Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-24T08:10:38.085Z Has data issue: false hasContentIssue false

Chapter 2 - Familial endocrine tumor syndromes

from Section I - Clinical approaches

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maher, ER, Iselius, L, Yates, JR, Littler, M, Benjamin, C, Harris, R, et al. Von Hippel–Lindau disease: a genetic study. J Med Genet 1991;28:443447.Google Scholar
Vortmeyer, A, Falke, E, Gläsker, S, Li, J, Oldfield, E. Nervous system involvement in von Hippel–Lindau disease: pathology and mechanisms. Acta Neuropathol 2013;125:333350.CrossRefGoogle ScholarPubMed
Lonser, RR, Glenn, GM, Walther, M, Chew, EY, Libutti, SK, Linehan, WM, et al. von Hippel–Lindau disease. Lancet 2003;361:20592067.Google Scholar
Maher, ER, Yates, JR, Harries, R, Benjamin, C, Harris, R, Moore, AT, et al. Clinical features and natural history of von Hippel–Lindau disease. Q J Med 1990;77:11511163.CrossRefGoogle ScholarPubMed
Seizinger, BR, Rouleau, GA, Ozelius, LJ, Lane, AH, Farmer, GE, Lamiell, JM, et al. Von Hippel–Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 1988;332:268269.Google Scholar
Knudson, A. Hereditary cancer: Two hits revisited. J Cancer Res Clin Oncol 1996;122:135140.Google Scholar
Kaelin, WG. Jr The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 2008;8:865873.CrossRefGoogle ScholarPubMed
Yang, H, Minamishima, YA, Yan, Q, Schlisio, S, Ebert, BL, Zhang, X, et al. pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-κB agonist card9 by CK2. Mol Cell 2007;28:1527.Google Scholar
Dollfus, H, Massin, P, Taupin, P, Nemeth, C, Amara, S, Giraud, S, et al. Retinal hemangioblastoma in von Hippel–Lindau disease: a clinical and molecular study. Invest Ophthalmol Visual Sci 2002;43:30673074.Google Scholar
Wanebo, JE, Lonser, RR, Glenn, GM, Oldfield, EH. The natural history of hemangioblastomas of the central nervous system in patients with von Hippel–Lindau disease. J Neurosurg 2003;98:8294.Google Scholar
Jagannathan, J, Lonser, RR, Smith, R, DeVroom, HL, Oldfield, EH. Surgical management of cerebellar hemangioblastomas in patients with von Hippel–Lindau disease. J Neurosurg 2008;108:210222.Google Scholar
Asthagiri, AR, Mehta, GU, Zach, L, Li, X, Butman, JA, Camphausen, KA, et al. Prospective evaluation of radiosurgery for hemangioblastomas in von Hippel–Lindau disease. Neuro Oncol 2010;12:8086.Google Scholar
Hussein, MR. Central nervous system capillary haemangioblastoma: the pathologist's viewpoint. Int J Exp Pathol 2007;88:311324.CrossRefGoogle ScholarPubMed
Jilg, CA, Neumann, HH, Gläsker, S, Schäfer, O, Leiber, C, Ardelt, PU, et al. Nephron sparing surgery in von Hippel–Lindau associated renal cell carcinoma; clinicopathological long-term follow-up. Familial Cancer 2012;11:387394.Google Scholar
Johnson, A, Sudarshan, S, Liu, J, Linehan, WM, Pinto, PA, Bratslavsky, G. Feasibility and outcomes of repeat partial nephrectomy. J Urol 2008;180:8993.CrossRefGoogle ScholarPubMed
Goldfarb, DA, Neumann, HPH, Penn, I, Novick, AC. Results of renal transplantation in patients with renal cell carcinoma and von Hippel–Lindau disease 1, 2. Transplantation 1997;64:17261729.CrossRefGoogle Scholar
Lodish, MB, Adams, KT, Huynh, TT, Prodanov, T, Ling, A, Chen, C, et al. Succinate dehydrogenase gene mutations are strongly associated with paraganglioma of the organ of Zuckerkandl. Endocr Relat Cancer 2010;17:581588.Google Scholar
