Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T12:18:32.388Z Has data issue: false hasContentIssue false

9 - Flexibility and constraint: patterning the axial skeleton in mammals

Published online by Cambridge University Press:  05 November 2012

Robert J. Asher
Affiliation:
University of Cambridge
Johannes Müller
Affiliation:
Museum für Naturkunde; Humboldt Universität zu Berlin
Get access

Summary

Introduction

Over the past 200 million years, the mammalian vertebral column has been adapted to the functional demands of animals as diverse as giraffes and bats, giant ground sloths and whales. Despite its impressive morphological and functional adaptability, the column also exhibits unmistakable signs of evolutionary constraint.

The co-existence of flexibility and constraint makes the mammalian vertebral column an intriguing subject for anatomical and evolutionary analysis. Vertebral counts vary from just over 30 to nearly 100 (Flower 1885; Narita and Kuratani 2005), and vertebral lengths from millimetres to tens of centimetres; shape is even more disparate. Yet, the morphological range of the column is limited by the patterning and sequence of its five component subunits (cervical, thoracic, lumbar, sacral, caudal) and by fixed or nearly fixed counts in the cervical and combined thoracolumbar series. Fortunately, the column's accessibility as a subject for study is enhanced by its composition of discrete units that are relatively simple anatomically and easily counted, by the diversity of its adaptations, and by its frequent preservation in the fossil record.

Evolution by natural selection is dependent on both the production of phenotypic variation by the developmental process and by the sorting of that variation by the environment (Raff 1996; Beldade et al. 2002; Brakefield 2006). In simplistic presentation, variation is viewed as the product of a random generating process, with non-random natural selection operating external to the organism. If variation were strictly random, however, evolution should be able to generate almost any morphology, given enough time. But evidence for the existence of bias in the generation of variation has been acknowledged since the early days of evolutionary study, although it was not addressed systematically until William Bateson’s landmark Materials for the Study of Variation (1894).

