Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T23:00:25.914Z Has data issue: false hasContentIssue false

Particulate matter in Jupiter's atmosphere from the impacts of Comet P/Shoemaker-Levy 9

Published online by Cambridge University Press:  12 September 2009

Robert A. West
Affiliation:
Jet Propulsion Lab, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, U.S.A.
Keith S. Noll
Affiliation:
Space Telescope Science Institute, Baltimore
Harold A. Weaver
Affiliation:
Applied Research Corporation, Landover, Maryland
Paul D. Feldman
Affiliation:
The Johns Hopkins University
Get access

Summary

The dark clouds that were easily seen in small telescopes after the comet impacts were caused by small particles which were deposited in Jupiter's stratosphere. Observations from the Hubble Space Telescope and from ground-based instruments at visible and infrared wavelengths indicate that the mean radius of the particles is in the range 0.1 to 0.3 μm, and the total volume of particles is approximately the same as that for a 1-km diameter sphere. In the dark core regions of freshly-formed impacts, the particles are distributed over a large vertical extent, between about 1 mb and 200 mb or deeper. The diffuse outlying haze is confined to the high-altitude end of the range. Such a distribution probably reflects different methods of emplacement of the debris as a function of distance from the impact. The color of the particles, and their volatility as required to make waves visible, suggest an organic material as the main constituent. These relatively volatile materials are thought to have condensed onto more refractory grains after the plume material cooled, some 30 minutes or more after impact. The most refractory materials expected to condense from an evolving fireball are Al2O3, magnesium and iron silicates, and soot, depending on the C/O ratio. A silicate spectral feature was observed, confirming that cometary material was incorporated into the grains, although silicate grains make up only 10–20% of the particle volume.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×