Agrawal, D, Maimone, SS, Wong, RCK, Isenberg, G, Faulx, A, Chak, A. Prevalence and clinical significance of pancreatic cysts associated with cysts in other organs. Digest Liver Dis 2011;43:797801.Google Scholar
Kitano, M, Millo, C, Rahbari, R, Herscovitch, P, Gesuwan, K, Webb, RC, et al. Comparison of 6-18F-fluoro-l-DOPA, 18F-2-deoxy-d-glucose, CT, and MRI in patients with pancreatic neuroendocrine neoplasms with von Hippel–Lindau disease. Surgery 2011;150:11221128.Google Scholar
Hoang, MP, Hruban, RH, Albores-Saavedra, J. Clear cell endocrine pancreatic tumor mimicking renal cell carcinoma: a distinctive neoplasm of von Hippel–Lindau disease. Am J Surg Pathol 2001;25:602609.CrossRefGoogle ScholarPubMed
Bell, D, Gidley, P, Levine, N, Fuller, GN. Endolymphatic sac tumor (aggressive papillary tumor of middle ear and temporal bone): sine qua non radiology-pathology and the University of Texas MD Anderson Cancer Center experience. Ann Diagn Pathol 2011;15:117123.Google Scholar
Aydin, H, Young, RH, Ronnett, BM, Epstein, JI. Clear cell papillary cystadenoma of the epididymis and mesosalpinx: immunohistochemical differentiation from metastatic clear cell renal cell carcinoma. Am J Surg Pathol 2005;29:520523.Google Scholar
Maher, E. Von Hippel–Lindau disease. Curr Mol Med 2004;4:833842.Google Scholar
Gimenez–Roqueplo, AP, Dahia, PL, Robledo, M. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res 2012;44:328333.Google Scholar
Zhuang, Z, Yang, C, Lorenzo, F, Merino, M, Fojo, T, Kebebew, E, et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med 2012;367:922930.Google Scholar
Rutter, J, Winge, DR, Schiffman, JD. Succinate dehydrogenase: assembly, regulation and role in human disease. Mitochondrion 2010;10:393401.Google Scholar
Dahia, PLM, Ross, KN, Wright, ME, Hayashida, CY, Santagata, S, Barontini, M, et al. A HIF1α regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 2005;1:e8.Google Scholar
Timmers, HJLM, Taieb, D, Pacak, K. Current and future anatomical and functional imaging approaches to pheochromocytoma and paraganglioma. Horm Metab Res 2012;44:367372.Google ScholarPubMed
Eisenhofer, G, Lenders, JWM, Siegert, G, Bornstein, SR, Friberg, P, Milosevic, D, et al. Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur J Cancer 2012;48:17391749.Google Scholar
Parfait, B, Chretien, D, Rötig, A, Marsac, C, Munnich, A, Rustin, P. Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet 2000;106:236243. English.Google Scholar
Korpershoek, E, Favier, J, Gaal, J, Burnichon, N, van Gessel, B, Oudijk, L, et al. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab 2011;96:E1472-E6.Google Scholar
van Nederveen, FH, Gaal, J, Favier, J, Korpershoek, E, Oldenburg, RA, de Bruyn, EMCA, et al. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 2009;10:764771.Google Scholar
Gaal, J, Stratakis, CA, Carney, JA, Ball, ER, Korpershoek, E, Lodish, MB, et al. SDHB immunohistochemistry: a useful tool in the diagnosis of Carney–Stratakis and Carney triad gastrointestinal stromal tumors. Mod Pathol 2011;24:147151.CrossRefGoogle ScholarPubMed
Karasek, D, Shah, U, Frysak, Z, Stratakis, C, Pacak, K. An update on the genetics of pheochromocytoma. J Hum Hypertens 2013;27:141147.Google Scholar
Pacak, K, Fojo, T, Goldstein, DS, Eisenhofer, G, Walther, MM, Linehan, WM, et al. Radiofrequency Ablation: a Novel Approach for Treatment of Metastatic Pheochromocytoma. J Natl Cancer Inst 2001;93:648649.Google Scholar
