Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-01T13:02:38.743Z Has data issue: false hasContentIssue false

16 - Magnetic properties of Martian surface materials

from Part III - Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices

Published online by Cambridge University Press:  10 December 2009

W. Goetz
Affiliation:
Max Planck Institute for Solar System Research Max Planck Str. 2 Katlenburg-Lindau, 37191, Germany
S. F. Hviid
Affiliation:
Max Planck Institute for Solar System Research Max Planck Str. 2 Katlenburg-Lindau, 37191, Germany
K. M. Kinch
Affiliation:
CRSR Cornell University 408 Space Sciences Building Ithaca, NY 13853, USA
M. B. Madsen
Affiliation:
Niels Bohr Institute for Astronomy, University of Copenhagen Universitetsparken 5 Copenhagen, DK-2100, Denmark
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The surface and aeolian dust on Mars is rich in iron compounds, and significant quantities of dust have been observed to stick to permanent magnets that are either exposed to the dusty atmosphere, exposed to dust released by grinding into rocks, or inserted into the soil. All successful lander missions to Mars so far have carried permanent magnets of various designs for the purpose of studying dust magnetic properties. The magnetism of the aeolian dust is the result of the presence of magnetite, which apparently derives from mechanical weathering of magnetite-rich surface rocks. A strong correlation between the elements titanium and iron is observed in elemental abundance spectra of dust attracted to permanent-magnet surfaces, suggesting that the magnetite responsible for the magnetization of the dust is actually titanomagnetite. Overall, the dust can be shown to have a saturation magnetization of less than 2 A m2 kg− 1. However, some grains are significantly more magnetic, and by interaction with a permanent magnet it is possible to separate the airborne dust into populations of more and less magnetic grains. Subpopulations attracted to a magnet have been seen to have magnetizations above 7 A m2 kg− 1. The widespread presence of magnetite and other easily oxidized minerals like olivine in rocks and in the global Martian dust imply that the Martian surface has been largely devoid of liquid water for a very long time.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 366 - 380
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. C., Morris, R. V., Jager, K. M., et al., JSC-Mars-1: Martian regolith simulant, Proc. Lunar Planet. Sci. Conf. IXXX, Abstract #1690, 1998.Google Scholar
Ashcroft, N. W. and Mermin, N. D., Solid State Physics, Philadelphia, PA: Saunders College Publishing, 1976.Google Scholar
Bell, J. F. III, McCord, T. B., and Owensby, P. D., Observational evidence of crystalline iron oxides on Mars, J. Geophys. Res. 95, 14447, 1990.CrossRefGoogle Scholar
Bell, J. F. III, Joseph, J., Sohl-Dickstein, J. N., et al., In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments, J. Geophys. Res. 111, E02S03, doi:10.1029/2005JE002444, 2006.CrossRefGoogle Scholar
Bertelsen, P., Goetz, W., Madsen, M. B., et al., Magnetic properties experiments on the Mars Exploration Rover Spirit at Gusev crater, Science 305, 827–9, 2004.CrossRefGoogle ScholarPubMed
Coey, J. M. D., Magnetic properties of iron in soil iron oxides and clay minerals. Iron in Soils and Clay Minerals (ed. Strucki, J. W.et al.), Dordrecht: D. Reidel Publishing Company, pp. 397–466, 1988.Google Scholar
Coey, J. M. D., Morup, S., Madsen, M. B., and Knudsen, J. M., Titanomaghemite in magnetic soils on Earth and Mars, J. Geophys. Res. 95, 14423–5, 1990.CrossRefGoogle Scholar
Criddle, A. J. and Stanley, C. J., Quantitative Data File for Ore Minerals (QDF3), 3rd edn., London: Chapmann & Hall, 1993.CrossRefGoogle Scholar
Wys, J. N., Magnet Data, In Surveyor: Program Results, NASA SP-184, 223, 1969.Google Scholar
Dunlop, D. J. and Özdemir, Ö., Rock Magnetism, Fundamentals and Frontiers, Cambridge University Press, 1997.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al., Chemistry of rocks and soils in Gusev crater from the Alpha Particle X-ray Spectrometer, Science 305, 829–32, 2004.CrossRefGoogle ScholarPubMed
Goetz, W., The optical properties of Martian dust, Ph.D. thesis, Center for Planetary Science, University of Copenhagen, 2002.
