed
Bryan, R. N., Coulter, J. D., Willis, W. D. (1973a) Cells of origin of the spinocervical tract in the monkey. Exp Neurol 42: 574–586.CrossRefGoogle Scholar
Bryan, R. N., Trevino, D. L., Coulter, J. D., Willis, W. D. (1973b) Location and somatotopic organization of the cells of origin of the spino-cervical tract. Exp Brain Res 17: 177–189.CrossRefGoogle ScholarPubMed
Bryan, R. N., Coulter, J. D., Willis, W. D. (1974) Cells of origin of the spinocervical tract in the monkey. Exp Neurol 42: 574–586.CrossRefGoogle ScholarPubMed
Burstein, R., Giesler, G. J. (1989) Retrograde labeling of neurons in spinal cord that project directly to nucleus accumbens or the septal nuclei in the rat. Brain Res 497: 149–154.CrossRefGoogle ScholarPubMed
Burstein, R., Cliffer, K. D., Giesler, G. J. (1987) Direct somatosensory projections from the spinal cord to the hypothalamus and telencephalon. J Neurosci 7: 4159–4164.CrossRefGoogle ScholarPubMed
Burstein, R., Cliffer, K. D., Giesler, G. J. (1990) Cells of origin of the spinohypothalamic tract in the rat. J Comp Neurol 291: 329–344.CrossRefGoogle ScholarPubMed
Burstein, R., Dado, R. J., Cliffer, K. D., Giesler, G. J. (1991) Physiological characterization of spinohypothalamic tract neurons in the lumbar enlargement of rats. J Neurophysiol 66: 261–284.CrossRefGoogle ScholarPubMed
Burstein, R., Falkowsky, O., Borsook, D., Strassman, A. (1996) Distinct lateral and medial projections of the spinohypothalamic tract of the rat. J Comp Neurol 373: 549–574.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Bushnell, M. C., Duncan, G. H., Dubner, R., He, L. F. (1984) Activity of trigeminothalamic neurons in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. J Neurophysiol 52: 170–187.CrossRefGoogle Scholar
Cervero, F., Iggo, A., Molony, V. (1977) Responses of spinocervical tract neurones to noxious stimulation of the skin. J Physiol 267: 537–558.CrossRefGoogle Scholar
Christensen, B. N., Perl, E. R. (1970) Spinal neurons specifically excited by noxious or thermal stimuli. Marginal zone of the dorsal horn. J Neurophysiol 33: 293–307.CrossRefGoogle ScholarPubMed
Chung, J. M., Kenshalo, D. R., Gerhart, K. D., Willis, W. D. (1979) Excitation of primate spinothalamic neurons by cutaneous C-fiber volleys. J Neurophysiol 42: 1354–1369.CrossRefGoogle ScholarPubMed
Chung, J. M., Fang, Z. R., Hori, Y., Lee, K. H., Willis, W. D. (1984a) Prolonged inhibition of primate spinothalamic tract cells by peripheral nerve stimulation. Pain 19: 259–275.CrossRefGoogle ScholarPubMed
Chung, J. M., Lee, K. H., Hori, Y., Endo, K., Willis, W. D. (1984b) Factors influencing peripheral nerve stimulation produced inhibition of primate spinothalamc tract cells. Pain 19: 277–293.CrossRefGoogle ScholarPubMed
Chung, J. M., Lee, K. H., Hori, Y., Willis, W. D. (1985) Effects of capsaicin applied to a peripheral nerve on the responses of primate spinothalamic tract cells. Brain Res 329: 27–38.CrossRefGoogle ScholarPubMed
Chung, J. M., Surmeier, D. J., Lee, K. H.et al. (1986) Classification of primate spinothalamic and somatosensory thalamic neurons based on cluster analysis. J Neurophysiol 56: 308–327.CrossRefGoogle ScholarPubMed
Cliffer, K. D., Burstein, R., Giesler, G. J. (1991) Distribution of spinothalamic, spinohypothalamic, and spinotelencephalic fibers revealed by anterograde transport of PHA-L in rats. J Neurosci 11: 852–868.CrossRefGoogle Scholar
Craig, A. D., Kniffki, K. D. (1985) Spinothalamic lumbosacral lamina I cells responsive to skin and muscle stimulation in the cat. J Physiol 365: 197–221.CrossRefGoogle ScholarPubMed