Carney, JA, Sheps, SG, Go, VLW, Gordon, H. The triad of gastric leiomyosarcoma, functioning extra-adrenal paraganglioma and pulmonary chondroma. N Engl J Med 1977;296:15171518.Google Scholar
Stratakis, CA, Carney, JA. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney–Stratakis syndrome): molecular genetics and clinical implications. J Intern Med 2009;266:4352.Google Scholar
Hong, S, Lee, W, Lee, H. Hepatic paraganglioma and multifocal gastrointestinal stromal tumor in a female: Incomplete Carney triad. World J Gastrointest Surg 2013;5:229232.Google Scholar
Carney, JA, Stratakis, CA, Young, WFJ. Adrenal cortical adenoma: the fourth component of the Carney triad and an association with subclinical Cushing syndrome. Am J Surg Pathol 2013;37:11401149.Google Scholar
Zhang, L, Smyrk, T, Young, W, Stratakis, C, Carney, JA. Gastric stromal tumors in Carney triad are different clinically, pathologically, and behaviorally from sporadic gastric gastrointestinal stromal tumors: findings in 104 cases. Am J Surg Pathol 2010;34:5364.Google Scholar
Carney, JA, Stratakis, C. Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet 2002;108:132139.Google Scholar
Kelly, L, Bryan, K, Kim, S, Janeway, K, Killian, JK, Schildhaus, H-U, et al. Post-transcriptional dysregulation by miRNAs is implicated in the pathogenesis of gastrointestinal stromal tumor [GIST]. PLOS ONE 2013;8:e64102-e.Google Scholar
Thakker, RV. Multiple Endocrine Neoplasia—syndromes of the Twentieth Century. J Clin Endocrinol Metab 1998 August 1, 1998;83:26172620.Google Scholar
Thakker, RV. Multiple endocrine neoplasia type 1 (MEN1). Best Pract Res Clin Endocrinol Metab 2010;24:355370.Google Scholar
Kaji, H, Canaff, L, Lebrun, J-J, Goltzman, D, Hendy, GN. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type β signaling. Proc Natl Acad Sci USA 2001;98:38373842.Google Scholar
Karhu, A, Aaltonen, LA. Susceptibility to pituitary neoplasia related to MEN1, CDKN1B and AIP mutations: an update. Hum Mol Genet 2007;16:R73R79.Google Scholar
Lemos, M, Thakker, R. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 2008;29:2232.Google Scholar
Marx, SJ. Familial multiple endocrine neoplasia type 1 Mutation of a tumor suppressor gene. Trends Endocrinol Metab 1989;1:7682.Google Scholar
Hofland, LJ, Feelders, RA, de Herder, WW, Lamberts, SWJ. Pituitary tumours: The sst/D2 receptors as molecular targets. Mol Cell Endocrinol 2010;326:8998.CrossRefGoogle ScholarPubMed
Thakker, R, Newey, P, Walls, G, Bilezikian, J, Dralle, H, Ebeling, P, et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). The Journal of Clinical Endocrinology and Metabolism. 2012;97(9):29903011Google Scholar
Kouvaraki, M, Shapiro, S, Perrier, N, Cote, G, Gagel, R, Hoff, A, et al. RET proto-oncogene: a review and update of genotype–phenotype correlations in hereditary medullary thyroid cancer and associated endocrine tumors. Thyroid 2005;15:531544.Google Scholar
Kloos, R, Eng, C, Evans, D, Francis, G, Gagel, R, Gharib, H, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 2009;19:565612.Google Scholar
Takahashi, M, Ritz, J, Cooper, GM. Activation of a novel human transforming gene, RET, by DNA rearrangement. Cell 1985;42:581588.Google Scholar
Lodish, M, Stratakis, C. RET oncogene in MEN2, MEN2B, MTC and other forms of thyroid cancer. Expert Rev Anticancer Ther 2008;8:625632.Google Scholar
Santoro, M, Carlomagno, F, Romano, A, Bottaro, DP, Dathan, NA, Grieco, M, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995;267:381383.Google Scholar