Goetz, W., Bertelsen, P., Binau, C. S., et al., Chemistry and mineralogy of atmospheric dust at Gusev crater: indication of dryer periods on Mars, Nature 436, 62–5, 2005.CrossRefGoogle Scholar
Goetz, W., Leer, K., Gunnlaugsson, H. P., et al., Overview of the RAT Magnet Investigation on Spirit and Opportunity, J. Geophys. Res. doi:10.1029/2006JE002819, 2007.Google Scholar
Gorevan, S. P., Myrick, T., Davis, K., et al., Rock abrasion tool: Mars Exploration Rover mission, J. Geophys. Res. 108, 8068, 2003.CrossRefGoogle Scholar
Greeley, R., Arvidson, R. E., Barlett, P. W., et al., Gusev crater: wind-related features and processes observed by the Mars Exploration Rover Spirit, J. Geophys. Res. 111, 2006.CrossRefGoogle Scholar
Gunnlaugsson, H. P., Analysis of the magnetic properties experiment data on Mars: results from Mars Pathfinder, Planet. Space Sci. 48, 1491–504, 2000.CrossRefGoogle Scholar
Gunnlaugsson, H. P., Hviid, S. F., Knudsen, J. M., and Madsen, M. B., Instruments for the magnetic properties experiments on Mars Pathfinder, Planet. Space Sci. 46, 449, 1998.CrossRefGoogle Scholar
Hapke, B., Theory of Reflectance and Emittance Spectroscopy, Cambridge: Cambridge University Press, 1993.CrossRefGoogle Scholar
Hargraves, R. B. and Petersen, N., Magnetic properties investigation: the Viking Mars lander, Icarus 16, 223–7, 1972.CrossRefGoogle Scholar
Hargraves, R. B., Collinson, D. W., and Spitzer, C. R., Viking magnetic properties investigation: preliminary results, Science 194, 84–6, 1976a.CrossRefGoogle Scholar
Hargraves, R. B., Collinson, D. W., Arvidson, R. E., and Spitzer, C. R., Viking magnetic properties investigation: further results, Science 194, 1303, 1976b.CrossRefGoogle Scholar
Hargraves, R. B., Collinson, D. W., Arvidson, R. E., and Spitzer, C. R.The Viking magnetic properties experiment: primary mission results, J. Geophys. Res. 82, 4547–58, 1977.CrossRefGoogle Scholar
Hargraves, R. B., Collinson, D. W., Arvidson, R. E., and Cates, P. M., Viking magnetic properties experiment: extended mission results, J. Geophys. Res. 84, 8379–84, 1979.CrossRefGoogle Scholar
Hargraves, R. B., Knudsen, J. M., Bertelsen, P., et al., Magnetic enhancement on the surface of Mars?, J. Geophys. Res. – Planets 105, 1819–27, 2000.CrossRefGoogle Scholar
Huffmann, D. R. and J. L. Stapp, Optical measurements on solids of possible interstellar importance. In Interstellar Dust and Related Topics (ed. Greenberg, and Hulst, V. d.), Boston, MA: D. Reidel Co., p. 297, 1973.Google Scholar
Hviid, S. F., Madsen, M. B., Gunnlaugsson, H. P., et al., Magnetic properties experiments on the Mars Pathfinder lander: preliminary results, Science 278, 1768–70, 1997.CrossRefGoogle ScholarPubMed
Hviid, S. F., Madsen, M. B., Knudsen, J. M., et al., Results of the magnetic properties experiment on the Mars Pathfinder lander, Lunar Planet. Sci. XXIX, 1605–6, 1998.Google Scholar
Jackson, J. D., Classical Electrodynamics, 3rd edn., New York, NY: John Wiley & Sons, 189pp., 1999.Google Scholar
Johnson, J. R., Grundy, W. M., and Lemmon, M. T., Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra, Icarus 163, 330–46, 2003.CrossRefGoogle Scholar
Kinch, K. M., et al. Preliminary analysis of the MER magnetic properties experiment using a computational fluid dynamics model, Planet. Space Sci. 54, 28–44, 2006.CrossRefGoogle Scholar
Kinch, K. M., et al., Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets, J. Geophys. Res., 112, Cite ID E06S03, doi:10.1029/2006JE002807, 2007.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer, Science 306, 1740–5, 2004.CrossRefGoogle ScholarPubMed