Type
Chapter
Information
From Clone to Bone
The Synergy of Morphological and Molecular Tools in Palaeobiology
, pp. 230 - 256
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoyama, H.Mizutani-Koseki, Y.Koseki, H. 2005 Three developmental compartments involved in rib formationInternational Journal of Developmental Biology 49 325CrossRefGoogle ScholarPubMed
Asher, R. J.Lin, K. H.Kardijilov, N.Hautier, L. J. 2011 Variability and constraint in the mammalian vertebral columnJournal of Evolutionary Biology 24 1080CrossRefGoogle ScholarPubMed
Aulehla, A.Pourquié, O. 2009 More than patterning – genes and the control of posterior axial elongationDevelopmental Cell 17 439CrossRefGoogle ScholarPubMed
Bateson, W. 1894 Materials for the Study of VariationLondonMacMillan and CompanyGoogle Scholar
Beddard, F. E. 1901 Contribution toward knowledge of the osteology of the pigmy whale ()Transactions of the Zoological Society of London 16 87CrossRefGoogle Scholar
Beldade, P.Koops, K.Brakefield, P. M. 2002 Developmental constraints versus flexibility in morphological evolutionNature 416 844CrossRefGoogle ScholarPubMed
Bolker, J. 2000 Modularity in development and why it matters to evo-devoAmerican Zoologist 40 770Google Scholar
Brakefield, P. M. 2006 Evo-devo and constraints on selectionTrends in Ecology and Evolution 21 362CrossRefGoogle ScholarPubMed
Brandt, J. F. 1862 Bemerkungen über die Zahl der Halswirbel bei den SirenienMélanges biologiques tirés du Bulletin de l'Académie impériale des Sciences de St. Pétersbourg 5 7Google Scholar
Buchholtz, E. A. 2007 Modular evolution of the cetacean vertebral columnEvolution and Development 9 278CrossRefGoogle ScholarPubMed
Buchholtz, E. A. 2010
Buchholtz, E. A.Stepien, C. C. 2009 Anatomical transformation in mammals: developmental origin of aberrant cervical anatomy in tree slothsEvolution and Development 11 69CrossRefGoogle ScholarPubMed
Buchholtz, E. A.Booth, A. C.Webbink, K. 2007 Vertebral anatomy in the Florida manatee, : a developmental and evolutionary analysisAnatomical Record 290 624CrossRefGoogle ScholarPubMed
Buffon, G.-L. L.Comte de, 1769 Histoire NaturelleParisL'Imprimerie RoyaleGoogle Scholar
Burke, A. C.Nowicki, J. L. 2003 A new view of patterning domains in the vertebrate mesodermDevelopmental Cell 4 159CrossRefGoogle ScholarPubMed
Burke, A. C.Nelson, C. E.Morgan, B. A.Tabin, C 1995 genes and the evolution of vertebrate axial morphologyDevelopment 121 333Google ScholarPubMed
Carapuço, M.Nóvoa, A.Bobola, N.Mallo, M. 2005 genes specify vertebral types in the presomitic mesodermGenes and Development 19 2116CrossRefGoogle ScholarPubMed
Carrier, D. 1987 The evolution of locomotor stamina in tetrapods: circumventing a mechanical constraintPaleobiology 13 326CrossRefGoogle Scholar
Carroll, R. L. 1988 Vertebrate Paleontology and EvolutionNew YorkFreemanGoogle Scholar
Chapman, H. C. 1875 Observations on the structure of the manateeProceedings of the Academy of Natural Sciences of Philadelphia 27 452Google Scholar
Cisne, J. L. 1974 Evolution of the world fauna of aquatic free-living arthropodsEvolution 28 337CrossRefGoogle ScholarPubMed
Crompton, A. W.Jenkins, F. A. 1973 Mammals from reptiles: a review of mammalian originsAnnual Review of Earth and Planetary Science 1 131CrossRefGoogle Scholar
Cuvier, G. 1798 Extrait d'un Memoire sur les Ossemens fossils de quadrupedsBulletin des Sciences, par la Societe Philomathique, Paris 1Google Scholar
Dequéant, M.-L.Glynn, E.Gaudenz, K. 2006 A complex oscillating network of signaling genes underlies the mouse segmentation clockScience 314 1595CrossRefGoogle ScholarPubMed
Dubrulle, J.Pourquié, O. 2004 Coupling segmentation to axis formationDevelopment 131 5783CrossRefGoogle ScholarPubMed
Durland, J. L.Sferlazzo, M.Logan, M.Burke, A. C. 2008 Visualizing the lateral somitic frontier in the transgenic mouseJournal of Anatomy 212 590CrossRefGoogle ScholarPubMed
Economides, K.Zeltser, L.Capecchi, M 2003 mutations cause overgrowth of caudal spinal cord and tail vertebraeDevelopmental Biology 256 317CrossRefGoogle ScholarPubMed
Filler, A. G. 1986
Filler, A. G. 2007 Homeotic evolution in the Mammalia: diversification of therian axial seriation and the morphogenetic basis of human originsOne 2CrossRefGoogle ScholarPubMed
Flower, W. H. 1885 Osteology of the MammaliaLondonMacmillanGoogle Scholar
Flower, W. H.Lydekker, R. 1891 An Introduction to the Study of Mammals, Living and ExtinctLondonAdam and Charles BlackGoogle Scholar
