Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T09:21:25.380Z Has data issue: false hasContentIssue false

8 - Molecular biology of the mammalian dentary: insights into how complex skeletal elements can be shaped during development and evolution

Published online by Cambridge University Press:  05 November 2012

Robert J. Asher
Affiliation:
University of Cambridge
Johannes Müller
Affiliation:
Museum für Naturkunde; Humboldt Universität zu Berlin
Get access

Summary

Introduction

The mammalian dentary

One of the defining features of mammals is the manner in which the lower and upper jaws articulate. In most vertebrates with jaws (gnathostomes), the jaw joint is formed by the articulation of the quadrate bone in the cranial base and the articular, the proximal element of the compound tetrapod mandible. These elements are both derived from the proximal part of Meckel's cartilage, and are initially part of a single cartilaginous condensation, which later subdivides, hypertrophies and ossifies (Wilson and Tucker 2004). In the mammals, the jaw joint is formed by the articulation of two previously unopposed elements, the squamosal bone in the cranial base and the dentary bone, which in mammals forms the entire mandible. In humans this joint is known as the temporomandibular joint or TMJ. The squamosal and dentary are derived directly from the mesenchyme of the first pharyngeal arch via membranous ossification, and therefore have no cartilage template.

The German embryologist and anatomist Karl Reichert suggested in 1837 that the mammalian homologues of the tetrapod jaw articulation are to be found in the ossicles of the mammalian middle ear (1837, as reviewed in English by de Beer 1937), with the homologue of the articular bone being the malleus, while the quadrate's homologue is the incus. Other homologous components include the tympanic ring, which is a homologue of the angular, and gonial, the homologue of the pre-articular. This anatomical homology has recently been supported by genetic evidence, from studies in mice, chick and zebrafish (Miller et al. 2003; Tucker et al. 2004; Wilson and Tucker 2004). A transformation series, moving from a quadro-articular articulation to a squamosal-dentary articulation, can be observed in the fossil record, as the post-dentary bones reduce in size and the dentary enlarges (Luo 2007). Several premammalian cynodonts and mammaliaforms of the Late Triassic and Early Jurassic, such as Morganucodon, were in possession of both quadro-articulate and squamosal-dentary joints, where the quadro-articular had become somewhat more specialized in hearing, but has not completely lost its function as a jaw articulation (Kermack et al. 1981; Luo 2007).