Knudsen, J. M., Madsen, M. B., Olsen, M., et al., Mössbauer spectroscopy on the surface of Mars: Why?, Hyperfine Interactions 68, 83–94, 1991.CrossRefGoogle Scholar
Landis, G. A. and Jenkins, P. J., Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder, J. Geophys. Res. 105, 1855–7, 2000.CrossRefGoogle Scholar
Landis, G. A., Herkenhoff, K., Greeley, R., et al., Dust and sand deposition on the MER solar arrays as viewed by the Microscopic Imager, Proc. Lunar Planet. Sci. Conf. XXXVII, 2006.Google Scholar
Lemmon, M., Wolff, M. J., Smith, M. D., et al., Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity, Science 306, 1753–6, 2004.CrossRefGoogle ScholarPubMed
Madsen, M. B., Hviid, S. F., Gunnlaugsson, H. P., et al., The magnetic properties experiments on Mars Pathfinder, J. Geophys. Res. 104, 8761–79, 1999.CrossRefGoogle Scholar
Madsen, M. B., Bertelsen, P., Goetz, W., et al., The magnetic properties experiments on the Mars Exploration Rover mission, J. Geophys. Res. 108, 8069, 2003.CrossRefGoogle Scholar
Markiewicz, W. J., Sablotny, R. M., Keller, H. U., et al., Optical properties of the Martian aerosols as derived from imager for Mars Pathfinder midday sky brightness data, J. Geophys. Res. 104, 9009–17, 1999.CrossRefGoogle Scholar
McSween, H. Y., Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. 111, E02S10, doi:10.1029/2005JE002477, 2006.CrossRefGoogle Scholar
Merrison, J. P., Gunnlaugsson, H., Mossin, L., et al., Capture of magnetic dust in a simulated Martian aerosol: the importance of aerodynamics, Planet. Space Sci. 50, 371–4, 2002a.CrossRefGoogle Scholar
Merrison, J. P., Bertelsen, P., Frandsen, C., et al., Simulation of the Martian dust aerosol at low wind speeds, J. Geophys. Res. 107, 5133, 2002b.CrossRefGoogle Scholar
Metzger, S. M., Carr, J. R., Johnson, J. R., Parker, T. J., and Lemmon, M. T., Dust devil vortices seen by the Mars Pathfinder camera, Geophys. Res. Lett. 26, 2781–4, 1999.CrossRefGoogle Scholar
Mogensen, C. T., Knudsen, J. M., Madsen, M. B., et al., Magnetic properties experiments on the Mars polar lander, J. Geophys. Res. 106, 17579–88, 2001.CrossRefGoogle Scholar
Morris, R. V. and Singer, R., Origins of Marslike spectral and magnetic properties of a Hawaiian Palagonitic soil, J. Geophys. Res. 95, 14427–34, 1990.CrossRefGoogle Scholar
Morris, R. V., Lauer, H. V. Jr., Lawson, C. A., et al., Spectral and other physiochemical properties of submicron powders of hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4), goethite (α-FeOOH), and lepidocrocite (γ-FeOOH), J. Geophys. Res. 90, 3126–44, 1985.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, et al., Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples, J. Geophys. Res. 105, 1757–818, 2000.CrossRefGoogle Scholar
Morris, R. V., Graff, T. G., and Mertzman, S. A., Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): a mineralogical analogue for magnetic Martian dust?, J. Geophys. Res. 106, 5057–84, 2001.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit Rover, Science 305, 833–6, 2004.CrossRefGoogle ScholarPubMed
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, 2006.CrossRefGoogle Scholar
Nørnberg, P., Schwertmann, U., Stanjek, H., Andersen, T., and Gunnlaugsson, H. P., Mineralogy of a burned soil compared with four anomalously red Quaternary deposits in Denmark, Clay Miner. 39, 85–98, 2004.CrossRefGoogle Scholar
Ockert-Bell, M. E., Bell, J. F. III, Mckay, C. P., Pollack, J. B., and Forget, F., Absorption and scattering properties of the Martian dust in the solar wavelengths, J. Geophys. Res. 102, 9039–50, 1997.CrossRefGoogle ScholarPubMed