Craig, A. D., Tapper, D. N. (1978) Lateral cervical nucleus in the cat: functional organization and characteristics. J Neurophysiol 41: 1511–1534.CrossRefGoogle ScholarPubMed
Craig, A. D., Krout, K., Andrew, D. (2001) Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J Neurophysiol 86: 1459–1480.CrossRefGoogle ScholarPubMed
Dado, R. J., Katter, J. T., Giesler, G. J. (1994a) Spinothalamic and spinohypothalamic tract neurons in the cervical enlargement of rats. I. Locations of antidromically identified axons in the thalamus and hypothalamus. J Neurophysiol 71: 959–980.CrossRefGoogle Scholar
Dado, R. J., Katter, J. T., Giesler, G. J. (1994b) Spinothalamic and spinohypothalamic tract neurons in the cervical enlargement of rats: II. Responses to innocuous and noxious mechanical and thermal stimuli. J Neurophysiol 71: 981–1002.CrossRefGoogle ScholarPubMed
Denny-Brown, D., Yanagisawa, N. (1973) The function of the descending root of the fifth nerve. Brain 96: 783–814.CrossRefGoogle ScholarPubMed
Dilly, P. N., Wall, P. D., Webster, K. E. (1968) Cells of origin of the spinothalamic tract in the cat and rat. Exp Neurol 21: 550–562.CrossRefGoogle ScholarPubMed
Dostrovsky, J. O., Hellon, R. F. (1978) The representation of facial temperature in the caudal trigeminal nucleus of the cat. J Physiol 277: 29–47.CrossRefGoogle ScholarPubMed
Dougherty, P. M., Sluka, K. A., Sorkin, L. S., Westlund, K. N., Willis, W. D. (1992) Neural changes in acute arthritis in monkeys. I. Parallel enhancement of responses of spinothalamic tract neurons to mechanical stimulation and excitatory amino acids. Brain Res Rev 17: 1–13.CrossRefGoogle ScholarPubMed
Dougherty, P. M., Schwartz, A., Lenz, F. A. (1999) Responses of primate spinomesencephalic tract cells to intradermal capsaicin. Neuroscience 90: 1377–1392.CrossRefGoogle ScholarPubMed
Downie, J. W., Ferrington, D. G., Sorkin, L. S., Willis, W. D. (1988) The primate spinocervicothalamic pathway: responses of cells of the lateral cervical nucleus and spinocervical tract to innocuous and noxious stimuli. J Neurophysiol 59: 861–885.CrossRefGoogle ScholarPubMed
Dubner, R., Bennett, G. J. (1983) Spinal and trigeminal mechanisms of nociception. Ann Rev Neurosci 6: 381–418.CrossRefGoogle ScholarPubMed
Dubner, R., Hoffman, D. S., Hayes, R. L. (1981) Neuronal activity in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. III. Task-related responses and their functional role. J Neurophysiol 46: 444–464.CrossRefGoogle Scholar
Dubner, R., Kenshalo, D. R., Maixner, W., Bushnell, M. C., Oliveras, J. L. (1989) The correlation of monkey medullary dorsal horn neuronal activity and the perceived intensity of noxious heat stimuli. J Neurophysiol 62: 450–457.CrossRefGoogle ScholarPubMed
Feng, Y., Cui, M., Al-Chaer, E. D., Willis, W. D. (1998) Epigastric antinociception by cervical dorsal column lesions in rats. Anesthesiology 89: 411–420.CrossRefGoogle ScholarPubMed
Ferrington, D. G., Sorkin, L. S., Willis, W. D. (1987) Responses of spinothalamic tract cells in the superficial dorsal horn of the primate lumbar spinal cord. J Physiol 388: 681–703.CrossRefGoogle ScholarPubMed
Fields, H. L., Wagner, G. M., Anderson, S. D. (1975) Some properties of spinal neurons projecting to the medial brain-stem reticular formation. Exp Neurol 47: 118–134.CrossRefGoogle ScholarPubMed
Fields, H. L., Clanton, C. H., Anderson, S. D. (1977) Somatosensory properties of spinoreticular neurons in the cat. Brain Res 120: 49–66.CrossRefGoogle ScholarPubMed