Type
Chapter
Information
From Clone to Bone
The Synergy of Morphological and Molecular Tools in Palaeobiology
, pp. 207 - 229
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, V. S.Carpenter, C.Freyer, L. 2010 Mesodermal Tbx1 is required for patterning the proximal mandible in miceDevelopmental Biology 344 669CrossRefGoogle ScholarPubMed
Allin, E. F. 1975 Evolution of the mammalian middle earJournal of Morphology 147 403CrossRefGoogle ScholarPubMed
Alvarez, J.Sohn, P.Zeng, X. 2002 TGFbeta2 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expressionDevelopment 129 1913Google ScholarPubMed
Anthwal, N.Chai, Y.Tucker, A. S. 2008 The role of transforming growth factor-beta signalling in the patterning of the proximal processes of the murine dentaryDevelopmental Dynamics 237 1604CrossRefGoogle ScholarPubMed
Atchley, W. R.Hall, B. K. 1991 A model for development and evolution of complex morphological structuresBiological Reviews of the Cambridge Philosophical Society 66 101CrossRefGoogle ScholarPubMed
Atchley, W. R.Plummer, A. A.Riska, B. 1985 Genetics of mandible form in the mouseGenetics 111 555Google ScholarPubMed
Beresford, W. A. 1981 Chondroid Bone, Secondary Cartilage and MetaplasiaBaltimore, MDUrban & SchwarzenbergGoogle Scholar
Boyd, T. G.Castelli, W. A.Huelke, D. F. 1967 Removal of the temporalis muscle from its origin: effects on the size and shape of the coronoid processJournal of Dental Research 46 997CrossRefGoogle ScholarPubMed
Clark, C. T.Smith, K. K. 1993 Cranial osteogenesis in (Didelphidae) and (Macropodidae)Journal of Morphology 215 119CrossRefGoogle Scholar
Clauss, F.Maniere, M. C.Obry, F. 2008 Dento-craniofacial phenotypes and underlying molecular mechanisms in hypohidrotic ectodermal dysplasia (HED): a reviewJournal of Dental Research 87 1089CrossRefGoogle ScholarPubMed
Crompton, A. W. 1963 Evolution of mammalian jawEvolution 17 431CrossRefGoogle Scholar
Crompton, A. W.Hylander, W. L. 1986 Changes in mandibular function following the acquisition of a dentary-squamosal jointThe Ecology and Biology of Mammal-like ReptilesHotton, N.MacLean, J.Roth, J.Roth, E. C.Washington, D.CSmithsonian Institution Press263Google Scholar
de Beer, G. 1937 The Development of the Vertebrate SkullOxford, UKOxford University PressGoogle Scholar
Demar, R.Barghuse, H. 1972 Mechanics and evolution of synapsid jawEvolution 26 622Google ScholarPubMed
Depew, M. J.Liu, J. K.Long, J. E. 1999 Dlx5 regulates regional development of the branchial arches and sensory capsulesDevelopment 126 3831Google ScholarPubMed
Depew, M. J.Lufkin, T.Rubenstein, J. L. 2002 Specification of jaw subdivisions by Dlx genesScience 298 381CrossRefGoogle ScholarPubMed
Depew, M. J.Tucker, A. S.Sharpe, P. T. 2002 Craniofacial DevelopmentMouse Development: Patterning, Morphogenesis and OrganogenesisRossant, J.Tam, P.LondonAcademic PressGoogle Scholar
Dudas, M.Sridurongrit, S.Nagy, A.Okazaki, K.Kaartinen, V. 2004 Craniofacial defects in mice lacking BMP type I receptor Alk2 in neural crest cellsMechanisms of Development 121 173CrossRefGoogle ScholarPubMed
Filan, S. L. 1991 Development of the middle ear region in (Marsupialia, Didelphidae): marsupial solutions to an early birthJournal of Zoology 225 577CrossRefGoogle Scholar
Frommer, J. 1964 Prenatal development of the mandibular joint in miceAnatomical Record 150 449CrossRefGoogle ScholarPubMed
Goswami, A. 2007 Cranial modularity and sequence heterochrony in mammalsEvolution and Development 9 290CrossRefGoogle ScholarPubMed
Hall, B.Hallgrímsson, B. 2008 Strickberger's EvolutionSudbury, MAJones and Bartlett PublishersGoogle ScholarPubMed
Ito, Y.Yeo, J. Y.Chytil, A. 2003 Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defectsDevelopment 130 5269CrossRefGoogle ScholarPubMed