Wells, S, Asa, S, Dralle, H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015;25:567610.Google Scholar
Wells, S, Gosnell, J, Gagel, R, Moley, J, Pfister, D, Sosa, J, et al. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol 2010;28:767772.Google Scholar
Pellegata, N. MENX. Ann Endocrinol 2012;73:6570.Google Scholar
Pellegata, NS. MENX and MEN4. Clinics (San Paulo) 2012;67:1318.Google Scholar
MorosÃtti, R, Kawamata, N, Gombart, AF, Miller, CW, Hatta, Y, Hirama, T, et al. Alterations of the p27Kip1 gene in non-Hodgkin's lymphomas and adult T-cell leukemia/lymphoma. Blood 1995;86:19241930.Google Scholar
Hillenbrand, A, Varhaug, J-E, Brauckhoff, M, Pandev, R, Haufe, S, Dotzenrath, C, et al. Familial nonmedullary thyroid carcinoma: clinical relevance and prognosis. A European multicenter study. Langenbecks Arch Surg 2010 2010/09/01;395:851858. English.Google Scholar
Bonora, E, Tallini, G, Romeo, G. Genetic predisposition to familial nonmedullary thyroid cancer: an update of molecular findings and state-of-the-art studies. J Oncol 2010;2010:385206.Google Scholar
Capezzone, M, Marchisotta, S, Cantara, S, Busonero, G, Brilli, L, Pazaitou Panayiotou, K, et al. Familial non-medullary thyroid carcinoma displays the features of clinical anticipation suggestive of a distinct biological entity. Endocr Relat Cancer 2008;15:10751081.Google Scholar
Nosé, V. Familial thyroid cancer: a review. Mod Pathol 2011;24(suppl 2):S19S33.Google Scholar
Ciampi, R, Nikiforov, YE. RET/PTC pearrangements and BRAF mutations in Thyroid Tumorigenesis. Endocrinology. 2007 March 1, 2007;148:936941.Google Scholar
Carney, JA, Gordon, H, Carpenter, PC, Shenoy, BV, Go, VL. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine 1985;64:270283.Google Scholar
Rothenbuhler, A, Stratakis, CA. Clinical and molecular genetics of Carney complex. Best Pract Res Clin Endocrinol Metab 2010;24:389399.Google Scholar
Stratakis, CA, Kirschner, LS, Carney, JA. Clinical and Molecular Features of the Carney Complex: Diagnostic Criteria and Recommendations for Patient Evaluation. J Clin Endocrinol Metab 2001 September 1, 2001;86:40414046.CrossRefGoogle ScholarPubMed
Briassoulis, G, Kuburovic, V, Xekouki, P, Patronas, N, Keil, M, Lyssikatos, C, et al. Recurrent left atrial myxomas in Carney complex: a genetic cause of multiple strokes that can be prevented. J Stroke Cerebrovasc Dis 2012;21:914.e1–e8.Google Scholar
Kirschner, LS, Carney, JA, Pack, SD, Taymans, SE, Giatzakis, C, Cho, YS, et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000;26:8992.CrossRefGoogle ScholarPubMed
Stratakis, CA, Carney, JA, Lin, JP, Papanicolaou, DA, Karl, M, Kastner, DL, et al. Carney complex, a familial multiple neoplasia and lentiginosis syndrome. Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Invest 1996;97:699705.Google Scholar
Robinson White, A, Meoli, E, Stergiopoulos, S, Horvath, A, Boikos, S, Bossis, I, et al. PRKAR1A mutations and protein kinase A interactions with other signaling pathways in the adrenal cortex. J Clin Endocrinol Metab 2006;91:23802388.Google Scholar
Stratakis, CA. cAMP/PKA signaling defects in tumors: genetics and tissue-specific pluripotential cell-derived lesions in human and mouse. Mol Cell Endocrinol 2013;371:208220.Google Scholar
Horvath, A, Bertherat, J, Groussin, L, Guillaud-Bataille, M, Tsang, K, Cazabat, L, et al. Mutations and polymorphisms in the gene encoding regulatory subunit type 1-alpha of protein kinase A (PRKAR1A): an update. Hum Mutat 2010;31:369379.Google Scholar