Foreman, R. D. (1989) Organization of the spinothalamic tract as a relay for cardiopulmonary sympathetic afferent fiber activity. In Progress in Sensory Physiology, Vol. 9 (Ottoson, D., Editor-in- Chief). Berlin: Springer-Verlag.Google Scholar
Foreman, R. D., Applebaum, A. E., Beall, J. E., Trevino, D. L., Willis, W. D. (1975) Responses of primate spinothalamic tract neurons to electrical stimulation of hindlimb peripheral nerves. J Neurophysiol 38: 132–145.CrossRefGoogle ScholarPubMed
Foreman, R. D., Beall, J. E., Applebaum, A. E., Coulter, J. D., Willis, W. D. (1976) Effects of dorsal column stimulation on primate spinothalamic tract neurons. J Neurophysiol 39: 534–546.CrossRefGoogle ScholarPubMed
Foreman, R. D., Kenshalo, D. R., Schmidt, R. F., Willis, W. D. (1979a) Field potentials and excitation of primate spinothalamic neurones in response to volleys in muscle afferents. J Physiol 286: 197–213.CrossRefGoogle ScholarPubMed
Foreman, R. D., Schmidt, R. F., Willis, W. D. (1979b) Effects of mechanical and chemical stimulation of fine muscle afferents upon primate spinothalamic tract cells. J Physiol 286: 215–231.CrossRefGoogle ScholarPubMed
Foreman, R. D., Blair, R. W., Weber, R. N. (1984) Viscerosomatic convergence onto T2-T4 spinoreticular, spinoreticular-spinothalamic and spinothalamic tract neurons in the cat. Exp Neurol 85: 597–619.CrossRefGoogle ScholarPubMed
Fuller, J. H., Schlag, J. D. (1976) Determination of antidromic excitation by the collision test: problems of interpretation. Brain Res 112: 283–298.CrossRefGoogle ScholarPubMed
Gerhart, K. D., Yezierski, R. P., Giesler, G. J., Willis, W. D. (1981) Inhibitory receptive fields of primate spinothalamic tract cells. J Neurophysiol 46: 1309–1325.CrossRefGoogle ScholarPubMed
Giesler, G. J., Cliffer, K. D. (1985) Postsynaptic dorsal column pathway of the rat: II. Evidence against an important role in nociception. Brain Res 326: 347–356.CrossRefGoogle ScholarPubMed
Giesler, G. J., Menétrey, D., Guilbaud, G., Besson, J. M. (1976) Lumbar cord neurons at the origin of the spinothalamic tract in the rat. Brain Res 118: 320–324.CrossRefGoogle ScholarPubMed
Giesler, G. J., Urca, G., Cannon, J. T., Liebeskind, J. C. (1979) Response properties of neurons of the lateral cervical nucleus in the rat. J Comp Neurol 186: 65–78.CrossRefGoogle ScholarPubMed
Giesler, G. J., Yezierski, R. P., Gerhart, K. D., Willis, W. D. (1981) Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: evidence for a physiologically novel population of spinal cord neurons. J Neurophysiol 46: 1285–1308.CrossRefGoogle ScholarPubMed
Gildenberg, P. L., Hirshberg, R. M. (1984) Limited myelotomy for the treatment of intractable cancer pain. J Neurol Neurosurg Psychiatry 47: 94–96.CrossRefGoogle ScholarPubMed
Ha, H., Kitai, S. T., Morin, F. (1965) The lateral cervical nucleus of the raccoon. Exp Neurol 11: 441–450.CrossRefGoogle ScholarPubMed
Haber, L. H., Moore, B. D., Willis, W. D. (1982) Electrophysiological response properties of spinoreticular neurons in the monkey. J Comp Neurol 207: 75–84.CrossRefGoogle ScholarPubMed
Hayes, R. L., Dubner, R., Hoffman, D. S. (1981) Neuronal activity in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. II. Behavioral modulation of responses to thermal and mechanical stimuli. J Neurophysiol 46: 428–443.CrossRefGoogle Scholar
Head, H. (1893) On disturbances of sensation with especial reference to the pain of visceral disease. Brain 16: 1–132.CrossRefGoogle Scholar
Hirata, H., Pubols, B. H. (1989) Spinocervical tract neurons responsive to light mechanical stimulation of the raccoon forepaw. J Neurophysiol 61: 138–148.CrossRefGoogle ScholarPubMed