Janssens, K.Ten Dijke, P.Janssens, S.Van Hul, W. 2005 Transforming growth factor-{beta}1 to the boneEndocrine Reviews 26 743CrossRefGoogle ScholarPubMed
Jarvinen, E.Valimaki, K.Pummila, M.Thesleff, I.Jernvall, J. 2008 The taming of the shrew milk teethEvolution and Development 10 477CrossRefGoogle ScholarPubMed
Jensen, B. L.Kreiborg, S. 1993 Craniofacial abnormalities in 52 school-age and adult patients with cleidocranial dysplasiaJournal of Craniofacial Genetics and Developmental Biology 13 98Google ScholarPubMed
Jerome, L. APapaioannou, V. E 2001 DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1Nature Genetics 27 286CrossRefGoogle ScholarPubMed
Kemp, T. S. 2005 The Origin and Evolution of MammalsOxford, UKOxford University PressGoogle Scholar
Kermack, K. A.Mussett, A. F.Rigney, H. W. 1981 The skull of Zoological Journal of the Linnean Society 71 1CrossRefGoogle Scholar
Kist, R.Greally, E.Peters, H. 2007 Derivation of a mouse model for conditional inactivation of Pax9Genesis 45 460CrossRefGoogle ScholarPubMed
Klingenberg, C. P. 1998 Heterochrony and allometry: the analysis of evolutionary change in ontogenyBiological Reviews of the Cambridge Philosophical Society 73 79CrossRefGoogle ScholarPubMed
Klingenberg, C. P.Mebus, K.Auffray, J. C. 2003 Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible?Evolution and Development 5 522CrossRefGoogle Scholar
Kobrynski, L. J.Sullivan, K. E. 2007 Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromesLancet 370 1443CrossRefGoogle ScholarPubMed
Livne, E.Silbermann, M. 1990 The mouse mandibular condyle: an investigative model in developmental biologyJournal of Craniofacial Genetics and Developmental Biology 10 95Google ScholarPubMed
Luo, Z. X. 2007 Transformation and diversification in early mammal evolutionNature 450 1011CrossRefGoogle ScholarPubMed
Maier, W. 1987 Der Processus angularis bei und seine Beziehungen zum Mittelohr: Eine ontogenetische und evolutionsmorphologische UntersuchungGegenbaurs morphologisches Jahrbuch 133 123Google Scholar
Maier, W. 1990 Physiology and ontogeny of mammalian middle ear structuresNetherlands Journal of Zoology 40 55CrossRefGoogle Scholar
Michaux, J.Chevret, P.Renaud, S. 2007 Morphological diversity of Old World rats and mice (Rodentia, Muridae) mandible in relation with phylogeny and adaptationJournal of Zoological Systematics and Evolutionary Research 45 263CrossRefGoogle Scholar
Mikkelsen, T. S.Wakefield, M. J.Aken, B. 2007 Genome of the marsupial reveals innovation in non-coding sequencesNature 447 167CrossRefGoogle ScholarPubMed
Miller, C. T.Yelon, D.Stainier, D. Y. R.Kimmel, C. B. 2003 Two endothelin 1 effectors, hand2 and bapx1, pattern ventral pharyngeal cartilage and the jaw jointDevelopment 130 1353CrossRefGoogle ScholarPubMed
Miyake, T.Cameron, A. M.Hall, B. K. 1997 Stage-specific expression patterns of alkaline phosphatase during development of the first arch skeleton in inbred C57BL/6 mouse embryosJournal of Anatomy 190 239CrossRefGoogle ScholarPubMed
Mukherjee, A.Dong, S. S.Clemens, T.Alvarez, J.Serra, R. 2005 Co-ordination of TGF-beta and FGF signaling pathways in bone organ culturesMechanisms of Development 122 557CrossRefGoogle ScholarPubMed
Oka, K.Oka, S.Sasaki, T. 2007 The role of TGF-[beta] signaling in regulating chondrogenesis and osteogenesis during mandibular developmentDevelopmental Biology 303 391CrossRefGoogle ScholarPubMed
Oka, K.Oka, S.Hosokawa, R. 2008 TGF-beta mediated Dlx5 signaling plays a crucial role in osteo-chondroprogenitor cell lineage determination during mandible developmentDevelopmental Biology 321 303CrossRefGoogle Scholar
