Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T01:27:28.162Z Has data issue: false hasContentIssue false

7 - Mineralogy of the Martian surface from Mars Express OMEGA observations

from Part III - Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices

Published online by Cambridge University Press:  10 December 2009

J.-P. Bibring
Affiliation:
Institut d'Astrophysique Spatiale Universite, Paris Sud Bat. 121 Orsay Cedex, F-91405, France
Y. Langevin
Affiliation:
Institut d'Astrophysique Spatiale, 91405 Orsay, France
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

In orbit on board the European Space Agency's (ESA) Mars Express spacecraft, the Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) visible to near-infrared spectral imager is acquiring a global compositional surface mapping dataset of Mars in order to reveal its major mineralogical and icy constituents. These data provide insights on the evolution of Mars on timescales ranging from seasonal variations to geological epochs. In particular, the identification and mapping of the spatial distribution of pristine magmatic rocks (including olivine, high-Ca pyroxene, and low-Ca pyroxene) and of three classes of altered minerals (hydrated phyllosilicates, hydrated sulfates, and anhydrous ferric oxides) in distinct areas has enabled the development of a new model for the evolution of the surface. The model includes three major eras spanning Martian history. The first era, during which phyllosilicates appear to have formed, was the most favorable to have hosted habitable conditions, with perennial and neutral to slightly alkaline pH surface liquid water. Mars then underwent a global environmental and climatic change, coupled to the formation of Tharsis and the release of large amounts of SO2 and other volcanic gases, and the likely loss of most of its CO2-rich atmosphere. This second era was characterized by low-pH (acidic) surface and subsurface groundwater, and the creation of large deposits of sulfate minerals. The third and most recent era in this model is dominated by atmospheric processes, leading primarily to the generation of anhydrous weathering products.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 151 - 168
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. B. and Filice, A. L., Spectral reflectance 0.4 to 2.0 microns of silicate rock powders, J. Geophys. Res. 72, 5705–15, 1967.CrossRefGoogle Scholar
Arvidson, R. E., Poulet, F., Bibring, J.-P., et al., Spectral reflectance and morphological correlations in eastern Terra Meridiani, Mars, Science 307, 1591–4, 2005.CrossRefGoogle Scholar
Baker, V. R. and Milton, J. D., Erosion by catastrophic floods on Mars and Earth, Icarus 23, 27–41, 1974.CrossRefGoogle Scholar
Barabash, S., Fedorov, A., Lundin, R., and Sauvaud, J.-A., Martian atmospheric erosion rates, Science 315, 501–3, 2007.CrossRefGoogle ScholarPubMed
Bell, J. F. III, McCord, T. B., and Owensby, P. D., Observational evidence of crystalline iron oxides on Mars, J. Geophys. Res. 95, 14447–61, 1990.CrossRefGoogle Scholar
Bell, J. F. III, Pollack, J. B., Geballe, T. R., Cruikshank, D. P., and Freedman, R., Spectroscopy of Mars from 2.04 to 2.44 µm during the 1993 opposition: absolute calibration and atmospheric vs. mineralogic origin of narrow absorption features, Icarus 111, 106–23, 1994.CrossRefGoogle Scholar
Benson, J. L. and James, P. B., Yearly comparisons of the Martian polar caps: 1999–2003 Mars Orbiter Camera observations, Icarus 174, 513–23, 2005.CrossRefGoogle Scholar
Bibring, J.-P. and Erard, S., The Martian surface, Space Sci. Rev. 96(1–4), 293–316, 2001.CrossRefGoogle Scholar
Bibring, J.-P., Combes, M., Langevin, Y., et al., Results from the ISM experiment, Nature 341, 591–3, 1989.CrossRefGoogle Scholar
Bibring, J.-P., Soufflot, A., Berthé, M., et al., OMEGA: observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité, ESA SP 1240, 37–49, 2004a.Google Scholar