Hirshberg, R. M., Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., Willis, W. D. (1996) Is there a pathway in the posterior funiculus that signals visceral pain?Pain 67: 291–305.CrossRefGoogle Scholar
Hobbs, S. F., Oh, U. T., Brennan, T. J.et al. (1990) Urinary bladder and hindlimb stimuli inhibit T1-T6 spinal and spinoreticular cells. Am J Physiol 258: R10–R20.Google ScholarPubMed
Hoffman, D. S., Dubner, R., Hayes, R. L., Medlin, T. P. (1981) Neuronal activity in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. I. Responses to innocuous and noxious thermal stimuli. J Neurophysiol 46: 409–427.CrossRefGoogle Scholar
Horrobin, D. F. (1966) The lateral cervical nucleus of the cat: an electrophysiological study. Q J Physiol 51: 351–371.Google Scholar
Houghton, A. K., Kadura, S., Westlund, K. N. (1997) Dorsal column lesions reverse the reduction of homecage activity in rats with pancreatitis. Neuroreport 8: 3795–3800.CrossRefGoogle ScholarPubMed
Houghton, A. K., Wang, C. C., Westlund, K. N. (2001) Do nociceptive signals from the pancreas travel in the dorsal column?Pain 89: 207–220.CrossRefGoogle ScholarPubMed
Hylden, J. L. K., Hayashi, H., Bennett, G. J., Dubner, R. (1985) Spinal lamina I neurons projecting to the parabrachial area of the cat midbrain. Brain Res 336: 195–198.CrossRefGoogle ScholarPubMed
Hylden, J. L. K., Hayashi, H., Dubner, R., Bennett, G. J. (1986) Physiology and morphology of the lamina I spinomesencephalic projection. J Comp Neurol 247: 505–515.CrossRefGoogle ScholarPubMed
Hyndman, O. R., Epps, C. (1939) Possibility of differential section of the spinothalamic tract: a clinical and histological study. Arch Surg 38: 1036–1053.CrossRefGoogle Scholar
Iggo, A., Ramsey, R. L. (1976) Thermosensory mechanisms in the spinal cord of monkeys.In Sensory Functions of the Skin in Primates with Special Reference to Man (Zotterman, Y., ed.), pp. 285–302. Oxford: Pergamon Press.CrossRefGoogle Scholar
Jankowska, E., Rastad, J., Zarzecki, P. (1979) Segmental and supraspinal input to cells of origin of nonprimary fibres in the feline dorsal columns. J Physiol 290: 185–200.CrossRefGoogle Scholar
Jankowska, E., Johannisson, T., Lipski, J. (1981) Common interneurones in reflex pathways from group Ia and Ib afferents of ankle extensors in the cat. J Physiol 310: 381–402.CrossRefGoogle ScholarPubMed
Kajander, K. C., Giesler, G. J. (1987a) Responses of neurons in the lateral cervical nucleus of the cat to noxious cutaneous simulation. J Neurophysiol 57: 1686–1704.CrossRefGoogle Scholar
Kajander, K. C., Giesler, G. J. (1987b) Effects of repeated noxious thermal stimuli on the responses of neurons in the lateral cervical nucleus of cats: evidence for an input from A-nociceptors to the spinocervicothalamic pathway. Brain Res 436: 390–395.CrossRefGoogle ScholarPubMed
Kamogawa, H., Bennett, G. J. (1986) Dorsal column postsynaptic neurons in the cat are excited by myelinated nociceptors. Brain Res 364: 386–390.CrossRefGoogle ScholarPubMed
Kenshalo, D. R., Leonard, R. B., Chung, J. M., Willis, W. D. (1979) Responses of primate spinothalamic neurons to graded and to repeated noxious heat stimuli. J Neurophysiol 42: 1370–1389.CrossRefGoogle ScholarPubMed
Kenshalo, D. R., Anton, F., Dubner, R. (1989) The detection and perceived intensity of noxious thermal stimuli in monkey and in human. J Neurophysiol 62: 492–436.CrossRefGoogle ScholarPubMed
