Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T13:06:36.211Z Has data issue: false hasContentIssue false

5 - Species selection in the molecular age

Published online by Cambridge University Press:  05 November 2012

Robert J. Asher
Affiliation:
University of Cambridge
Johannes Müller
Affiliation:
Museum für Naturkunde; Humboldt Universität zu Berlin
Get access

Summary

Introduction

Everything biological varies. Without variation, evolution would not be possible. This is a truism in macroevolution as much as it is within and between organisms. Species vary in their phenotypic and macroecological traits (Brown 1995) and variation also exists in the taxonomic rates of speciation and extinction over time (Alroy 2008), among taxa (Van Valen 1973; Sepkoski 1981; Raup and Boyajian 1988), and within taxa (Van Valen 1973, 1975; Liow et al. 2008; McPeek 2008; Simpson and Harnik 2009; Simpson 2010). Variation in diversification rates produces the major patterns of diversification we observe in the fossil record. Understanding the patterns and causes of variation in diversification rates has been the focus of palaeobiology for decades (Simpson 1944, 1953; Van Valen 1973; Raup 1978; Gould and Calloway 1980; Sepkoski 1981; Raup 1991a, 1991b).

Palaeobiologists, however, are not the only ones interested in understanding the patterns and causes of diversification. Diversification is also interesting to ecologists for at least two reasons. Major spatial patterns of diversity such as the latitudinal diversity gradient are likely to be underpinned by historical patterns of speciation and extinction (Jablonski and Hunt 2006; Krug et al. 2007, 2008; Kiessling et al. 2010). Also, many distributions of ecologically important traits, for example body size, may be, in part, a product of the historical patterns of differential diversification (Stanley 1975; Van Valen 1975). The second interest is the issue of diversity limitation. Data from the fossil record and molecular phylogenetics of extant organisms have been brought in to study this issue and evidence is accumulating that diversity is, in fact, constrained (Cracraft 1982; Nee et al. 1992b; Paradis 1997; Pybus and Harvey 2000; Nee 2001; Ricklefs 2007; Alroy 2008, 2009, 2010; Alroy et al. 2008; McPeek 2008; Phillimore and Price 2008; Rabosky and Lovette 2008a, 2009b; Phillimore and Price 2009; Quental and Marshall 2009, 2010; Rabosky 2009b).

