Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2008
  • Online publication date: December 2009

16 - Magnetic properties of Martian surface materials

from Part III - Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices
    • By W. Goetz, Max Planck Institute for Solar System Research Max Planck Str. 2 Katlenburg-Lindau, 37191, Germany, S. F. Hviid, Max Planck Institute for Solar System Research Max Planck Str. 2 Katlenburg-Lindau, 37191, Germany, K. M. Kinch, CRSR Cornell University 408 Space Sciences Building Ithaca, NY 13853, USA, M. B. Madsen, Niels Bohr Institute for Astronomy, University of Copenhagen Universitetsparken 5 Copenhagen, DK-2100, Denmark
  • Edited by Jim Bell, Cornell University, New York
  • Publisher: Cambridge University Press
  • DOI:
  • pp 366-380



The surface and aeolian dust on Mars is rich in iron compounds, and significant quantities of dust have been observed to stick to permanent magnets that are either exposed to the dusty atmosphere, exposed to dust released by grinding into rocks, or inserted into the soil. All successful lander missions to Mars so far have carried permanent magnets of various designs for the purpose of studying dust magnetic properties. The magnetism of the aeolian dust is the result of the presence of magnetite, which apparently derives from mechanical weathering of magnetite-rich surface rocks. A strong correlation between the elements titanium and iron is observed in elemental abundance spectra of dust attracted to permanent-magnet surfaces, suggesting that the magnetite responsible for the magnetization of the dust is actually titanomagnetite. Overall, the dust can be shown to have a saturation magnetization of less than 2 A m2 kg− 1. However, some grains are significantly more magnetic, and by interaction with a permanent magnet it is possible to separate the airborne dust into populations of more and less magnetic grains. Subpopulations attracted to a magnet have been seen to have magnetizations above 7 A m2 kg− 1. The widespread presence of magnetite and other easily oxidized minerals like olivine in rocks and in the global Martian dust imply that the Martian surface has been largely devoid of liquid water for a very long time.

Allen, C. C., Morris, R. V., Jager, K. M., et al., JSC-Mars-1: Martian regolith simulant, Proc. Lunar Planet. Sci. Conf. IXXX, Abstract #1690, 1998.
Ashcroft, N. W. and Mermin, N. D., Solid State Physics, Philadelphia, PA: Saunders College Publishing, 1976.
Bell, J. F. III, McCord, T. B., and Owensby, P. D., Observational evidence of crystalline iron oxides on Mars, J. Geophys. Res. 95, 14447, 1990.
Bell, J. F. III, Joseph, J., Sohl-Dickstein, J. N., et al., In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments, J. Geophys. Res. 111, E02S03, doi:10.1029/2005JE002444, 2006.
Bertelsen, P., Goetz, W., Madsen, M. B., et al., Magnetic properties experiments on the Mars Exploration Rover Spirit at Gusev crater, Science 305, 827–9, 2004.
Coey, J. M. D., Magnetic properties of iron in soil iron oxides and clay minerals. Iron in Soils and Clay Minerals (ed. Strucki, J. al.), Dordrecht: D. Reidel Publishing Company, pp. 397–466, 1988.
Coey, J. M. D., Morup, S., Madsen, M. B., and Knudsen, J. M., Titanomaghemite in magnetic soils on Earth and Mars, J. Geophys. Res. 95, 14423–5, 1990.
Criddle, A. J. and Stanley, C. J., Quantitative Data File for Ore Minerals (QDF3), 3rd edn., London: Chapmann & Hall, 1993.
Wys, J. N., Magnet Data, In Surveyor: Program Results, NASA SP-184, 223, 1969.
Dunlop, D. J. and Özdemir, Ö., Rock Magnetism, Fundamentals and Frontiers, Cambridge University Press, 1997.
Gellert, R., Rieder, R., Anderson, R. C., et al., Chemistry of rocks and soils in Gusev crater from the Alpha Particle X-ray Spectrometer, Science 305, 829–32, 2004.
Goetz, W., The optical properties of Martian dust, Ph.D. thesis, Center for Planetary Science, University of Copenhagen, 2002.
Goetz, W., Bertelsen, P., Binau, C. S., et al., Chemistry and mineralogy of atmospheric dust at Gusev crater: indication of dryer periods on Mars, Nature 436, 62–5, 2005.
Goetz, W., Leer, K., Gunnlaugsson, H. P., et al., Overview of the RAT Magnet Investigation on Spirit and Opportunity, J. Geophys. Res. doi:10.1029/2006JE002819, 2007.