Kerr, F. W. L., Kruger, L., Schwassmann, H. O., Stern, R. (1968) Somatotopic organization of mechanoreceptor units in the trigeminal nuclear complex of the macaque. J Comp Neurol 134: 127–144.Google ScholarPubMed
Kim, Y. S., Kwon, S. J. (2000) High thoracic midline dorsal column myelotomy for severe visceral pain due to advanced stomach cancer. Neurosurgery 46: 85–92.CrossRefGoogle ScholarPubMed
Kircher, C., Ha, H. (1968) The nucleus cervicalis lateralis in primates, including man. Anat Rec 160: 376.Google Scholar
Kostarczyk, E., Zhang, X., Giesler, G. J. (1997) Spinohypothalamic tract neurons in the cervical enlargement of rats: locations of antidromically identified ascending axons and their collateral branches in the contralateral brain. J Neurophysiol 77: 435–451.CrossRefGoogle ScholarPubMed
Kruger, L., Michel, F. (1962a) A morphological and somatotopic analysis of single unit activity in the trigeminal sensory complex of the cat. Exp Neurol 5: 139–156.CrossRefGoogle ScholarPubMed
Kruger, L., Michel, F. (1962b) Reinterpretation of the representation of pain based on physiological excitation of single neurons in the trigeminal sensory complex. Exp Neurol 5: 157–178.CrossRefGoogle ScholarPubMed
Kumazawa, T., Perl, E. R. (1978) Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indications of their place in dorsal horn functional organization. J Comp Neurol 177: 417–434.CrossRefGoogle ScholarPubMed
Kunze, W. A. A., Wilson, P., Snow, P. J. (1987) Response of lumbar spinocervical tract cells to natural and electrical stimulation of the hindlimb footpads in cats. Neurosci Lett 75: 253–258.CrossRefGoogle ScholarPubMed
LaMotte, R. H., Thalhammer, J. G., Robinson, C. J. (1983) Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: a comparison of neural events in monkey with sensory judgments in human. J Neurophysiol 50: 1–26.CrossRefGoogle ScholarPubMed
Lee, K. H., Chung, J. M., Willis, W. D. (1985) Inhibition of primate spinothalamic tract cells by TENS. J Neurosurg 62: 276–287.CrossRefGoogle ScholarPubMed
Lipski, J. (1981) Antidromic activation of neurones as an analytic tool in the study of the central nervous system. J Neurosci Methods 4: 1–32.CrossRefGoogle Scholar
Loeser, J. D., Black, R. G., Christman, A. (1975) Relief of pain by transcutaneous stimulation. J Neurosurg 42: 308–314.CrossRefGoogle ScholarPubMed
Lu, G. W., Bennett, G. J., Nishikawa, N., Hoffert, M. J., Dubner, R. (1983) Extra- and intracellular recordings from dorsal column postsynaptic spinomedullary neurons in the cat. Exp Neurol 82: 456–477.CrossRefGoogle ScholarPubMed
Maixner, W., Dubner, R., Bushnell, M. C., Kenshalo, D. R., Oliveras, J. L. (1986) Wide-dynamic-range dorsal horn neurons participate in the encoding process by which monkeys perceive the intensity of noxious heat stimuli. Brain Res 374: 385–388.CrossRefGoogle ScholarPubMed
Maixner, W., Dubner, R., Kenshalo, D. R., Bushnell, M. C., Oliveras, J. L. (1989) Responses of monkey medullary dorsal horn neurons during the detection of noxious heat stimuli. J Neurophysiol 62: 437–449.CrossRefGoogle ScholarPubMed
Maunz, R. A., Pitts, N. G., Peterson, B. W. (1978) Cat spinoreticular neurons: locations, responses and changes in responses during repetitive stimulation. Brain Res 148: 365–379.CrossRefGoogle ScholarPubMed
Mendell, L. M. (1966) Physiological properties of unmyelinated fiber projection to the spinal cord. Exp Neurol 16: 316–332.CrossRefGoogle ScholarPubMed
Menétrey, D., Chaouch, A., Besson, J. M. (1980) Location and properties of dorsal horn neurons at origin of spinoreticular tract in lumbar enlargement of the rat. J Neurophysiol 44: 862–877.CrossRefGoogle ScholarPubMed
