Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T18:06:00.970Z Has data issue: false hasContentIssue false

Jupiter's post-impact atmospheric thermal response

Published online by Cambridge University Press:  12 September 2009

Barney J. Conrath
Affiliation:
Laboratory for Extraterrestrial Physics, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Keith S. Noll
Affiliation:
Space Telescope Science Institute, Baltimore
Harold A. Weaver
Affiliation:
Applied Research Corporation, Landover, Maryland
Paul D. Feldman
Affiliation:
The Johns Hopkins University
Get access

Summary

Measurements of thermal emission in spectral regions, ranging from the near-infrared to mm wavelengths provide information on the atmospheric thermal structure over impact sites from μbar levels in the upper stratosphere down to the upper troposphere. Systematic time series of observations relevant to this entire height range over individual spots do not exist. However, by piecing together information at different times from various spots, it is possible to obtain a provisional, semi-quantitative picture of the behavior of the thermal structure over a typical impact site. Immediately after fall-back of the ejecta plume, the upper stratosphere is heated to ∼ 600–1300 K above ambient temperature. The amplitude of the temperature perturbation diminishes with increasing depth in the atmosphere, but even in the upper troposphere a temperature increase of a few kelvins is observed. Initially, the upper stratosphere cools very rapidly with time scales of tens of minutes, presumably the result of strong radiative cooling associated with the high temperatures. After the initial cooling, all levels continue to cool at slower rates with time scales of a few days; however, this is still very rapid compared to radiative cooling of the ambient atmosphere. Enhancements in infrared opacity necessary to produce the cooling radiatively do not appear to be viable, suggesting that dynamical effects may play a dominant role. Possible mechanisms include horizontal mixing with the ambient atmosphere and adiabatic cooling produced by upward motion associated with an anticyclonic vortex.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×