Gorevan, S. P., Myrick, T., Davis, K., et al., Rock abrasion tool: Mars Exploration Rover mission, J. Geophys. Res. 108, 8068, 2003.
Greeley, R., Arvidson, R. E., Barlett, P. W., et al., Gusev crater: wind-related features and processes observed by the Mars Exploration Rover Spirit, J. Geophys. Res. 111, 2006.
Gunnlaugsson, H. P., Analysis of the magnetic properties experiment data on Mars: results from Mars Pathfinder, Planet. Space Sci. 48, 1491–504, 2000.
Gunnlaugsson, H. P., Hviid, S. F., Knudsen, J. M., and Madsen, M. B., Instruments for the magnetic properties experiments on Mars Pathfinder, Planet. Space Sci. 46, 449, 1998.
Hapke, B., Theory of Reflectance and Emittance Spectroscopy, Cambridge: Cambridge University Press, 1993.
Hargraves, R. B. and Petersen, N., Magnetic properties investigation: the Viking Mars lander, Icarus 16, 223–7, 1972.
Hargraves, R. B., Collinson, D. W., and Spitzer, C. R., Viking magnetic properties investigation: preliminary results, Science 194, 84–6, 1976a.
Hargraves, R. B., Collinson, D. W., Arvidson, R. E., and Spitzer, C. R., Viking magnetic properties investigation: further results, Science 194, 1303, 1976b.
Hargraves, R. B., Collinson, D. W., Arvidson, R. E., and Spitzer, C. R.The Viking magnetic properties experiment: primary mission results, J. Geophys. Res. 82, 4547–58, 1977.
Hargraves, R. B., Collinson, D. W., Arvidson, R. E., and Cates, P. M., Viking magnetic properties experiment: extended mission results, J. Geophys. Res. 84, 8379–84, 1979.
Hargraves, R. B., Knudsen, J. M., Bertelsen, P., et al., Magnetic enhancement on the surface of Mars?, J. Geophys. Res. – Planets 105, 1819–27, 2000.
Huffmann, D. R. and J. L. Stapp, Optical measurements on solids of possible interstellar importance. In Interstellar Dust and Related Topics (ed. Greenberg, and Hulst, V. d.), Boston, MA: D. Reidel Co., p. 297, 1973.
Hviid, S. F., Madsen, M. B., Gunnlaugsson, H. P., et al., Magnetic properties experiments on the Mars Pathfinder lander: preliminary results, Science 278, 1768–70, 1997.
Hviid, S. F., Madsen, M. B., Knudsen, J. M., et al., Results of the magnetic properties experiment on the Mars Pathfinder lander, Lunar Planet. Sci. XXIX, 1605–6, 1998.
Jackson, J. D., Classical Electrodynamics, 3rd edn., New York, NY: John Wiley & Sons, 189pp., 1999.
Johnson, J. R., Grundy, W. M., and Lemmon, M. T., Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra, Icarus 163, 330–46, 2003.
Kinch, K. M., et al. Preliminary analysis of the MER magnetic properties experiment using a computational fluid dynamics model, Planet. Space Sci. 54, 28–44, 2006.
Kinch, K. M., et al., Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets, J. Geophys. Res., 112, Cite ID E06S03, doi:10.1029/2006JE002807, 2007.
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer, Science 306, 1740–5, 2004.
Knudsen, J. M., Madsen, M. B., Olsen, M., et al., Mössbauer spectroscopy on the surface of Mars: Why?, Hyperfine Interactions 68, 83–94, 1991.
Landis, G. A. and Jenkins, P. J., Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder, J. Geophys. Res. 105, 1855–7, 2000.
Landis, G. A., Herkenhoff, K., Greeley, R., et al., Dust and sand deposition on the MER solar arrays as viewed by the Microscopic Imager, Proc. Lunar Planet. Sci. Conf. XXXVII, 2006.
Lemmon, M., Wolff, M. J., Smith, M. D., et al., Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity, Science 306, 1753–6, 2004.
Madsen, M. B., Hviid, S. F., Gunnlaugsson, H. P., et al., The magnetic properties experiments on Mars Pathfinder, J. Geophys. Res. 104, 8761–79, 1999.
Madsen, M. B., Bertelsen, P., Goetz, W., et al., The magnetic properties experiments on the Mars Exploration Rover mission, J. Geophys. Res. 108, 8069, 2003.
Markiewicz, W. J., Sablotny, R. M., Keller, H. U., et al., Optical properties of the Martian aerosols as derived from imager for Mars Pathfinder midday sky brightness data, J. Geophys. Res. 104, 9009–17, 1999.