Menétrey, D., Pommery, J., Roudier, F. (1984) Properties of deep spinothalamic tract cells in the rat, with special reference to ventromedial zone of lumbar dorsal horn. J Neurophysiol 52: 612–624.CrossRefGoogle ScholarPubMed
Meyer, R. A., Campbell, J. N. (1981) Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science 213: 1527–1529.CrossRefGoogle Scholar
Milne, R. J., Foreman, R. D., Giesler, G. J., Willis, W. D. (1981) Convergence of cutaneous and pelvic visceral noiciceptive inputs onto primate spinothalamic neurons. Pain 11: 163–183.CrossRefGoogle Scholar
Morin, F. (1955) A new spinal pathway for cutaneous impulses. Am J Physiol 183: 245–252.Google ScholarPubMed
Morin, F., Kitai, S. T., Portnoy, H., Demirjian, C. (1963) Afferent projections to the lateral cervical nucleus: a microelectrode study. Am J Physiol 204: 667–672.Google Scholar
Nashold, B. S., Friedman, H. (1972) Dorsal column stimulation for control of pain. Preliminary report on 30 patients. J Neurosurg 36: 590–597.CrossRefGoogle ScholarPubMed
Nauta, H. J. W., Hewitt, E., Westlund, K. N., Willis, W. D. (1997) Surgical interruption of a midline dorsal column visceral pain pathway: case report and review of the literature. J Neurosurg 86: 538–542.CrossRefGoogle ScholarPubMed
Nauta, H. J. W., Soukup, V. M., Fabian, R. H.et al. (2000) Punctate mid-line myelotomy for the relief of visceral cancer pain. J Neurosurg (Spine 1) 92: 125–130.CrossRefGoogle Scholar
Ness, T. J. (2000) Evidence for ascending visceral nociceptive information in the dorsal midline and lateral spinal cord. Pain 87: 83–88.CrossRefGoogle ScholarPubMed
Noble, R., Riddell, J. S. (1988) Cutaneous excitatory and inhibitory input to neurones of the postsynaptic dorsal column system in the cat. J Physiol 396: 497–513.CrossRefGoogle ScholarPubMed
Olszewski, J. (1952) The Thalamus of the Macaca mulatta: An Atlas for Use with the Stereotaxic Instrument. Basel: Karger.Google Scholar
Oswaldo-Cruz, E., Kidd, C. (1964) Functional properties of neurons in the lateral cervical nucleus of the cat. J Neurophysiol 27: 1–14.CrossRefGoogle ScholarPubMed
Owens, C. M., Zhang, D., Willis, W. D. (1992) Changes in the response states of primate spinothalamic tract cells caused by mechanical damage of the skin or activation of descending controls. J Neurophysiol 67: 1509–1527.CrossRefGoogle ScholarPubMed
Palecek, J., Willis, W. D. (2003) The dorsal column pathway facilitates visceromotor responses to colorectal distention after colon inflammation in rats. Pain 104: 501–507.CrossRefGoogle ScholarPubMed
Palecek, J., Paleckova, V., Dougherty, P. M., Carlton, S. M., Willis, W. D. (1992) Responses of spinothalamic tract cells to mechanical and thermal stimulation of skin in rats with experimental peripheral neuropathy. J Neurophysiol 67: 1562–1573.CrossRefGoogle ScholarPubMed
Palecek, J., Paleckova, V., Willis, W. D. (2003) Fos expression in spinothalamic and postsynaptic dorsal column neurons following noxious visceral and cutaneous stimuli. Pain 104: 249–257.CrossRefGoogle ScholarPubMed
Price, D. D., Dubner, R. (1977) Neurons that subserve the sensory-discriminative aspects of pain. Pain 3: 307–338.CrossRefGoogle Scholar
Price, D. D., Mayer, D. J. (1974) Physiological laminar organization of the dorsal horn of M. mulatta. Brain Res 79: 321–325.CrossRefGoogle Scholar
Price, D. D., Wagman, I. H. (1970) Physiological roles of A and C fiber inputs to the spinal dorsal horn of Macaca mulatta. Exp Neurol 29: 383–399.CrossRefGoogle Scholar