Bibring, J.-P., Langevin, Y., Poulet, F., et al., Perennial water ice identified in the south polar cap of Mars, Nature 428, 627–30, 2004b.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al., Mars surface diversity as revealed by the OMEGA/Mars Express Observations, Science 307, 1591–4, 2005.CrossRefGoogle ScholarPubMed
Bibring, J.-P., Langevin, Y., Mustard, J. F., et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science 312, 400–4, 2006.CrossRefGoogle ScholarPubMed
Bibring, J.-P., Arvidson, R. E., Gendrin, A., et al., Coupled ferric oxide and sulfates on the Martian surface, Science 317, 1206–10, 2007.CrossRefGoogle ScholarPubMed
Bishop, J. L., Pieters, C. M., and Burns, R. G., Reflectance and Mössbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials, Geochim. Cosmochim. Acta 57, 4583–95, 1993.CrossRefGoogle ScholarPubMed
Bishop, J. L., Pieters, C. M., and Edwards, J. O., Infrared spectroscopic analyses on the nature of water in montmorillonite, Clays Clay Miner. 42(6), 702–16, 1994.CrossRefGoogle Scholar
Burns, R. G., Mineralogical Applications of Crystal Field Theory, Cambridge University Press, 1993.CrossRefGoogle Scholar
Calvin, W. M., Variation of the 3-μm absorption features on Mars: observations over eastern Valles Marineris by the Mariner 6 infrared spectrometer, J. Geophys. Res. 1002(E4), 9097–107, 1997.CrossRefGoogle Scholar
Chevrier, V., Poulet, F., and Bibring, J.-P., Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates, Nature 448, 60–3, 2007.CrossRefGoogle Scholar
Chicarro, A., Martin, P., and Trautner, R., The Mars Express mission: an overview, ESA SP 1240, 3–13, 2004.Google Scholar
Clark, R. N., Swayze, G. A., Singer, R. B., and Pollack, J. B., High resolution reflectance spectra of Mars in the 2.3-µm region: evidence for the mineral scapolite, J. Geophys. Res. 95, 14463–80, 1990a.CrossRefGoogle Scholar
Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A., and Vergo, N., High spectral resolution reflectance spectroscopy of minerals, J. Geophys. Res. 95, 12653–80, 1990b.CrossRefGoogle Scholar
Clark, R. N., Swayze, G. A., Gallagher, A., King, T. V. V., and Calvin, W. M., The USGS, Digital Spectral Library: Version 1 – 0.2 to 3.0 µm, USGS, Open File Report93–592, 1993.Google Scholar
Cloutis, E. A., Hawthorne, F. C., Mertzman, S. A., et al., Detection and discrimination of sulfate minerals using reflectance spectroscopy, Icarus 184, 121–57, 2006.CrossRefGoogle Scholar
Crowley, J. K., Visible and near-infrared (0.4–2.5 µm) reflectance spectra of playa evaporite minerals. J. Geophys. Res. 96, 16231–40, 1991.CrossRefGoogle Scholar
Douté, S., Schmitt, B., Langevin, Y., et al., South pole of Mars: nature and composition of the icy terrains from Mars Express OMEGA observations, Planet. Space Sci. 55, 113–33, 2007.CrossRefGoogle Scholar
Erard, S., Bibring, J.-P., Mustard, J. F., et al., Spatial variations in composition of the Valles Marineris and Isidis Planitia regions of Mars derived from the ISM data, Proc. Lunar Planet. Sci. Conf. XXI, 437–55, 1991.Google Scholar
Gendrin, A., Mangold, N., Bibring, J.-P., et al., Sulfates in Martian layered terrains: the OMEGA/Mars Express view, Science 307, 1587–91, 2005.CrossRefGoogle ScholarPubMed
Houck, J. R., Pollack, J. B., Sagan, C., Schaack, D., and Decker, J. A. Jr., High altitude infrared spectroscopic evidence for bound water on Mars, Icarus 18, 470, 1973.CrossRefGoogle Scholar
Jouglet, D., Poulet, F., Milliken, R. E., et al., Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 µm hydration feature, J. Geophys. Res. 112, E08S06, doi:10.1029/2006JE002846, 2007.CrossRefGoogle Scholar
Kieffer, H. H., Titus, T. N., Mullins, K. F., and Christensen, P. R., Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain size, J. Geophys. Res. 105, 9653–700, 2000.CrossRefGoogle Scholar
King, T. V. V. and Ridley, W. I., Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications, J. Geophys. Res. 92, 11457–69, 1987.CrossRefGoogle Scholar