Type
Chapter
Information
From Clone to Bone
The Synergy of Morphological and Molecular Tools in Palaeobiology
, pp. 116 - 134
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, M. E.Brock, C. D.Banbury, B. L.Wainwright, P. C. 2009 Does evolutionary innovation in pharyngeal jaws lead to rapid lineage diversification in labrid fishes?BMC Evolutionary Biology 9 255CrossRefGoogle ScholarPubMed
Alfaro, M. E.Santini, F.Brock, C. D. 2010 Eleven exceptional radiations plus high turnover explain species diversity in jawed vertebratesPNAS 106 410Google Scholar
Alroy, J. 2004 Are Sepkoski's evolutionary faunas dynamically coherent?Evolutionary Ecology Research 6 1Google Scholar
Alroy, J. 2008 Dynamics of origination and extinction in the marine fossil recordProceedings of the National Academy of Sciences of the United States of America 105 536CrossRefGoogle ScholarPubMed
Alroy, J. 2009 Speciation and extinction in the fossil record of North American mammalsSpeciation and Patterns of DiversityButlin, J. B. R.Schluter, D.301Cambridge, UKCambridge University PressCrossRefGoogle Scholar
Alroy, J. 2010 Geographic, environmental, and intrinsic biotic controls on phanerozoic marine diversificationPalaeontology 53 1211CrossRefGoogle Scholar
Alroy, J.Aberhan, M.Bottjer, D. J. 2008 Phanerozoic trends in the global diversity of marine invertebratesScience 321CrossRefGoogle ScholarPubMed
Arnold, A.Fristrup, K. 1982 The theory of evolution by natural selection: a hierarchical expansionPaleobiology 8 113CrossRefGoogle Scholar
Brown, J. H. 1995 MacroecologyChicago, ILUniversity of Chicago PressGoogle Scholar
Cracraft, J 1982 A non-equilibrium theory for the rate-control of speciation and extinction and the origin of macroevolutionary patternsSystematic Zoology 31 348CrossRefGoogle Scholar
FitzJohn, R. G. 2010 Quantitative traits and diversificationSystematic Biology 59 619CrossRefGoogle ScholarPubMed
FitzJohn, R. G.Maddison, W. P.Otto, S. P. 2009 Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogeniesSystematic Biology 58 595CrossRefGoogle ScholarPubMed
Foote, M. 2000 Origination and extinction components of taxonomic diversity: general problemsPaleobiology 26 74CrossRefGoogle Scholar
Foote, M. 2003 Origination and extinction through the Phanerozoic: a new approachJournal of Geology 111 125CrossRefGoogle Scholar
Gould, S. J. 2002 The Structure of Evolutionary TheoryCambridge, MABeknap Press of Harvard University PressGoogle Scholar
Gould, S. J.Calloway, C. B. 1980 Clams and brachiopods: ships that pass in the nightPaleobiology 6 383CrossRefGoogle Scholar
Gould, S. J.Eldredge, N. 1988 Species selection: its range and powerNature 334CrossRefGoogle Scholar
Gould, S. J.Lloyd, E. 1998 Individuality and adaptation across levels of selection: how shall we name and generalize the unit of Darwinism?PNAS 96 904Google Scholar
Grant, P. R.Grant, B. R. 2002 Unpredictable evolution in a 30-year study of Darwin's finchesScience 296 707CrossRefGoogle Scholar
Grantham, T. A. 1995 Hierarchical approaches to macroevolution: recent work on species selection and the ‘effect hypothesis’Annual Review of Ecology, Evolution, and Systematics 26 301CrossRefGoogle Scholar
Hamilton, W. D. 1975 Innate social aptitudes of man: an approach from evolutionary geneticsBiosocial AnthropologyFox, R.133New YorkWileyGoogle Scholar
Holman, E. 1983 Time scales and taxonomic survivorshipPaleobiology 9 20CrossRefGoogle Scholar
Hunt, G.Roy, K.Jablonski, D. 2005 Species-level heritability reaffirmed: a comment on ‘On the heritability of geographic range sizes’American Naturalist 166 129CrossRefGoogle Scholar
Jablonski, D 1987 Heritability at the species level: analysis of geographic ranges of cretaceous mollusksScience 238 360CrossRefGoogle ScholarPubMed
Jablonski, D 2008 Species selection: theory and dataAnnual Review of Ecology, Evolution, and Systematics 39 501CrossRefGoogle Scholar
Jablonski, D.Hunt, G. 2006 Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanationsAmerican Naturalist 168 556CrossRefGoogle ScholarPubMed
Kaufman, L. S.Liem, K. F. 1982 Fishes of the suborder Labroidei (Pisces: Perciformes): phylogeny, ecology and evolutionary significanceBreviora 472 1Google Scholar
Kiessling, W. 2009 Geologic and biologic controls on the evolution of reefsAnnual Review of Ecology, Evolution, and Systematics 40 173CrossRefGoogle Scholar
Kiessling, W.Aberhan, M. 2007 Geographical distribution and extinction risk: lessons from Triassic–Jurassic marine benthic organismsJournal of Biogeography 34 1473CrossRefGoogle Scholar