Price, D. D., Dubner, R., Hu, J. W. (1976) Trigeminothalamic neurons in nucleus caudalis responsive to tactile, thermal and nociceptive stimulation of monkey's face. J Neurophysiol 39: 936–953.CrossRefGoogle ScholarPubMed
Price, D. D., Hayes, R. L., Ruda, M., Dubner, R. (1978) Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensations. J Neurophyiol 41: 933–947.CrossRefGoogle ScholarPubMed
Rexed, B. (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96: 415–494.CrossRefGoogle ScholarPubMed
Rexed, B. (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100: 297–380.CrossRefGoogle ScholarPubMed
Rudomin, P., Solodkin, M., Jiménez, I. (1987) Synaptic potentials of primary afferent fibers and motoneurons evoked by single intermediate nucleus interneurons in the cat spinal cord. J Neurophysiol 57: 1288–1313.CrossRefGoogle ScholarPubMed
Shealy, C. N., Mortimer, J. T., Hagfors, N. R. (1970) Dorsal column electroanalgesia. J Neurosurg 32: 560–564.CrossRefGoogle ScholarPubMed
Short, A. D., Brown, A. G., Maxwell, D. J. (1990) Afferent inhibition and facilitation of transmission through the spinocervical tract in the anaesthetized cat. J Physiol 429: 511–528.CrossRefGoogle ScholarPubMed
Simone, D. A., Pubols, B. H. (1991) The raccoon lateral cervical nucleus: a single-unit analysis. J Neurophysiol 65: 1411–1421.CrossRefGoogle ScholarPubMed
Simone, D. A., Sorkin, L. S., Oh, U.et al. (1991) Neurogenic hyperalgesia: central neural correlates in responses of spinothalamic tract neurons. J Neurophysiol 66: 228–246.CrossRefGoogle ScholarPubMed
Sjöqvist, O. (1938) Studies on pain conduction in the trigeminal nerve. A contribution to the surgical treatment of facial pain. Acta Psychiat Scand (Suppl) 17: 1–139.Google Scholar
Sorkin, L. S., Ferrington, D. G., Willis, W. D. (1986) Somatotopic organization and response characteristics of dorsal horn neurons in the cervical spinal cord of the cat. Somatosens Res 3: 323–338.CrossRefGoogle ScholarPubMed
Surmeier, D. J., Honda, C. N., Willis, W. D. (1986a) Responses of primate spinothalamic neurons to noxious thermal stimulation of glabrous and hairy skin. J Neurophysiol 56: 328–350.CrossRefGoogle ScholarPubMed
Surmeier, D. J., Honda, C. N., Willis, W. D. (1986b) Temporal features of the responses of primate spinothalamic neurons to noxious thermal stimulation of hairy and glabrous skin. J Neurophysiol 56: 351–369.CrossRefGoogle ScholarPubMed
Surmeier, D. J., Honda, C. N., Willis, W. D. (1988) Natural groupings of primate spinothalamic neurons based on cutaneous stimulation. Physiological and anatomical features. J Neurophysiol 59: 833–860.CrossRefGoogle ScholarPubMed
Taub, A., Bishop, P. O. (1965) The spinocervical tract: dorsal column linkage, conduction velocity, primary afferent spectrum. Exp Neurol 13: 1–21.CrossRefGoogle ScholarPubMed
Thies, R. (1985) Activation of lumbar spinoreticular neurons by stimuation of muscle, cutaneous and sympathetic afferents. Brain Res 333: 151–155.CrossRefGoogle Scholar
Trevino, D. L., Maunz, R. A., Bryan, R. N., Willis, W. D. (1972) Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Exp Neurol 34: 64–77.CrossRefGoogle ScholarPubMed
Trevino, D. L., Coulter, J. D., Willis, W. D. (1973) Location of cells of origin of spinothalamic tract in lumbar enlargement of the monkey. J Neurophysiol 36: 750–761.CrossRefGoogle ScholarPubMed
Truex, R. C., Taylor, M. J., Smythe, M. Q., Gildenberg, P. L. (1965) The lateral cervical nucleus of cat, dog, and man. J Comp Neurol 139: 93–104.CrossRefGoogle Scholar
