Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T11:06:35.510Z Has data issue: false hasContentIssue false

Galileo observations of the impacts

Published online by Cambridge University Press:  12 September 2009

Clark R. Chapman
Affiliation:
Planetary Science Institute, 620 N. 6th Avenue, Tucson AZ 85705
Keith S. Noll
Affiliation:
Space Telescope Science Institute, Baltimore
Harold A. Weaver
Affiliation:
Applied Research Corporation, Landover, Maryland
Paul D. Feldman
Affiliation:
The Johns Hopkins University
Get access

Summary

Galileo observations in the UV, visible, and infrared uniquely characterize the luminous phenomena associated primarily with the early stages of the impacts of SL9 fragments—the bolide and fireball phases—because of the spacecraft's direct view of the impact sites. The single luminous events, typically 1 min in duration at near-IR wavelengths, are interpreted as initial bolide flashes in the stratosphere followed immediately by development of a fireball above the ammonia clouds, which subsequently rises, expands, and cools from ∼ 8000 K to ∼ 1000 K over the first minute. The brightnesses of the bolide phases were remarkably similar for disparate events, including L and N, which were among the biggest and smallest of the impacts as classified by Earth-based phenomena. Subsequent fireball brightnesses differ much more, suggesting that the similar-sized fragments were near the threshold for creating fireballs and large dark features on Jupiter's face. Both bolides and fireballs were much dimmer than had been predicted before the impacts, implying that impactor masses were small (∼0.5 km diameter). Galileo data clarify the physical interpretation of the “first precursor,” as observed from Earth: it probably represents a massive meteor storm accompanying the main fragment, peaking ∼10s before the fragment penetrates to the tropopause; hints of behind-the-limb luminous phenomena, recorded from Earth immediately following the peak of the first precursor, may be due to reflection of the late bolide/early fireball stages from comet debris very high in Jupiter's atmosphere.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×