Kiessling, W.Simpson, C. 2011 On the potential for ocean acidification to be a general cause of ancient reef crisesGlobal Change Biology 17 56CrossRefGoogle Scholar
Kiessling, W.Simpson, C.Foote, M. 2010 Reefs as cradles of evolution and sources of biodiversity in the PhanerozoicScience 327 196CrossRefGoogle ScholarPubMed
Krug, A. Z.Jablonski, D.Valentine, J. W. 2007 Contrarian clade confirms the ubiquity of spatial origination patterns in the production of latitudinal diversity gradientsProceedings of the National Academy of Sciences of the United States of America 104 18 129CrossRefGoogle ScholarPubMed
Krug, A. Z.Jablonski, D.Valentine, J. W. 2008 Species-genus ratios reflect a global history of diversification and range expansion in marine bivalvesProceedings of the Royal Society of London B 275 1117CrossRefGoogle ScholarPubMed
Lieberman, B.Allmon, W.Eldredge, N. 1993 Levels of selection and macroevolutionary patterns in the turritellid gastropodsPaleobiology 19 205CrossRefGoogle Scholar
Liem, K. F.Greenwood, P. H. 1981 A functional approach to the phylogeny of pharyngognath teleostsAmerican Zoology 21 83CrossRefGoogle Scholar
Liow, L. H.Fortelius, M.Bingham, E. 2008 Higher origination and extinction rates in larger mammalsPNAS 105 6097CrossRefGoogle ScholarPubMed
Lloyd, E.Gould, S. J. 1993 Species selection on variabilityPNAS 90 595CrossRefGoogle ScholarPubMed
Lyell, C. 1832 Principles of GeologyLondonJohn MurrayGoogle Scholar
Maddison, W. P.Midford, P. E.Otto, S. P. 2007 Estimating a binary character's effect on speciation and extinctionSystematic Biology 56 701CrossRefGoogle ScholarPubMed
McPeek, M. A. 2008 The ecological dynamics of clade diversification and community assemblyAmerican Naturalist 172 E270CrossRefGoogle ScholarPubMed
McPeek, M. A.Brown, J. M. 2007 Clade age and not diversification rate explains species richness among animal taxaAmerican Naturalist 169 97CrossRefGoogle Scholar
McShea, D. W. 2004 A revised DarwinismBiology and Philosophy 19 45CrossRefGoogle Scholar
Nee, S. 2001 Inferring speciation rates from phylogeniesEvolution661CrossRefGoogle ScholarPubMed
Nee, S. 2004 Extinct meets extant: simple models in paleontology and molecular phylogeneticsPaleobiology 30 1722.0.CO;2>CrossRefGoogle Scholar
Nee, S. 2006 Birth-death models in macroevolutionAnnual Review of Ecology, Evolution, and Systematics 37 1CrossRefGoogle Scholar
Nee, S.Holmes, E. C.May, R. M.Harvey, P. H. 1992 Estimating extinction from molecular phylogeniesExtinction RatesLawton, J. L.May, R. M.Oxford, UKOxford University PressGoogle Scholar
Nee, S.Mooers, A. O.Harvey, P. H. 1992 Tempo and mode of evolution revealed from molecular phylogeniesProceedings of the National Academy of Sciences of the United States of America 89 8322CrossRefGoogle ScholarPubMed
Nee, S.Holmes, , E.May, , R.Harvey, , P. 1994 Extinction rates can be estimated from molecular phylogeniesPhilosophical Transactions B 344 77CrossRefGoogle ScholarPubMed
Okasha, S. 2003 Multi-Level Selection, Price's Equation and CausalityLondonLondon School of Economics, Centre for Philosophy of Natural and Social ScienceGoogle Scholar
Okasha, S. 2006 Evolution and the Levels of SelectionOxford, UKOxford University PressCrossRefGoogle Scholar
Paradis, E. 1997 Assessing temporal variations in diversification rates from phylogenies: estimation and hypothesis testingProceedings of the Royal Society of London B 264 1141CrossRefGoogle Scholar
Payne, J. L.Finnegan, S. 2007 The effect of geographic range on extinction risk during background and mass extinctionProceedings of the National Academy of Sciences of the United States of America 104 506CrossRefGoogle ScholarPubMed
Phillimore, A. B.Price, T. D. 2008 Density-dependent cladogenesis in birdsPLoS Biology 6 e71CrossRefGoogle ScholarPubMed
Phillimore, A. B.Price, T. 2009 Ecological influences on the temporal pattern of speciationSpeciation and Patterns of DiversityButlin, R.Bridle, J.Schluter, D.Cambridge, UKCambridge University PressGoogle Scholar
Purvis, A.Jones, K. E.Mace, G. M. 2000 ExtinctionBioEssays 22 11233.0.CO;2-C>CrossRefGoogle ScholarPubMed
Pybus, O. G.Harvey, P. H. 2000 Testing macro-evolutionary models using incomplete molecular phylogeniesPhilosophical Transactions of the Royal Society B 267 2267Google ScholarPubMed
Quental, T. B.Marshall, C. R. 2009 Extinction during evolutionary radiations: reconciling the fossil record with molecular phylogeniesEvolution 63 3158CrossRefGoogle ScholarPubMed
Quental, T. B.Marshall, C. R. 2010 Diversity dynamics: molecular phylogenies need the fossil recordTrends in Ecology and Evolution 25 434CrossRefGoogle ScholarPubMed