Uddenberg, N. (1968) Functional organization of long, second-order afferents in the dorsal funiculus. Exp Brain Res 4: 377–382.CrossRefGoogle ScholarPubMed
Walker, A. E. (1940) The spinothalamic tract in man. Arch Neurol Psychiatry 43: 284–298.CrossRefGoogle Scholar
Wall, P. D., Sweet, W. H. (1967) Temporary abolition of pain in man. Science 155: 108–109.CrossRefGoogle ScholarPubMed
Wang, C. C., Willis, W. D., Westlund, K. N. (1999) Ascending projections from the area around the spinal cord central canal: a Phaseolus vulgaris leucoagglutinin study in rats. J Comp Neurol 415: 341–367.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Wiberg, M., Westman, J., Blomqvist, A. (1987) Somatosensory projection to the mesencephalon: an anatomical study in the monkey. J Comp Neurol 264: 92–117.CrossRefGoogle ScholarPubMed
Willis, W. D. (1982) Control of Nociceptive Transmission in the Spinal Cord. Progress in Sensory Physiology 3 (Ottoson, D., Editor-in Chief). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Willis, W. D. (1985) The Pain System. The Neural Basis of Nociceptive Transmission in the Mammalian Nervous System. Basel: Karger.Google ScholarPubMed
Willis, W. D. (1989) Neural mechanisms of pain discrimination. In Sensory Processing in the Mammalian Brain (Lund, J. S., ed.), pp. 130–143. New York: Oxford University Press.Google Scholar
Willis, W. D., Coggeshall, R. E. (2004) Sensory Mechanisms of the Spinal Cord. Third Edition. 2 vols. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Willis, W. D., Westlund, K. N. (1997) Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 14: 2–31.CrossRefGoogle ScholarPubMed
Willis, W. D., Trevino, D. L., Coulter, J. D., Maunz, R. A. (1974) Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J Neurophysiol 37: 358–372.CrossRefGoogle ScholarPubMed
Woolf, C. J. (1979) Transcutaneous electrical nerve stimulation and the reaction to experimental pain in human subjects. Pain 7: 115–127.CrossRefGoogle ScholarPubMed
Yezierski, R. P., Schwartz, R. H. (1986) Response and receptive-field properties of spinomesencephalic tract cells in the cat. J Neurophysiol 55: 76–96.CrossRefGoogle ScholarPubMed
Yezierski, R. P., Sorkin, L. S., Willis, W. D. (1987) Response properties of spinal neurons projecting to midbrain or midbrain-thalamus in the monkey. Brain Res 437: 165–170.CrossRefGoogle ScholarPubMed
Young, R. F., Oleson, T. D., Perryman, K. M. (1981) Effect of trigeminal tractotomy on behavioral response to dental pulp stimulation in the monkey. J Neurosurg 55: 420–430.CrossRefGoogle ScholarPubMed
Zhang, E. T., Craig, A. S. (1997) Morphology and distribution of spinothalamic lamina I neurons in the monkey. J Neurosci 17: 3274–3284.CrossRefGoogle ScholarPubMed
Zhang, X., Kostarczyk, E., Giesler, G. J. (1995) Spinohypothalamic tract neurons in the cervical enlargement of rats: descending axons in the ipsilateral brain. J Neurosci 15: 8393–8407.CrossRefGoogle ScholarPubMed
Zhang, X., Wenk, H. N., Gokin, A. P., Honda, C. N., Giesler, G. J. (1999) Physiological studies of spinohypothalamic tract neurons in the lumbar enlargement of monkeys. J Neurophysiol 82: 1054–1058.CrossRefGoogle ScholarPubMed
Zhang, X., Honda, C. N., Giesler, G. J. (2000a) Position of spinothalamic tract axons in upper cervical spinal cord of monkeys. J Neurophysiol 84: 1180–1185.CrossRefGoogle ScholarPubMed
Zhang, X., Wenk, H. N., Honda, C. N., Giesler, G. J. (2000b) Locations of spinothalamic tract axons in cervical and thoracic spinal cord white matter in monkeys. J Neurophysiol 84: 2869–2880.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×