Galis, F. 1999 Why do almost all mammals have seven cervical vertebrae? Developmental constraints, genes, and cancerJournal of Experimental Zoology–Molecular and Developmental Evolution 285 193.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Galis, F.Van Dooren, T. J. M.Feuth, J. D. 2006 Extreme selection in humans against homeotic transformations of cervical vertebraeEvolution 60 2643CrossRefGoogle ScholarPubMed
Gaunt, S. J. 1994 Conservation in the code during morphological evolutionInternational Journal of Developmental Biology 38 549Google ScholarPubMed
Gehring, W. J.Kloter, U.Suga, H. 2009 Evolution of the gene complex from an evolutionary ground stateCurrent Topics in Developmental Biology 88 35CrossRefGoogle ScholarPubMed
Goodrich, E. S. 1913 Metameric segmentation and homologyQuarterly Journal of Microscopical Science 59 227Google Scholar
Goodrich, E. S. 1930 Studies on the Structure and Development of VertebratesLondonMacMillanCrossRefGoogle Scholar
Hautier, L.Weisbecker, V.Sánchez-Villagra, M. R.Goswami, A.Asher, R. J. 2010 Skeletal development in sloths and the evolution of mammalian vertebral patterningProceedings of the National Academy of Sciences of the United States of America 44 903Google Scholar
Hirsinger, E.Jouve, C.Dubrulle, J.Pourquié, O. 2000 Somite formation and patterningInternational Review of Cytology 198 1CrossRefGoogle ScholarPubMed
Horan, G. S. B.Wu, K.Wolgemuth, D. J.Behringer, R. R. 1994 Homeotic transformation of cervical vertebrae in a-4 mutant miceProceedings of the National Academy of Sciences of the United States of America 91 644CrossRefGoogle Scholar
Hughes, N. 2003 Trilobite body patterning and the evolution of arthropod tagmosisBioEssays 25 386CrossRefGoogle ScholarPubMed
Hughes, N. 2003 Trilobite tagmosis and body patterning from morphological and developmental perspectivesIntegrative and Comparative Biology 43 185CrossRefGoogle ScholarPubMed
Hughes, N.Chapman, R.Adrain, J. 1999 The stability of thoracic segmentation in trilobites: a case study in developmental and ecological constraintsEvolution and Development 1 24CrossRefGoogle ScholarPubMed
Hurlbert, R. C. 1998 Postcranial osteology of the North American Middle Eocene protocetid The Emergence of WhalesThewissen, J. G. M.New YorkPlenum Press235CrossRefGoogle Scholar
Jenkins, F. A. 1971 The postcranial skeleton of African cynodontsBulletin of the Peabody Museum of Natural History 36 1Google Scholar
Ji, Q.Luo, Z.-X.Yuan, C.-X. 2002 The earliest known eutherian mammalNature 416 816CrossRefGoogle ScholarPubMed
Johnson, D. R.O'Higgins, P. 1996 Is there a link between changes in the vertebral ‘hox code’ and the shape of vertebrae? A quantitative study of shape change in the cervical vertebral column of miceJournal of Theoretical Biology 183 89CrossRefGoogle Scholar
Kemper, C. M.Leppard, P. 1999 Estimating body length of pygmy right whales () from measurements of the skeleton and baleenMarine Mammal Science 15 683CrossRefGoogle Scholar
Le Double, A. F. 1912 Traité des Variations des Os de la Colonne VertébraleParisVigot FrèresGoogle Scholar
Li, G.Luo, Z.-X. 2006 A Cretaceous symmetrodont therian with some monotreme-like postcranial featuresNature 439 195CrossRefGoogle ScholarPubMed
Lovejoy, O.Cohn, M. J.White, T. D. 1997 Morphological analysis of the mammalian postcranium: a developmental perspectiveProceedings of the National Academy of Sciences of the United States of America 96 247Google Scholar
Luo, Z.-X.Chen, P.Li, G.Chen, M. 2007 A new eutriconodont mammal and evolutionary development in early mammalsNature 446 288CrossRefGoogle ScholarPubMed
Mallo, M.Vinagre, T.Carapuço, M. 2009 The road to the vertebral formulaInternational Journal of Developmental Biology 53 1469CrossRefGoogle ScholarPubMed
Marroig, G.Shirai, L. T.Porto, A.de Oliveira, F. B.De Conto, V. 2009 The evolution of modularity in the mammalian skull. II. evolutionary consequencesEvolutionary Biology 36 136CrossRefGoogle Scholar
Mayr, E. 1982 The Growth of Biological ThoughtCambridge, MAHarvard University PressGoogle Scholar
McIntyre, D. C.Rakshit, S.Yallowitz, A. R. 2007 patterning of the vertebrate rib cageDevelopment 134 2981CrossRefGoogle ScholarPubMed
McPherron, A. C.Lawler, A. M.Lee, S.-J. 1999 Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11Nature Genetics 22 260CrossRefGoogle ScholarPubMed
Miller, R. A. 1935 Functional adaptations in the forelimbs of slothsJournal of Mammalogy 16 38CrossRefGoogle Scholar
Müller, J.Scheyer, T. M.Head, J. J. 2010 Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotesProceedings of the National Academy of Sciences of the United States of America 107 2118CrossRefGoogle ScholarPubMed
Murie, J. 1872 On the form and structure of the manatee ()Transactions of the Zoological Society of London 8 127CrossRefGoogle Scholar