Horvath, A, Bossis, I, Giatzakis, C, Levine, E, Weinberg, F, Meoli, E, et al. Large deletions of the PRKAR1A gene in Carney complex. Clin Cancer Res 2008;14:388395.Google Scholar
Blyth, M, Huang, S, Maloney, V, Crolla, J, Karen Temple, I. A 2.3 Mb deletion of 17q24.2-q24.3 associated with “Carney Complex plus.” Eur J Med Genet 2008;51:672678.Google Scholar
Anselmo, J, Medeiros, S, Carneiro, V, Greene, E, Levy, I, Nesterova, M, et al. A large family with Carney complex caused by the S147G PRKAR1A mutation shows a unique spectrum of disease including adrenocortical cancer. J Clin Endocrinol Metab 2012;97:351359.Google Scholar
Morin, E, Mete, O, Wasserman, J, Joshua, A, Asa, S, Ezzat, S. Carney complex with adrenal cortical carcinoma. J Clin Endocrinol Metab 2012;97:E202E206.Google Scholar
Gaujoux, Sb, Tissier, Fdr, Groussin, L, Libé, R, Ragazzon, B, Launay, P, et al. Wnt/beta-catenin and 3′,5′-cyclic adenosine 5′-monophosphate/protein kinase A signaling pathways alterations and somatic beta-catenin gene mutations in the progression of adrenocortical tumors. J Clin Endocrinol Metab 2008;93:41354140.CrossRefGoogle Scholar
Lodish, M, Yuan, B, Levy, I, et al. Germline PRKACA amplification causes variable phenotypes that may depend on the extent of the genomic defect: molecular mechanisms and clinical presentations. Eur J Endocrinol 2015;172:803811.Google Scholar
Al Mateen, M, Hood, M, Trippel, D, Insalaco, S, Otto, R, Vitikainen, K. Cerebral embolism from atrial myxoma in pediatric patients. Pediatrics 2003;112:e162e167.Google Scholar
Stratakis, CA, Sarlis, N, Kirschner, LS, Carney, JA, Doppman, JL, Nieman, LK, et al. Paradoxical response to dexamethasone in the diagnosis of primary pigmented nodular adrenocortical disease. Ann Intern Med 1999;131:585591.Google Scholar
Ezzat, S, Asa, S, Couldwell, W, Barr, C, Dodge, W, Vance, M, et al. The prevalence of pituitary adenomas: a systematic review. Cancer 2004;101:613619.Google Scholar
Dumitrescu, C, Collins, M. McCune–Albright syndrome. Orphanet J Rare Dis 2008;3:12.Google Scholar
Albright, F, Butler, A, Hampton, A, Smith, P. Syndrome characterized by osteitis fibrosa disseminata, areas, of pigmentation, and endocrine dysfunction, with precocious puberty in females: report of 5 cases. N Engl J Med 1937;216:727746.Google Scholar
Weinstein, LS, Liu, J, Sakamoto, A, Xie, T, Chen, M. Minireview. GNAS: normal and abnormal functions. Endocrinology 2004;145:54595464.Google Scholar
Akintoye, SO, Chebli, C, Booher, S, Feuillan, P, Kushner, H, Leroith, D, et al. Characterization of GSP-mediated growth hormone excess in the context of McCune–Albright syndrome. J Clin Endocrinol Metab 2002;87:51045112.Google Scholar
Vortmeyer, AO, Gläsker, S, Mehta, GU, Abu-Asab, MS, Smith, JH, Zhuang, Z, et al. Somatic GNAS mutation causes widespread and diffuse pituitary disease in acromegalic patients with McCune–Albright syndrome. J Clin Endocrinol Metab 2012;97:24042413.Google Scholar
Igreja, S, Chahal, HS, King, P, Bolger, GB, Srirangalingam, U, Guasti, L, et al. Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations in familial isolated pituitary adenoma families. Hum Mutat 2010;31:950960.Google Scholar
Georgitsi, M, De Menis, E, Cannavò, S, Mäkinen, MJ, Tuppurainen, K, Pauletto, P, et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin Endocrinol 2008;69:621627.Google Scholar