O'Reilly, W., Magnetic minerals in the crust of Earth, Rep. Prog. Phys. 39, 857–908, 1976.CrossRefGoogle Scholar
O'Reilly, W., Rock and Mineral Magnetism, Glasgow: Blackie and son Ltd., 1984.CrossRefGoogle Scholar
Pollack, J. B., Colburn, D., Kahn, R. A., et al., Properties of aerosols in the Martian atmosphere as inferred from Viking Lander imaging data, J. Geophys. Res. 82, 4479–96, 1977.CrossRefGoogle Scholar
Pollack, J. B., Colburn, D. S., Flaser, F. M., et al., Properties and effects of dust suspended in the Martian atmosphere, J. Geophys. Res. 84, 2929–45, 1979.CrossRefGoogle Scholar
Pollack, J. B., Ockert-Bell, M. E., and Shepard, M. K., Viking Lander image analysis of Martian atmospheric dust, J. Geophys. Res. 100, 5235, 1995.CrossRefGoogle Scholar
Schlegel, A., Alvarado, S. F., and Wachter, P., Optical properties of magnetite (Fe3O4), J. Phys. C: Solid State Phys. 12, 1157–64, 1979.CrossRefGoogle Scholar
Schofield, J. T., Barnes, J. R., Crisp, D., et al., The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment, Science 278, 1752–8, 1997.CrossRefGoogle ScholarPubMed
Singer, R. B., McCord, T. B., and Clark, R. N., Mars surface composition from reflectance spectroscopy: a summary, J. Geophys. Res. 84, 8415–26, 1979.CrossRefGoogle Scholar
Smith, P. H., Tomasko, M. G., Britt, D., et al., The Imager for Mars Pathfinder experiment, J. Geophys. Res. 102, 4003–25, 1997.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Baumgartner, E. T., et al., The Athena Mars Rover science investigation, J. Geophys. Res. 108, 8062, doi:10.1029/JE002121, 2003.CrossRefGoogle Scholar
Tanaka, T., Optical constants of polycrystalline 3d transition metal oxides in the wavelength region 350 to 1200 nm, Japanese J. Appl. Phys. 18, 1043, 1979.CrossRefGoogle Scholar
Tomasko, M. G., Doose, L. R., Lemmon, M., Smith, P. H., and Wegryn, E., Properties of dust in the Martian atmosphere from the imager on Mars Pathfinder, J. Geophys. Res. 104, 8987–9007, 1999.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Magnetic properties of Martian surface materials
    • By W. Goetz, Max Planck Institute for Solar System Research Max Planck Str. 2 Katlenburg-Lindau, 37191, Germany, S. F. Hviid, Max Planck Institute for Solar System Research Max Planck Str. 2 Katlenburg-Lindau, 37191, Germany, K. M. Kinch, CRSR Cornell University 408 Space Sciences Building Ithaca, NY 13853, USA, M. B. Madsen, Niels Bohr Institute for Astronomy, University of Copenhagen Universitetsparken 5 Copenhagen, DK-2100, Denmark
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Magnetic properties of Martian surface materials
    • By W. Goetz, Max Planck Institute for Solar System Research Max Planck Str. 2 Katlenburg-Lindau, 37191, Germany, S. F. Hviid, Max Planck Institute for Solar System Research Max Planck Str. 2 Katlenburg-Lindau, 37191, Germany, K. M. Kinch, CRSR Cornell University 408 Space Sciences Building Ithaca, NY 13853, USA, M. B. Madsen, Niels Bohr Institute for Astronomy, University of Copenhagen Universitetsparken 5 Copenhagen, DK-2100, Denmark
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Magnetic properties of Martian surface materials
    • By W. Goetz, Max Planck Institute for Solar System Research Max Planck Str. 2 Katlenburg-Lindau, 37191, Germany, S. F. Hviid, Max Planck Institute for Solar System Research Max Planck Str. 2 Katlenburg-Lindau, 37191, Germany, K. M. Kinch, CRSR Cornell University 408 Space Sciences Building Ithaca, NY 13853, USA, M. B. Madsen, Niels Bohr Institute for Astronomy, University of Copenhagen Universitetsparken 5 Copenhagen, DK-2100, Denmark
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.017
Available formats
×