Rabosky, D. L. 2009 Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regionsEcology Letters 12 735CrossRefGoogle ScholarPubMed
Rabosky, D. L. 2009 Ecological limits on clade diversification in higher taxaAmerican Naturalist 173 662CrossRefGoogle ScholarPubMed
Rabosky, D. L.Lovette, I. 2008 Density-dependent diversification in North American wood warblersProceedings of the Royal Society of London B 275 2363CrossRefGoogle ScholarPubMed
Rabosky, D. L.Lovette, I. 2008 Explosive evolutionary radiations: decreasing speciation or increasing extinction through time?Evolution 62 1866CrossRefGoogle ScholarPubMed
Rabosky, D. L.McCune, A. 2009 Reinventing species selection with molecular phylogeniesTrends in Ecology and Evolution 25 68CrossRefGoogle ScholarPubMed
Raup, D. 1978 Cohort analysis of generic survivorshipPaleobiology 4 1CrossRefGoogle Scholar
Raup, D. 1991 A kill curve for Phanerozoic marine speciesPaleobiology 17 37CrossRefGoogle ScholarPubMed
Raup, D. M. 1991 Bad Genes of Bad Luck?New YorkW.W. NortonGoogle ScholarPubMed
Raup, D. M.Boyajian, G. E. 1988 Patterns of generic extinction in the fossil recordPaleobiology 14 109CrossRefGoogle ScholarPubMed
Rice, S. H. 1995 A genetical theory of species selectionJournal of Theoretical Biology 177 237CrossRefGoogle ScholarPubMed
Rice, S. H. 2004 Evolutionary Theory: Mathematical and Conceptual FoundationsSunderland, MASinauer AssociatesGoogle Scholar
Rice, S. H. 2008 A stochastic version of the Price equation reveals the interplay of deterministic and stochastic processes in evolutionBMC Evolutionary Biology 8 262CrossRefGoogle Scholar
Ricklefs, R. 2007 Estimating diversification rates from phylogenetic informationTrends in Ecology and Evolution 22 601CrossRefGoogle ScholarPubMed
Sanderson, M. J. 1997 A nonparametric approach to estimating divergence times in the absence of rate constancyMolecular Biology and Evolution 14 1218CrossRefGoogle Scholar
Sepkoski, J. J. 1981 A factor analytic description of the Phanerozoic marine fossil recordPaleobiology 7 36CrossRefGoogle Scholar
Simpson, C. 2010 Species selection and driven mechanisms jointly generate a large-scale morphological trend in monobathrid crinoidsPaleobiology 36 481CrossRefGoogle Scholar
Simpson, C. 2011 How many levels are there? How insights from evolutionary transitions in individuality help measure the hierarchical complexity of lifeThe Major Transitions in Evolution RevisitedCalcott, B.Sterelney, K.199Cambridge, MAMIT PressCrossRefGoogle Scholar
Simpson, C. 2012
Simpson, C.Harnik, P. G. 2009 Assessing the role of abundance in marine bivalve extinction over the post-PaleozoicPaleobiology 35 631CrossRefGoogle Scholar
Simpson, C.Kiessling, W. 2010 The role of extinction in large-scale diversity–stability relationshipsProceedings of the Royal Society B–Biological Sciences 277 1451CrossRefGoogle ScholarPubMed
Simpson, C.Kiessling, W.Mewis, H.Baron-Szabo, R. C.Müller, J. 2011
Simpson, G. G. 1944 Tempo and Mode in EvolutionNew YorkColumbia University PressGoogle Scholar
Simpson, G. G 1953 The Major Features of EvolutionNew YorkColumbia University PressGoogle Scholar
Slatkin, M. 1981 A diffusion model of species selectionPaleobiology 7 421CrossRefGoogle Scholar
Stanley, S. M 1975 A theory of evolution above the species levelProceedings of the National Academy of Sciences of the United States of America 72 646CrossRefGoogle ScholarPubMed
Stiassny, M. L. J.Jensen, J. S. 1987 Labroid intrarelationships revisited: morphological complexity, key innovations, and the study of comparative diversityBulletin of the Museum of Comparative Zoology, Harvard University 151 269Google Scholar
Van Valen, L. 1973 A new evolutionary lawEvolutionary Theory 1 1Google Scholar
Van Valen, L 1975 Group selection, sex, and fossilsEvolution 29 87CrossRefGoogle ScholarPubMed
Van Valen, L. M. 1971 Group selection and the evolution of dispersalEvolution 25 591CrossRefGoogle ScholarPubMed
Venditti, C.Meade, A.Pagel, M. 2010 Phylogenies reveal new interpretation of speciation and the Red QueenNature 463 349CrossRefGoogle ScholarPubMed
Vrba, E. S. 1984 What is species selection?Systematic Zoology 33 318CrossRefGoogle Scholar
Vrba, E. S.Gould, S. J. 1986 The hierarchical expansion of sorting and selection – sorting and selection cannot be equatedPaleobiology 12 217CrossRefGoogle Scholar
Williams, G. C. 1966 Adaptation and Natural Selection: A Critique of Some Current Evolutionary ThoughtPrinceton, NJPrinceton University PressGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×