Vierimaa, O, Georgitsi, M, Lehtonen, R, Vahteristo, P, Kokko, A, Raitila, A, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006;312:12281230.Google Scholar
Wildi-Runge, S, Bahubeshi, A, Carret, A-S, Crevier, L, Robitaille, Y, Kovacs, K, et al. New phenotype in the familial DICER1 tumor syndrome: pituitary blastoma presenting at age 9 months. Endocr Rev 2011;32:P1P777.Google Scholar
Xekouki, P, Pacak, K, Almeida, M, Wassif, CA, Rustin, P, Nesterova, M, et al. Succinate dehydrogenase (SDH) D subunit (SDHD) inactivation in a growth-hormone-producing pituitary tumor: a new association for SDH? J Clin Endocrinol Metab 2012;97:E357E366.Google Scholar
Jett, K, Friedman, JM. Clinical and genetic aspects of neurofibromatosis 1. Genet Med 2010;12:111.Google Scholar
Brems, H, Beert, E, de Ravel, T, Legius, E. Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol 2009;10:508515.Google Scholar
Josefson, J, Listernick, R, Fangusaro, JR, Charrow, J, Habiby, R. Growth hormone excess in children with neurofibromatosis type 1-associated and sporadic optic pathway tumors. J Pediatr 2011;158:433436.Google Scholar
Hemminki, A, Markie, D, Tomlinson, I, Avizienyte, E, Roth, S, Loukola, A, et al. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 1998;391:184187.Google Scholar
Hemminki, A. The molecular basis and clinical aspects of Peutz–Jeghers syndrome. Cell Mol Life Sci.1999;55:735750.Google Scholar
Carney, JA, Ho, J, Kitsuda, K, Young, W, Stratakis, C. Massive neonatal adrenal enlargement due to cytomegaly, persistence of the transient cortex, and hyperplasia of the permanent cortex: findings in Cushing syndrome associated with hemihypertrophy. Am J Surg Pathol 2012;36:14521463.Google Scholar
Slegtenhorst, MV, Hoogt, RD, Hermans, C, Nellist, M, Janssen, B, Verhoef, S, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997;277:805808.Google Scholar
Dworakowska, D, Grossman, AB. Are neuroendocrine tumours a feature of tuberous sclerosis? A systematic review. Endocr Relat Cancer 2009;16:4558.Google Scholar
Gonzalez, KD, Noltner, KA, Buzin, CH, Gu, D, Wen-Fong, CY, Nguyen, VQ, et al. Beyond Li Fraumeni syndrome: clinical characteristics of families with P53 germline mutations. J Clin Oncol 2009;27:12501256.Google Scholar
Nelen, MR, Padberg, GW, Peeters, EA, Lin, AY, van den Helm, B, Frants, RR, et al. Localization of the gene for Cowden disease to chromosome 10q22-23. Nat Genet 1996;13:114116.Google Scholar
Marsh, DJ, Coulon, V, Lunetta, KL, Rocca Serra, P, Dahia, PL, Zheng, Z, et al. Mutation spectrum and genotype–phenotype analyses in Cowden disease and Bannayan–Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet 1998;7:507515.Google Scholar
Gorlin, RJ, Cohen, MM, Condon, LM, Burke, BA. Bannayan–Riley–Ruvalcaba syndrome. American J Med Genet 1992;44:307314.Google Scholar
Eng, C. PTEN: one gene, many syndromes. Hum Mutat 2003;22:183198.Google Scholar
Groen, E, Roos, A, Muntinghe, F, Enting, R, de Vries, J, Kleibeuker, J, et al. Extra-intestinal manifestations of familial adenomatous polyposis. Ann Surg Oncol 2008;15:24392450.Google Scholar
Gaujoux, SB, Pinson, SP, Gimenez Roqueplo, A-P, Amar, L, Ragazzon, B, Launay, P, et al. Inactivation of the APC gene is constant in adrenocortical tumors from patients with familial adenomatous polyposis but not frequent in sporadic adrenocortical cancers. Clin Cancer Res 2010;16:51335141.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×