McSween, H. Y., Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. 111, E02S10, doi:10.1029/2005JE002477, 2006.
Merrison, J. P., Gunnlaugsson, H., Mossin, L., et al., Capture of magnetic dust in a simulated Martian aerosol: the importance of aerodynamics, Planet. Space Sci. 50, 371–4, 2002a.
Merrison, J. P., Bertelsen, P., Frandsen, C., et al., Simulation of the Martian dust aerosol at low wind speeds, J. Geophys. Res. 107, 5133, 2002b.
Metzger, S. M., Carr, J. R., Johnson, J. R., Parker, T. J., and Lemmon, M. T., Dust devil vortices seen by the Mars Pathfinder camera, Geophys. Res. Lett. 26, 2781–4, 1999.
Mogensen, C. T., Knudsen, J. M., Madsen, M. B., et al., Magnetic properties experiments on the Mars polar lander, J. Geophys. Res. 106, 17579–88, 2001.
Morris, R. V. and Singer, R., Origins of Marslike spectral and magnetic properties of a Hawaiian Palagonitic soil, J. Geophys. Res. 95, 14427–34, 1990.
Morris, R. V., Lauer, H. V. Jr., Lawson, C. A., et al., Spectral and other physiochemical properties of submicron powders of hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4), goethite (α-FeOOH), and lepidocrocite (γ-FeOOH), J. Geophys. Res. 90, 3126–44, 1985.
Morris, R. V., Golden, D. C., Bell, J. F. III, et al., Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples, J. Geophys. Res. 105, 1757–818, 2000.
Morris, R. V., Graff, T. G., and Mertzman, S. A., Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): a mineralogical analogue for magnetic Martian dust?, J. Geophys. Res. 106, 5057–84, 2001.
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit Rover, Science 305, 833–6, 2004.
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, 2006.
Nørnberg, P., Schwertmann, U., Stanjek, H., Andersen, T., and Gunnlaugsson, H. P., Mineralogy of a burned soil compared with four anomalously red Quaternary deposits in Denmark, Clay Miner. 39, 85–98, 2004.
Ockert-Bell, M. E., Bell, J. F. III, Mckay, C. P., Pollack, J. B., and Forget, F., Absorption and scattering properties of the Martian dust in the solar wavelengths, J. Geophys. Res. 102, 9039–50, 1997.
O'Reilly, W., Magnetic minerals in the crust of Earth, Rep. Prog. Phys. 39, 857–908, 1976.
O'Reilly, W., Rock and Mineral Magnetism, Glasgow: Blackie and son Ltd., 1984.
Pollack, J. B., Colburn, D., Kahn, R. A., et al., Properties of aerosols in the Martian atmosphere as inferred from Viking Lander imaging data, J. Geophys. Res. 82, 4479–96, 1977.
Pollack, J. B., Colburn, D. S., Flaser, F. M., et al., Properties and effects of dust suspended in the Martian atmosphere, J. Geophys. Res. 84, 2929–45, 1979.
Pollack, J. B., Ockert-Bell, M. E., and Shepard, M. K., Viking Lander image analysis of Martian atmospheric dust, J. Geophys. Res. 100, 5235, 1995.
Schlegel, A., Alvarado, S. F., and Wachter, P., Optical properties of magnetite (Fe3O4), J. Phys. C: Solid State Phys. 12, 1157–64, 1979.
Schofield, J. T., Barnes, J. R., Crisp, D., et al., The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment, Science 278, 1752–8, 1997.
Singer, R. B., McCord, T. B., and Clark, R. N., Mars surface composition from reflectance spectroscopy: a summary, J. Geophys. Res. 84, 8415–26, 1979.
Smith, P. H., Tomasko, M. G., Britt, D., et al., The Imager for Mars Pathfinder experiment, J. Geophys. Res. 102, 4003–25, 1997.
Squyres, S. W., Arvidson, R. E., Baumgartner, E. T., et al., The Athena Mars Rover science investigation, J. Geophys. Res. 108, 8062, doi:10.1029/JE002121, 2003.
Tanaka, T., Optical constants of polycrystalline 3d transition metal oxides in the wavelength region 350 to 1200 nm, Japanese J. Appl. Phys. 18, 1043, 1979.
Tomasko, M. G., Doose, L. R., Lemmon, M., Smith, P. H., and Wegryn, E., Properties of dust in the Martian atmosphere from the imager on Mars Pathfinder, J. Geophys. Res. 104, 8987–9007, 1999.