Narita, Y.Kuratani, S. 2005 Evolution of the vertebral formulae in mammals: a perspective on developmental constraintsJournal of Experimental Zoology–Molecular and Developmental Evolution 304B 91CrossRefGoogle Scholar
Nowicki, J. L.Burke, A. C. 2000 genes and morphological identity: axial versus lateral patterning in the vertebrate mesodermDevelopment 127 4265Google ScholarPubMed
Oostra, R.-J.Hennekam, R. C. M.de Rooij, L.Moorman, A. 2005 Malformations of the axial skeleton in Museum Vrolik. I. homeotic transformations and numerical anomaliesAmerican Journal of Medical Genetics 134A 268CrossRefGoogle Scholar
Owen, R. 1859 The Principle Forms of the Skeleton and the TeethLondonHoulston and WrightGoogle Scholar
Pollock, R. A.Sreenath, T.Ngo, L.Bieberich, C. J. 1995 Gain of function mutations for paralogous genes: implications for the evolution of gene functionProceedings of the National Academy of Sciences of the United States of America 92 4492CrossRefGoogle ScholarPubMed
Polly, P. D.Head, J. J.Cohn, M. J. 2001 Testing modularity and dissociation: the evolution of regional proportions in snakesBeyond Heterochrony: The Evolution of DevelopmentZelditch, M. L.New YorkWiley-Liss305Google Scholar
Porto, P.de Oliveira, F. B.Shirai, L. T.De Conta, V.Marroig, G. 2009 The evolution of modularity in the mammalian skull. I. Morphological integration patterns and magnitudesEvolutionary Biology 36 118CrossRefGoogle Scholar
Pourquié, O. 2003 The segmentation clock: converting embryonic time into spatial patternNature 301 328Google ScholarPubMed
Raff, R. A. 1996 The Shape of LifeChicago, ILUniversity of Chicago PressGoogle Scholar
Raup, D. 1961 The geometry of coiling in gastropodsProceedings of the National Academy of Sciences of the United States of America 24 602CrossRefGoogle Scholar
Raup, D. 1966 Geometric analysis of shell coiling: general problemsJournal of Paleontology 40 1178Google Scholar
Richardson, M.Allen, S.Wright, G.Raynaud, A.Hanken, J. 1998 Somite number rand vertebrate evolutionDevelopment 125 151Google Scholar
Rolian, C.Willmore, K. E. 2009 Morphological integration at 50: patterns of integration in biological anthropologyEvolutionary Biology 36 1CrossRefGoogle Scholar
Romer, A. S. 1955 The Vertebrate BodyPhiladelphia, PAW. B. SaundersGoogle Scholar
Sánchez-Villagra, M. R.Narita, Y.Kuratani, S. 2007 Thoracolumbar vertebral number: the first skeletal synapomorphy for afrotherian mammalsSystematics and Biodiversity 5 1CrossRefGoogle Scholar
Sanger, T. J.Gibson-Brown, J. J. 2004 The developmental bases of limb reduction and elongation in squamatesEvolution 58 2103CrossRefGoogle ScholarPubMed
Schlosser, G.Wagner, G. P. 2004 Introduction: the modularity concept in developmental and evolutionary biologyModularity in Development and EvolutionSchlosser, G.Wagner, G. P.Chicago, ILUniversity of Chicago Press1Google Scholar
Slijper, E. J. 1936 Die Cetaceen, vergleichend-anatomisch und systematischAmsterdam, NetherlandsM. NijhoffGoogle Scholar
Slijper, E. J. 1946 Koninklijke Nederlandse Akademie van Wetenschappen, Verhandelingen (Tweede Sectie) 42 1
Tam, P. 1981 The control of somitogenesis in mouse embryosJournal of Embryology and Experimental Zoology 65 103Google ScholarPubMed
Tam, P.Tan, S.-S. 1992 The somitogenic potential of cells in the primitive streak and the tail bud of the organogenesis-stage mouse embryoDevelopment 115 703Google Scholar
Todd, T. W. 1922 Numerical significance in the thoracicolumbar vertebrae of the MammaliaAnatomical Record 24 260CrossRefGoogle Scholar
Turner, H. N. 1847 Observations on the distinction between the cervical and dorsal vertebrae in the Class MammaliaProceedings of the Zoological Society of London 15 110Google Scholar
Uhen, M. 2004 Form, function and anatomy of (Mammalia, Cetacea): an archaeocete from the Middle to Late Eocene of EgyptUniversity of Michigan Papers in Paleontology 34 1Google Scholar
Wellik, D. M. 2007 patterning of the vertebrate axial skeletonDevelopmental Dynamics 236 2454CrossRefGoogle ScholarPubMed
Wellik, D. M.Capecchi, M. R. 2003 10 and 11 genes are required to globally pattern the mammalian skeletonScience 301 363CrossRefGoogle Scholar
Wilson, V.Olivera-Martinez, I.Storey, K. G. 2009 Stem cells, signals and vertebrate body axis extensionDevelopment 136 1591CrossRefGoogle ScholarPubMed
Zákány, J.Kmita, M.Alardon, P.de la Pompa, J. L.Duboule, D. 2001 Localized and transient transcription of genes suggests a link between patterning and the segmentation clockCell 106 207CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×