Langevin, Y., Poulet, F., Bibring, J.-P., et al., Summer evolution of the north polar cap of Mars as observed by the OMEGA/Mars Express observations, Science 307, 1581–4, 2005a.CrossRefGoogle Scholar
Langevin, Y., Poulet, F., Bibring, J.-P., and Gondet, B., Sulfates in the north polar region of Mars detected by the OMEGA/Mars Express observations, Science 307, 1584–6, 2005b.CrossRefGoogle Scholar
Langevin, Y., Douté, S., Vincendon, M., et al., No signature of clear CO2 ice from the “cryptic” regions in Mars' south seasonal polar cap, Nature 442, 831–5, 2006.CrossRefGoogle ScholarPubMed
Loizeau, D., Mangold, N., Poulet, F., et al., Phyllosilicates in the Mawrth Vallis region of Mars, J. Geophys. Res. 112, E08S08, doi:10.1029/2006JE002877, 2007.CrossRefGoogle Scholar
Mangold, N., Poulet, F., Mustard, J. F., et al., Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust, J. Geophys. Res. 112, E08S04, doi: 10.1029/2006JE002835, 2007.CrossRefGoogle Scholar
Milliken, R. E., Mustard, J. F., Poulet, F., et al., Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface, J. Geophys. Res. 112, E08S07, doi: 10.1029/2006JE002853, 2007.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, et al., Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples, J. Geophys. Res. 105, 1757–817, 2000.CrossRefGoogle Scholar
Murchie, S. J., Mustard, J. F., Bishop, J., et al., Spatial variations in the spectral properties of bright regions on Mars, Icarus 105, 454–68, 1993.
Mustard, J. F., Erard, S., Bibring, J.-P., et al., The surface of Syrtis Major: composition of the volcanic substrate and mixing with altered dust and soil, J. Geophys. Res. 98, 3387–400, 1993.CrossRefGoogle Scholar
Mustard, J. F., Poulet, F., Gendrin, A., et al., Olivine and pyroxene diversity in the crust of Mars, Science 307, 1594–7, 2005.CrossRefGoogle ScholarPubMed
Mustard, J. F., Poulet, F., Head, J. W., et al., Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact Melt in the Isidis basin and implication for the transition from the Noachian to Hesperian, J. Geophys. Res. 112, E08S03, doi:10.1029/2006JE002834, 2007.CrossRefGoogle Scholar
Pimentel, G. C., Forney, P. B., and Herr, K. C., Evidence about hydrate and solid water in the Martian surface from the 1969 Mariner infrared spectrometer, J. Geophys. Res. 79, 1623–34, 1974.CrossRefGoogle Scholar
Pollack, J. B., Kasting, J. F., Richardson, S. M., and Poliakoff, K., The case for a wet, warm climate on Mars, Icarus 71, 203–24, 1987.CrossRefGoogle Scholar
Poulet, F., Bibring, J.-P., Mustard, J. F., et al., Phyllosilicates on Mars and implications for early martian climate, Nature 438, 623–8, 2005.CrossRefGoogle ScholarPubMed
Poulet, F., Gomez, C., Bibring, J.-P., et al., Martian surface mineralogy from OMEGA/MEx: global mineral maps, J. Geophys. Res. 112, E08S02, doi:10.1029/2006JE002840, 2007.Google Scholar
Roush, T. L., D. L. Blaney, and R. B. Singer, The surface composition of Mars as inferred from spectroscopic observations. In Remote Geochemical Analysis: Elemental and Mineralogical Composition (ed. Pieters, C. M. and Englert, P. A. J.), Cambridge, UK: Cambridge University Press, pp. 367–93, 1993.Google Scholar
Soderblom, L., The composition and mineralogy of the Martian surface from spectroscopic observations: 0.3 µm to 50 µm. In Mars (ed. Kieffer, H.et al.), Tucson: University of Arizona Press, pp. 557–97, 1992.Google Scholar
Sunshine, J. M. and Pieters, C. M., Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model, J. Geophys. Res. 98, 9075–87, 1993.CrossRefGoogle Scholar
Swayze, G. A. and Clark, R. N., Infrared spectra and crystal chemistry of scapolites: implications for Martian mineralogy, J. Geophys. Res. 95, 14481–95, 1990.CrossRefGoogle Scholar
Titus, T. N., Kieffer, H. H., and Christensen, P. R., Exposed water ice discovered near the South Pole of Mars, Science 299, 1048–51, 2003.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×