Peters, H.Neubuser, A.Kratochwil, K.Balling, R. 1998 Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalitiesGenes and Development 12 2735CrossRefGoogle ScholarPubMed
Posnik, J. C.Tiwana, P. S.Costello, B. J. 2004 Treacher Collins syndrome: comprehensive evaluation and treatmentOral and Maxillofacial Surgery Clinics of North America 16 503CrossRefGoogle Scholar
Reichert, C. 1837 Über die Visceralbögen der Wirbeltiere im allgemeinen und deren Metamorphose bei den Vögeln und SäugetierenArchiv füur Anatomie, Physiologie120Google Scholar
Rivera-Perez, J. A.Mallo, M.Gendron-Maguire, M.Gridley, T.Behringer, R. R. 1995 Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib developmentDevelopment 121 3005Google Scholar
Rivera-Perez, J. A.Wakamiya, M.Behringer, R. R. 1999 Goosecoid acts cell autonomously in mesenchyme-derived tissues during craniofacial developmentDevelopment 126 3811Google ScholarPubMed
Rot-Nikcevic, I.Reddy, T.Downing, K. J. 2006 Myf5−/−:MyoD−/− amyogenic fetuses reveal the importance of early contraction and static loading by striated muscle in mouse skeletogenesisDevelopment Genes and Evolution 216 1CrossRefGoogle ScholarPubMed
Rot-Nikcevic, I.Downing, K. J.Hall, B. K.Kablar, B. 2007 Development of the mouse mandibles and clavicles in the absence of skeletal myogenesisHistology and Histopathology 22 51Google ScholarPubMed
Rowe, T. 1996 Coevolution of the mammalian middle ear and neocortexScience 273 651CrossRefGoogle ScholarPubMed
Sánchez-Villagra, M. R.Smith, K. K. 1997 Diversity and evolution of the marsupial mandibular angular processJournal of Mammalian Evolution 4 119CrossRefGoogle Scholar
Sanford, L. P.Ormsby, I.Gittenberger-de Groot, A. C. 1997 TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypesDevelopment 124 2659Google ScholarPubMed
Sears, K. E. 2011 Novel insights into the regulation of limb development from ‘natural’ mammalian mutantsBioEssays 33 327CrossRefGoogle ScholarPubMed
Shibata, S.Suda, N.Fukada, K. 2003 Mandibular coronoid process in parathyroid hormone-related protein-deficient mice shows ectopic cartilage formation accompanied by abnormal bone modelingAnatomy and Embryology (Berlin) 207 35CrossRefGoogle ScholarPubMed
Smith, K. K. 2001 Early development of the neural plate, neural crest and facial region of marsupialsJournal of Anatomy 199 121CrossRefGoogle ScholarPubMed
Smith, K. K. 2006 Craniofacial development in marsupial mammals: developmental origins of evolutionary changeDevelopmental Dynamics 235 1181CrossRefGoogle ScholarPubMed
Smith, K. K.van Nievelt, A. F. 1997 Comparative rates of development in and Science 275 683CrossRefGoogle Scholar
ten Berge, D.Brouwer, A.Korving, J.Martin, J. F.Meijlink, F. 1998 Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region, inner ear and limbsDevelopment 125 3831Google ScholarPubMed
Tomo, S.Ogita, M.Tomo, I. 1997 Development of mandibular cartilages in the ratAnatomical Record 249 2333.0.CO;2-P>CrossRefGoogle ScholarPubMed
Tucker, A. S.Watson, R. P.Lettice, L. A.Yamada, G.Hill, R. E. 2004 Bapx1 regulates patterning in the middle ear: altered regulatory role in the transition from the proximal jaw during vertebrate evolutionDevelopment 131 1235CrossRefGoogle ScholarPubMed
Vinkka, H. 1982 Secondary cartilages in the facial skeleton of the ratProceedings of the Finnish Dental Society 78 1Google ScholarPubMed
Vinkka-Puhakka, H.Thesleff, I. 1993 Initiation of secondary cartilage in the mandible of the Syrian hamster in the absence of muscle functionArchives of Oral Biology 38 49CrossRefGoogle ScholarPubMed
Wilson, J.Tucker, A. S. 2004 Fgf and Bmp signals repress the expression of Bapx1 in the mandibular mesenchyme and control the position of the developing jaw jointDevelopmental Biology 266 138CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×